
2015 IEEE International Conference on Big Data (Big Data)

978-1-4799-9926-2/15/$31.00 ©2015 IEEE 470

A Transaction Model for Management of Replicated
Data with Multiple Consistency Levels

Anand Tripathi and BhagavathiDhass Thirunavukarasu

Department of Computer Science

University of Minnesota, Minneapolis, Minnesota, 55455 USA

Email: (tripathi, thiru022)@umn.edu

Abstract—We present a transaction model which simultane-
ously supports different consistency levels, which include serial-
izable transactions for strong consistency, and weaker consistency
models such as causal snapshot isolation (CSI), CSI with commu-
tative updates, and CSI with asynchronous updates. This model
is useful in managing large-scale replicated data with different
consistency guarantees to make suitable trade-offs between data
consistency and performance. Data and the associated transac-
tions are organized in a hierarchy which is based on consistency
levels. Certain rules are imposed on transactions to constrain
information flow across data at different levels in this hierarchy
to ensure the required consistency guarantees. The building block
for this transaction model is the snapshot isolation model. We
present an example of an e-commerce application structured
with data items and transactions defined at different consistency
levels. We have implemented a testbed system for replicated data
management based on the proposed multilevel consistency model.
We present here the results of our experiments with this e-
commerce application to demonstrate the benefits of this model.

I. INTRODUCTION

In large-scale systems, supporting transactions with strong

consistency for serializability imposes scalability and avail-

ability limitations due to distributed coordination. Replica-

tion management protocols with weaker consistency models

provide lower latencies for transactions and high availability,

but guarantee only eventual consistency [6] or causal consis-

tency [19], [15]. Causal consistency provides more useful se-

mantics than eventual consistency and can be supported under

asynchronous replication and even under network partitions.

Due to these advantages, several systems [6], [5], [19], [15]

have been developed supporting weaker consistency models

for replicated data management in large-scale systems.

Our work is motivated by the observation that rather than

providing a single consistency model for transactions in repli-

cated data management systems, it is desirable to simultane-

ously support transactions with different levels of consistency

guarantees. This allows in building scalable applications by

selecting suitable transaction models for data items with dif-

ferent consistency requirements. Thus one can use low latency

transaction management models for data items with weak

consistency requirements but at the same time use transactions

with strong consistency for critical data. The problem of

simultaneously supporting different transaction models and

consistency levels has been addressed by some recent research

projects [21], [14], [12]. The RedBlue consistency model [14]

uses operation commutativity to relax ordering guarantees.

The Salt [21] model provides a framework for simultaneously

supporting ACID and BASE transactions in a system and

provides rules for their isolation. The framework presented

in [12] places data items in different consistency categories

and adaptively changes the category of data items at runtime.

In this paper we present a transaction management model

for managing replicated data with different consistency levels

to make suitable trade-offs between data consistency and

performance. This transaction management model is based on

snapshot isolation (SI) [2] with weaker semantics that guaran-

tee causal consistency of snapshots as proposed in [19], [17].

We use the CSI [17] model as a building-block in our work.

The proposed model simultaneously supports transactions with

different consistency models, which include serializability for

strong consistency, and weaker models such as CSI (causal

snapshot isolation), CSI with commutative updates, and CSI

with asynchronous concurrent updates. Consistency require-

ments are associated with data items, and data is organized

in a hierarchy which is based on consistency levels and the

associated transaction management protocols. A transaction

can be executed at any of the sites. A transaction’s access

to data items is restricted by certain constraints, which ensure

that the required consistency guarantees are preserved. These

constraints impose certain restrictions on information flow

across data layers in the consistency hierarchy.

For experimental evaluations we developed a testbed sys-

tem, implementing it over the transaction management system

we had earlier developed for the CSI model for partially repli-

cated data [16]. We present here an example of modeling an

e-commerce application to support transactions with different

consistency guarantees. We measured the performance of this

application by executing transactions with the proposed multi-

level consistency model, and compared it with the performance

under a single consistency model. Our evaluations show sig-

nificant benefits of the proposed approach.

In the next section we present the related work. Section III

presents an overview of the CSI model. Section IV presents

the proposed multi-level consistency model. Section V de-

scribes how the CSI model is extended to support serializ-

able transactions. The mechanisms for supporting concurrent

commutative updates are presented in Section VI, and for

eventual consistency in Section VII. Section VIII presents an

example of an e-commerce application based on the multi-



471

level consistency model. Section IX presents the results of

our experimental evaluations.

II. RELATED WORK

The issues with scalability in data replication with strong

consistency requirements are discussed in [10]. Such issues

can become critical factors for data replication in large-

scale systems and geographically replicated databases. This

has motivated use of snapshot isolation (SI) [2] and weaker

consistency models such as eventual and causal consistency.

Snapshot isolation (SI) model [2] is based on multi-version

data management, utilizing optimistic concurrency control, in

which a transaction reads only committed version of data.

After execution, the transaction goes through a validation

phase to check for write-write conflicts with concurrently com-

mitted transactions. The problem of transaction serializability

in snapshot-isolation model has been extensively studied [9],

[3], [4], [18], [11]. The work in [9] characterizes the conditions

necessary for non-serializable transactions in the SI model.

The SI model poses scalability limitations in wide-area

environments because of the serial execution of validation

operations. Parallel Snapshot Isolation (PSI) [19] model ad-

dresses this issue by providing a weaker model of snapshot

isolation based on causal consistency. Validation to check

for write-write conflicts for different items can be performed

in parallel at different sites. This model imposes a causal

ordering on transactions. In the PSI model the snapshot view

of different sites can diverge, but eventually they converge

to the same view once all updates have been applied. This is

called the fork-join model. The CSI [17] model improves upon

the PSI model to reduce false causal dependencies.

Several projects have pursued the goal of simultaneously

supporting different consistency models. The system presented

in [1] provides mechanisms for supporting causal consis-

tency in systems with eventual consistency. The RedBlue

consistency model [14] requires analysis of the transaction

operations to split a transaction into two parts, one containing

commutative shadow operations. The Salt [21] model requires

rewriting an ACID transaction as a BASE transaction consist-

ing of a series of alkaline nested transactions. Both RedBlue

and Salt models require analysis and rewriting of application

level transactions. The approach in [12] places data into

different consistency categories and adaptively changes the

category of an item based on its access patterns. Consistency

categories are associated with data and not transactions. This

system provides probabilistic guarantees of consistency, which

may get violated at times. Our model associates consistency

levels with both data and transactions, and it ensures that the

consistency guarantees are always satisfied.

III. BACKGROUND: CAUSAL SNAPSHOT ISOLATION (CSI)

The proposed multi-level model is centered around the CSI

model [17], which is based on a weaker form of snapshot

isolation model proposed in PSI [19]. The system consists of

a set of distributed database sites. Each site is identified by a

unique siteId, Si for i ∈ (1..n). Each site has a local database

that supports multi-version data management. Transactions can

execute at any site. A transaction first commits locally and

then its updates are propagated to other sites asynchronously.

Transactions committing at a site are ordered using a local

sequence number. A remote site, upon receiving a remote

transaction’s updates, applies the updates provided that it has

also applied updates of all the causally preceding transactions.

The CSI model provides the following guarantees for trans-

action execution:

• Transaction Ordering: A partial order relationship (≺) is

defined over the set of transactions, as described below:

– causal ordering: If transaction Tj reads any of the

updates made by transaction Ti, then Ti causally

precedes Tj (Ti ≺ Tj).

– per-item global update ordering: Ti ≺ Tj if Tj

creates a newer version for any of the items modified

by Ti, i.e. Ti commits before Tj .

• Causally Consistent Snapshot: A transaction observes a

consistent snapshot which satisfies properties of atomicity
and causality. In a consistent snapshot either all or none

of the updates of a transaction are visible. If a snapshot

contains updates of transaction Ti, then updates of all

transactions causally preceding Ti are also visible.

The details of the transaction execution protocol can be

found in [17]. A brief overview is presented below. Each

site maintains a vector clock. When a transaction begins, it

is assigned the current vector clock value as its snapshot time.

It reads the latest version of the items in its read-set based on

this snapshot time. All writes are performed on local copies

of data items. After the transaction has completed execution,

it goes through a validation phase. For each item in its write-

set, it checks for write-write conflicts with other concurrent

transactions. For each data item, there is a designated conflict
resolver for checking write-write conflicts. The transaction

performs validation as a two-phase protocol with the conflict

resolvers for the items in its write-set. In the prepare phase,

each resolver checks if the latest version of the item is visible

in transaction’s snapshot and that the item is not currently

locked by any other concurrent validation request. The locking

is performed to avoid conflicts with any concurrent validation

requests by other transactions. If this check fails, then the

resolver sends a ‘no’ vote. Otherwise, it locks the item and

sends a ’yes’ vote. The transaction commits if no conflict

is detected. It is assigned a commit sequence number seqno
from a monotonically increasing local counter at its execution

site. The commit timestamp for a transaction is a pair <siteId,
seqno>. It now applies updates to the local database with this

commit timestamp as version numbers. The local site’s vector

clock is advanced appropriately and a commit/abort message

is sent to all the conflict resolvers.

IV. MULTI-LEVEL CONSISTENCY MODEL

The items in the replicated data store are organized along

a hierarchy of consistency levels. A data item can belong

to only one level. Similarly each transaction in the system



472

is designated to execute at exactly one of the levels. In

Table 1 we present a hierarchy of data consistency levels

and the associated transaction management protocols. This

table outlines the consistency properties of the transactions at

different levels of this hierarchy. We present in this section the

rules for ensuring the consistency guarantees for each level.

A higher level in the hierarchy corresponds to a stronger

consistency level. The highest level is the SR level, which

guarantees serializable transactions. The next level below this

is the CSI model which provides the consistency properties

described in Section III. We refer to it as CSI level. The

transactions are causally ordered with updates to a data item

total ordered. The next lower level weakens the CSI model to

allow concurrent updates to an item if they are commutative.

We refer to this consistency level as CSI-CM level. The lowest

level in the hierarchy allows asynchronous updates to an item.

We refer to it as ASYNC level. Conflict checking is not required

for updates to data items at this level. This consistency level

is suitable for appending records to logs or inserting items in

a set.

A transaction executes at a specific level in this hierarchy.

The following rules are enforced to ensure the consistency

properties of the data items organized in different consistency

levels by constraining information flow across levels.

• Read-Up A transaction at a level in this hierarchy can

read only those data items that are at the same level or

at stronger consistency levels in this hierarchy.

• Write-Down A transaction can update items that are at

its own level or at weaker consistency levels.

These rules are inspired by similar kinds of models in

the area of information security, such as the Bell-LaPadula

model. We refer to these rules as read-up/write-down. These

rules basically prevent a transaction from reading information

from weaker consistency level data items to update a stronger

consistency level data item. A transaction can update data

items that are at its own level or at weaker consistency levels.

For example a transaction at the SR level can read items only

at the SR level but it can update items at any of the levels.

A transaction at the SR level is guaranteed to be serializable

with other transactions at the SR level, but only with respect to

the data items at this level. If a transaction at the SR level also

updates certain data items that belong to weaker consistency

levels, then such a transaction may not be serializable with

other SR level transactions with respect to such data items.

For example two transactions at the SR level may also append

records to certain log-files which belong to the ASYNC

consistency level. The order of the records appended by these

transactions to different log-files may not conform to their

serialization order at the SR level. The consistency properties

of data at the SR level are guaranteed as no information flows

from weaker consistency levels to the data items at this level.

In the proposed model, transactions belonging to different

consistency levels can execute simultaneously. All transactions

execute with the basic protocol of the CSI model, but with

different conflict resolution policies. Therefore, all transac-

tions exhibit the isolation properties of the SI model [2].

A transaction always reads committed data, and the updates

of a transaction become visible only when it commits. The

atomicity property of causal snapshots guarantees that either

all or none of the updates of a transaction are visible. Moreover

all updates are applied at remote sites in their causal order. In

the next sections we present how the proposed model can be

implemented by building upon the CSI model.

V. SR LEVEL – SERIALIZABLE TRANSACTIONS

Snapshot isolation based transaction execution can lead to

non-serializable executions [2]. An anti-dependency between

two concurrent transactions Ti and Tj is a read-write (rw)
dependency, denoted by Ti

rw→ Tj , implying that some item

in the read-set of Ti is modified by Tj . It is shown in [9]

that a non-serializable execution must always involve a cycle

in which there are two consecutive anti-dependency edges of

the form Ti
rw→ Tj

rw→ Tk. In such situations, there exists a

pivot transaction [9] with both incoming and outgoing rw
dependencies. In the context of traditional RDBMS, several

techniques [4], [11] have been developed utilizing this fact to

ensure serializable transactions.

We now introduce additional mechanisms in the CSI model

to support serializable transactions. The pivot prevention ap-

proach for ensuring serializability requires checking for read-
write conflicts among concurrent transactions. We adopt this

TABLE I
DATA CONSISTENCY LEVELS AND TRANSACTION PROTOCOLS

Level Consistency Properties Transaction Model
SR Strong consistency - Globally serializable transactions; SI-based serializable transactions

ACID properties for transactions

CSI Causal ordering of transaction updates; Per-item update ordering; Causal Snapshot Isolation

Fork-join model of snapshots for concurrent updates on different items

CSI-CM Causal ordering of transaction updates; Causal Snapshot Isolation

Permits concurrent commutative updates on an item; with commutative updates

Fork-join model of snapshots for all concurrent update including

commutative concurrent updates on an item

ASYNC Causal ordering of transaction updates; Causal Snapshot Isolation

E.g. logging, set insertion, content distribution with concurrent updates



473

approach for ensuring the consistency properties of the SR

level. For this the validation phase also involves the conflict

resolvers for the items in the read-set of the transaction. The

conflict resolver for an item at the SR level performs anti-
dependency checks in addition to checking for write-write
conflicts. We refer to this type of resolver as SR resolver.

Each data item at the SR level is associated with an instance

of this type of conflict resolver.

All concurrent transactions at the SR level are serializable

with respect to the data items at the SR level. This property

follows from the observation that an SR level transaction can

never become a pivot. The basis for this observation is that

such a transaction cannot have an outgoing anti-dependency

because (1) its read-set can contain only the data items that

are at the SR level, and (2) the transaction is committed only

if no read-write conflicts with other concurrent transactions

are found for any of the items in its read-set.

SR level transactions may not be serializable with respect to

data items which they may update at the weaker consistency

levels. For example if two SR level transactions concurrently

append log records to two logfiles at the ASYNC level, their

records may appear in different order in the logfiles.

For certain types of transactions the read-up/write-down rule

can be relaxed. Specifically, when a transaction is creating a

new item at a level, it can possibly construct the contents of

the new item based on the information read from a data item

at a lower consistency level. Ensuring the consistency of its

contents is an application-specific function. However, creation

of new items at the SR level raises the well-known issues

related to predicate locks [8] and phantoms [2].

VI. CSI-CM – COMMUTATIVE LEVEL

One can exploit operation commutativity to support greater

concurrency by reducing the probability of transaction aborts

due to write-write conflicts. Fundamental concepts in exploit-

ing commutativity of operations for concurrency control are

presented in [20]. We now present mechanisms to support

concurrent updates that are commutative.

For supporting concurrent commutative updates, the basic

resolver in the CSI model is extended as described below. The

validation request to the conflict resolver for an item contains

the operation identifier along with the parameters. The conflict

resolver checks that all newer versions of the item, not present

in the requesting transaction’s snapshot, have been created by

operations that commute with the operation in the validation

request. If so, it gives ‘yes’ vote for that transaction. Otherwise

it aborts the transaction. In case of a ’yes’ vote, the resolver

keeps track of all commit-pending requests for which a ’yes’

vote has been given but the commit/abort decision is not yet

known. We use the notion of method license [7] to determine

if an operation would commute with all of the operations that

are commit-pending at the resolver.

In CSI-CM model it is possible for concurrent transactions

modifying the same item with commutative operations to com-

mit. Their update propagation messages contain the operation

name and the parameters rather than the updated values. A

Site 1

Item A

Item A

Item A

Site 2

(1,3)

(1,3)

(1,3)

(1,3)

b

(5, 1)

(5, 1)

(10,2)

(10,2)

(10,2)

(5, 1)

(5, 1)

t1

(10,2)

t2

a

a b

a

t0

a b

b

Version order at

Site 3

Resolver of Item A

Fig. 1. Fork-Join of Snapshots in the CSI-CM Model

remote site recomputes the updated value of an item based on

this information. The commutative updates of such concurrent

transactions may get applied in different orders at different

sites. Thus snapshots of different sites can fork even with

respect to a single item. Eventually they will converge to

the same value when all such concurrent updates have been

applied. We illustrate this with an example described below.

Figure 1 shows an example of fork-join scenario in com-

mutative operations. The figure shows the timeline of the

versions for item A at three sites and the commit order

for these versions, given by the resolver. Initially, for item

A all sites have the latest version with timestamp (1,3),
which was created by a transaction at site 3. At time t0,

the snapshots at all the three sites are the same. Here we

have two commutative operations a and b, which are executed

by concurrent transactions at sites 1 and 2, respectively. The

resolver commits the transaction with timestamp (5,1) at site 1
before committing the transaction with timestamp (10,2) at site

2. The item versions created at their execution sites are shown

by solid circles and the versions created by remote updates are

shown by empty circles. At time t1, site 1 has not seen the

update of b, site 2 has seen the update of a, and site 3 has seen

the update of only b but not a. At this point the view of the

versions and values of item A differ at these sites, reflecting

a fork. At time t2 both these updates have been applied at

all the three sites but in different orders. Because these two

updates commute, the value of item A will be the same at all

these sites, reflecting the join point.

In the above example, if an operation c that does not com-

mute with a and b is executed on item A by some concurrent

transaction, then the resolver will send a ’no’ vote for the vali-

dation request by such a transaction, thereby aborting it. Later,

on re-execution, such a transaction will be able to commit only

after the versions created by a and b have become visible in

its snapshot and no conflicting operation is being concurrently

executed by any other transaction. With a steady stream of

concurrent commutative updates it is possible that a transaction

with a non-commutative operation may repeatedly abort. To

prevent such a case, the conflict resolver may stop granting

commit permissions to new commutative validation requests

once it sees some number of non-commutative requests failing

due to write-write conflicts.



474

For a CSI-CM level object, the resolver is defined based

on the notion of method license [7] to check if an operation

commutes with a group of concurrent operations. The resolver

maintains some information about the state of the object

and the concurrent commit-pending operations. For example,

consider a Hashtable object which maintains a set of keys. Its

operations insert(key,value), delete(key), and isMember(key) all

commute with each other if the values of their key parameter

are distinct. Therefore, a resolver for such an item needs

to maintain only the set of keys for which these operations

are currently commit-pending. A typical resolver also groups

methods into different commutative groups such that the meth-

ods in a group always commute with each other, but methods

in different groups do not commute. For example, in case of a

Hashtable object, the operation listKeys to enumerate all keys

does not commute with the insert and delete operations.

The PSI model’s use of commutativity is limited to cset
objects, which are based on commutative replicated data

types (CRDT) [13]. For such objects all operations always

commute unconditionally, thus requiring no conflict checking.

Our model provides a more general framework where the

resolver for an object checks for the commutativity of a group

of concurrent operations, taking into account their parameters

and the object state, which is abstracted in the form of a

method license [7]. If all methods of an object commute un-

conditionally, then we can eliminate conflict-checking for such

an object, as in the PSI model. In the RedBlue consistency

model [14] one has to perform commutativity analysis for a set

of transactions, which can potentially span several objects. In

contrast, in our model the commutativity analysis is confined

to an object as an abstract data type, using the methodology

presented in [7]. This simplifies the task of the developer.

VII. ASYNC LEVEL – ASYNCHRONOUS UPDATES

This is the weakest consistency level in the hierarchy

presented in Table 1. For data items at this level, no conflict

checking is performed. This level is useful for data items such

as logs or sets, where a transaction appends a record to a log,

or inserts an item in a set. The order in which these operations

are performed does not matter. For example, consider a log

where it does not matter if the records appear in different order

at different sites, but the only requirement is that eventually

all records are appended to the log. The causality property

in transaction update propagation is still preserved at this

consistency level. This model can be utilized for updating data

(such as web documents) in content distribution networks.

VIII. AN EXAMPLE OF MULTILEVEL CONSISTENCY

MODEL

We illustrate here an example of modeling a database with

data items and transactions at multiple consistency levels. This

example relates to an e-commerce application maintaining a

set of products and user records, as shown in Figure 2. The

data items encapsulated in these records are placed at different

consistency levels based on the application requirements. Here

the data items are placed at four levels: SR, CSI, CSI-CM,

and ASYNC. Transactions access these items according to the

read-up and write-down rules.

A. Data Modeling

A product record contains six fields. The ProductID is an

integer number which uniquely identifies the product. The

other four fields are unique IDs (UID) which are keys for

objects stored in the key-value store. The Price field refers

to an Integer object in the storage system. This item belongs

to the SR level because we want the transactions updating

the price and those reading it for purchase operations to be

serializable. The Description field refers to an object which

stores a blob containing product description. This object is

placed at the CSI level because we want all updates to this item

to be total ordered. The next two items are at the CSI-CM level

to permit commutative updates. The Inventory field refers to a

PositiveCounter type object. This type of objects support two

commutative operations: increment and decrement. This object

can have only non-negative integer values. The ProductRating
field refers to a Counter type object, which supports two

commutative operations: increment and decrement. The last

item ProductLog refers to an append-only logger object at the

ASYNC level.

A user record comprises of five fields. The UserID is

an integer number which uniquely identifies the user in the

system. The Account field refers to an Integer object reflecting

the current available funds in the user’s account. This is

placed at the SR level as we want the update transactions

on these items to be serializable. The UserInfo field refers to

a blob object containing personal information of the user. The

PaymentRecord points to a blob object which stores the invoice

details of the user’s purchase transactions. These two objects

are placed at the CSI level. The User Profile field refers to a

Set object, which contains information about the user’s interest

categories. This object supports three operations – add(key),
remove(key), isPresent(key) – and concurrent operations on

different keys are commutative. To allow such commutative

concurrent updates, this object is placed at the CSI-CM level.

The last field Activity Log belongs to ASYNC level and points

to a logger object.

A vendor record contains four fields : VendorID which is a

string, uniquely representing a vendor. The AccountList field

refers to a list of UIDs for vendor account balance objects

of Integer type. All account objects are placed at the SR

level. The VendorInfo points to a blob object at the CSI level,

containing details about the vendor. The last field VendorLog
points to a logger object which is placed at the ASYNC level.

B. Transaction modeling

This e-commerce application contains nine transactions

which belong to different consistency levels. As shown in

Figure 2, two transactions are defined at the SR level. These

transactions are serializable with respect to the data items at

the SR level.

The PurchaseItems transaction involves purchase of a set

of items by a user. This transaction reads the current price,



475

computes the payment amount, deducts this amount from the

user’s account and adds it to one of the vendor accounts. This

transaction decrements the inventory for each purchase item

and commits only if the specified quantity is available in the

inventory. This transaction updates the user’s PaymentRecord
and ActivityLog objects. The read-set of the PurchaseItems
transaction contains the following items: products’ Price ob-

jects (SR level) for the purchase items; user Account (SR

level); and vendor Account (SR level). The write-set of this

transaction contains the following items: user Account (SR

level); vendor Account (SR level); user PaymentRecord (CSI);

product Inventory (CSI-CM); and user ActivityLog (ASYNC).

The UpdatePrice transaction, which executes at the SR level,

modifies the prices of a specified set of items. Its write-set

consists of the Price objects of the specified products.

The following three transactions are defined at the CSI level.

The UpdateDescription transaction updates the description

of a product. Its write-set contains the Description object.

The PrepareAccntStatement transaction reads a specified user’s

PaymentRecord object and creates a statement object which is

placed at the CSI level. The UpdateUserInfo transaction reads

and updates the UserInfo object of the specified user.

The following three transactions execute at the CSI-CM

level. The UpdateInventory transaction increments the inven-

tory of a specified product. It updates the product’s Inventory
object which is also at the CSI-CM level. The UpdateProduc-
tRating transaction is run when a user up-votes or down-votes

the rating of a product. Its write-set contains ProductRating,

which is a Counter object. The BrowseCatalog transaction

executes at the CSI-CM level. Its read-set contains a product’s

Price, Inventory, and Description objects. This is a read-only

transaction.

The LogAnalyzer is a read-only transaction at the ASYNC

level and it reads various logs at this level for analysis.

IX. TESTBED SYSTEM AND EXPERIMENTAL EVALUATIONS

We developed a testbed system and conducted evalua-

tion experiments using the e-commerce application described

above. For this purpose we developed a benchmark workload

using this application. The goal of these experiments was to

compare the performance of this workload executing under

the proposed multi-level model with its execution under a

single consistency model such as SR or CSI. The performance

measure is the peak throughput for which the cumulative

commit rate for the workload mix is around 95%. Moreover,

we measured the peak throughput at the load for which the

commit rate for each individual transaction type was at least

90%. To assess the scale-out capabilities we conducted these

experiments for different number of sites.

A. Testbed System

The testbed for the proposed model was developed by

extending the system that we had built for supporting the

PCSI model [16]. This system supports key-value based multi-

version database, which can be maintained either in memory

or in HBase. The database is sharded into disjoint partitions.

A partition can be replicated at any number of the sites.

To build our testbed environment, we modified the PCSI

system to associate a specific type of resolver object with

each data item. The resolver type of an item depends on the

consistency level of that data item, and one can install any

required type of resolver for a particular data item. In the

testbed we provide two system-defined conflict resolvers. One

is for the SR level items to perform both read-write and write-
write conflict checking, and other for the CSI level items to

perform only write-write conflict checking. For an item at the

CSI-CM level one has to define a specific type of resolver

based on the commutative properties of the object methods.

For implementing the benchmark application we developed

resolvers for three types of objects: Set, Counter, and Positive
Counter. The Set type objects are used for implementing User-
Profile objects. A Counter type object maintains an integer

value and provides two methods: increment and decrement.
It is used for implementing ProductRating objects. The type

PositiveCounter is similar to the Counter type except that it

cannot have negative integer values. This type is used for

implementing ProductInventory objects.

Data Items Transactions

CSI

SR

ASYNC

CSI−CM

User Record

Account: UID for Integer

UserInfo: UID for Blob

Product Record

ProductID: Integer
Price: UID for Integer

Description: UID for Blob

Inventory: UID for
Positive Counter

Vendor Record

VendorID: String

AccountList: List<UID>
for Integer

VendorInfo: UID for Blob

PurchaseItems()

UpdatePrice()

UpdateDescription()
PrepareAccntStatement()
UpdateUserInfo()

UpdateInventory()

UpdateProductRating

BrowseCatalog()

LogAnalyzer()

Consistency
Levels

PaymentRecord: UID for
Blob

UserProfile: UID for

ActivityLog: UID for

Product Rating: UID for

ProductLog: UID for VendorLog: UID for
Logger Logger

Counter

KeySet

Logger

Fig. 2. An Example of Data and Transaction Hierarchy based on Multilevel Consistency Model



476

B. Benchmark Workload

We implemented the above e-commerce application on

our testbed. The database is sharded into partitions, and in

our experiments the number of partitions was set equal to

the number of sites in the system. Each partition contained

2000 product items, 20000 users, and 500 vendor account

objects. This database is maintained in memory. We conducted

experiments with three system configurations containing 4, 8,

and 12 sites, respectively. The degree of replication was set to

4. It should be noted that a larger system configuration reflects

a larger database size.

We defined two benchmark workloads, called BW1 and

BW2, which consist of a mix of transaction types in this e-

commerce application. These benchmarks emulate a Web shop

in a manner similar to the TPC-W benchmark. Table II lists the

transactions and their fraction in the benchmark workload. The

benchmark workload mix BW1 consists of eight transactions.

This workload reflects a shopping mix with a large fraction

of read-only browsing transactions. The benchmark workload

mix BW2 reflects purchasing activities with a large fraction of

purchase related transactions. All transactions in this bench-

mark workload involve updating one or more items. Table II

shows the number of items in the read-set (R) and the write-set

(W) of a transaction type. For the PurchaseItems transaction

the number of purchase items is set to three, and these products

are randomly selected. The UpdatePrice, UpdateDescription,

and UpdateInventory transactions update the corresponding

items of five randomly selected products.

In these benchmarks we modeled popular products which

are more frequently selected by the transactions. Twenty

percent of the products were considered as hot, i.e. more

popular than the others, and 20% of the transactions involved

accessing only these hot-spot products. We refer to them as

hot-spot transactions. Similarly we also modeled active users

who initiate transactions more frequently than others. Twenty

percent of the users were considered as active, and 20% of the

user-centric transactions were initiated by active users. This

emulates contention on data items in real environments.

Transaction Item-set Txn Fraction (%)

Types R W BW1 BW2

PurchaseItems 5 7 15 25

UpdatePrice 5 5 5 5

UpdateDescription 5 5 5 5

PrepareAccntStmnt 1 1 5 5

UpdateUserInfo 1 1 10 10

UpdateInventory 5 5 5 15

UpdateProductRating 1 1 20 35

BrowseCatalog 3 0 35 0

TABLE II
TRANSACTIONS IN THE BENCHMARK WORKLOAD

C. Experimental Evaluations

We conducted our experimental evaluations on a computing

cluster. Thus these evaluations are indicative of performance

in a datacenter environment. In this cluster, each node had 8

CPU cores with 2.8 GHz Intel X5560 Nehalem EP processors,

and 22 GB main memory. A node served as a site in our

experiments.

We evaluated the performance of this benchmark work-

load under three system configurations corresponding to three

consistency models: SR, CSI, and Multilevel. For the SR

configuration, SR resolvers were installed for all data items

and all transactions executed at the SR level. In the second

configuration, CSI resolvers were installed for all data items

and all transactions executed at the CSI level. The third

configuration was used for multi-level execution of transac-

tions according to the hierarchy shown in Figure 2. In this

configuration, different types of resolver objects were installed

for the data items according to their consistency levels.

We executed the benchmark workload on system configura-

tions with 4, 8 and 12 sites. We measured the peak throughput

based on the requirements for the commit rates noted above.

Figures 3 and 4 show the peak throughput of the benchmark

BW1 and BW2, respectively, for SR, CSI, and Multilevel

models. These figures show the peak throughput for number

of sites 4, 8, and 12. Based on the evaluations for these three

system sizes we find that the Multilevel model performs better

than SR by factors of 2.11 for BW1 and 2.86 for BW2. In

comparison to the CSI model, the performance gain factors

for the Multilevel model are 1.64 for BW1 and 2.6 for BW2.

Table III shows the performance of benchmark BW1 on a

system with 8 sites for the three models. In these experiments,

for each model the load level was set such that the commit

rate for all transaction types was at least 90%. The table shows

the transaction throughput (transactions/second) and average

latency (msec), and the commit rates. The throughput with

the Multilevel model is more than the SR model by a factor

of 2.37, and by 1.67 compared to CSI. The average latency

in the SR model is about 73% more than those with the

Multilevel and CSI models. For each model, the commit rates

for individual transaction types depend on contention among

transactions and the imposed load, therefore, the commit rates

cannot not be compared across models.

We separately evaluated the effect of different fractions of

hot-spot transactions in the workload mix. For a system with

12 sites we measured the peak throughput of BW1, varying

the hot-spot transaction fraction from 10% to 50%, reflecting

different contention levels. Figure 5 shows the results of this

evaluation for the three models under different contention

levels. The multilevel model consistently performs better than

SR and CSI at all contention levels.

X. CONCLUSION

We have presented here a transaction model for replicated

data with different consistency guarantees. This model si-

multaneously supports transactions with different consistency

levels. The Causal Snapshot Isolation (CSI) model serves as

the building-block for this transaction management frame-

work. The proposed multi-level model supports serializable

transactions for strong consistency, and weaker consistency



477

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 4  5  6  7  8  9  10  11  12

T
hr

ou
gh

pu
t (

T
xn

s 
pe

r 
se

co
nd

) 

Number of Sites

Multilevel
CSI
SR

Fig. 3. Throughput of Benchmark Workload BW1
with Multilevel, CSI, and SR Models

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 4  5  6  7  8  9  10  11  12

T
hr

ou
gh

pu
t (

T
xn

s 
pe

r 
se

co
nd

) 

Number of Sites

Multilevel
CSI
SR

Fig. 4. Throughput of Benchmark Workload BW2
with Multilevel, CSI, and SR Models

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 10  15  20  25  30  35  40  45  50

T
hr

ou
gh

pu
t (

T
xn

s 
pe

r 
se

co
nd

) 

HotSpot Txn Ratio

Multilevel
CSI
SR

Fig. 5. Throughput of Benchmark Workload BW1
under different fractions of hot-spot transactions
with Multilevel, CSI, and SR Models (Sites=12)

Transaction Commit Rate
Transaction SR CSI Multilevel

Types (%) (%) (%)

PurchaseItems 91.16 90.4 90.57

UpdatePrice 95.8 96.86 94,19

UpdateDescription 96.87 97.22 95.69

PrepareAccntStmnt 99.95 99.95 99.89

UpdateUserInfo 100 99.96 100

UpdateInventory 95.32 94.25 100

UpdateProductRating 99.67 99.57 100

BrowseCatalog 99.25 100 100

Cumulative rate 97.74 97.88 98.07

Transaction Throughput (txns/second)
Cumulative throughput 1779 2524 4217

Avg. Latency (msec) 52 msec 30 msec 31 msec

TABLE III
TRANSACTION COMMIT RATES IN BENCHMARK WORKLOAD BW1 ON 8

SITE SYSTEM AND REPLICATION DEGREE OF 4

models which include CSI, CSI with commutative updates,

and CSI with asynchronous updates. Data and transactions are

organized in a hierarchy which is based on these consistency

models. This model ensures the consistency guarantees of

data at each level in this hierarchy by constraining the infor-

mation flow across different levels. We developed a testbed

for replicated data management supporting this multi-level

model. We show here the utility of the proposed model

using an e-commerce application implemented on our testbed.

Our evaluations show that the multi-level model consistently

performs better than the SR and CSI models across different

contention levels and system sizes while exhibiting scale-out

capability.
Acknowledgments: This work was supported by NSF Award 131933 and the
Minnesota Supercomputing Institute.

REFERENCES

[1] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Bolt-on causal
consistency. In Proc. of ACM, SIGMOD ’13, pages 761–772, 2013.

[2] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil.
A critique of ANSI SQL isolation levels. In Proc. of ACM SIGMOD’95,
pages 1–10. ACM, 1995.

[3] M. Bornea, O. Hodson, S. Elnikety, and A. Fekete. One-copy serializ-
ability with snapshot isolation under the hood. In IEEE ICDE’11, pages
625 –636, april 2011.

[4] M. J. Cahill, U. Röhm, and A. D. Fekete. Serializable isolation
for snapshot databases. ACM Trans. Database Syst., 34:20:1–20:42,
December 2009.

[5] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bo-
hannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni. Pnuts:
Yahoo!’s hosted data serving platform. Proc. VLDB Endow., 1:1277–
1288, August 2008.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s highly available key-value store. SIGOPS Oper. Syst. Rev.,
41:205–220, October 2007.

[7] J. Eberhard and A. Tripathi. Semantics Based Object Caching in
Distributed Systems. IEEE Trans. on Parallel and Distributed Systems,
December 2010.

[8] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of
consistency and predicate locks in a database system. Communications
of the ACM, 19(11):624–633, Nov. 1976.

[9] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha. Making
snapshot isolation serializable. ACM Trans. Database Syst., 30:492–528,
June 2005.

[10] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication
and a solution. In Proc. of ACM SIGMOD’96, pages 173–182, 1996.

[11] H. Jung, H. Han, A. Fekete, and U. Roehm. Serializable Snapshot
Isolation for Replicated Databases in High-Update Scenarios. In VLDB,
2011.

[12] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann. Consistency
rationing in the cloud: Pay only when it matters. Proc. VLDB Endow.,
pages 253–264, Aug. 2009.

[13] M. Letia, N. Preguiça, and M. Shapiro. Consistency without concurrency
control in large, dynamic systems. SIGOPS Oper. Syst. Rev., 44(2):29–
34, Apr. 2010.

[14] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and R. Rodrigues.
Making geo-replicated systems fast as possible, consistent when neces-
sary. In Proc. of USENIX OSDI’12, pages 265–278, 2012.

[15] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t
settle for eventual: scalable causal consistency for wide-area storage with
COPS. In Proc. of the 23rd ACM SOSP, pages 401–416, 2011.

[16] V. Padhye, G. Rajappan, and A. Tripathi. Transaction Management using
Causal Snapshot Isolation in Partially Replicated Databases. In Proc. of
the IEEE Symposium on Reliable Distributed Systems (SRDS), 2014.

[17] V. Padhye and A. Tripathi. Causally Coordinated Snapshot Isolation
for Geographically Replicated Data. In Proc. of IEEE Symposium on
Reliable Distributed Systems (SRDS), pages 261–266, 2012.

[18] S. Revilak, P. O’Neil, and E. O’Neil. Precisely Serializable Snapshot
Isolation (PSSI). In ICDE’11, pages 482–493.

[19] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional storage
for geo-replicated systems. In Proc. of ACM SOSP, pages 385–400,
2011.

[20] W. E. Weihl. Commutativity-based concurrency control for abstract data
types. IEEE Trans. Comput., 37:1488–1505, December 1988.

[21] C. Xie, C. Su, M. Kapritsos, Y. Wang, N. Yaghmazadeh, L. Alvisi, and
P. Mahajan. Salt: Combining acid and base in a distributed database. In
Proc. of USENIX OSDI’14, pages 495–509, 2014.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


