2015 IEEE International Conference on Big Data (Big Data)

S1gCO: Mining Significant Correlations via a
Distributed Real-time Computation Engine

Tian Guo Jean-Paul Calbimonte
EPFL EPFL
Lausanne, Switzerland Lausanne, Switzerland
tian.guo@epfl.ch jean-paul.calbimonte @epfl.ch

Abstract—The dramatic rise of time-series data produced in
a variety of contexts, such as stock markets, mobile sensing,
sensor networks, data centre monitoring, etc., has fuelled the
development of large-scale distributed real-time computation
systems (e.g., Apache Storm, Samza, Spark Streaming, S4, etc.).
However, it is still unclear how certain time series mining tasks
could be performed using such new emerging systems. In this
paper, we focus on the task of efficiently discovering statistically
significant correlations among a large number of time series via
a distributed realtime computation engine. We propose a frame-
work referred to as SigCO. In SigCO, we put forward a novel
partition-aware data shuffling, which is able to adaptively shuffle
time series data only to the relevant nodes of the distributed
real-time computation engine. On the other hand, in SigCO we
design a J-hypercube structure based correlation computation
approach which is capable of pruning unnecessary correlation
computations. Finally, our extensive experimental evaluations on
real and synthetic datasets establish that SigCO outperforms the
baseline approaches in terms of diverse performance metrics.

I. INTRODUCTION

Due to the explosion of devices producing time-series data
(e.g., sensor networks, mobile phones, Internet of Things)
[51, [8], [20], for contemporary large-scale time series mining
applications, it is not feasible to simply load real-time time
series data into a traditional stream processing system [4],
[5] run on a standalone machine, which cannot handle the
rapidly increasing amount of time series data. This has led to
the development of many distributed, fault-tolerant, and real-
time computation systems [2], [3], [13], [24]. Analogous to the
trend observed in map-reduce systems (e.g., Apache Hadoop);
where efficiently performing complex joins using map-reduce
was a challenging problem [7], [19], [22], using distributed
real-time computation engines for efficiently and continuously
mining meaningful information from time-series is becoming
challenging, as we will see later.

In this paper, we concentrate on one such important prob-
lem, using a distributed real-time computation engine to con-
tinuously discover statistical significant correlations (Pearson
or Spearman correlations) from massive time-series over slid-
ing windows, which has not been studied before, to the best
of our knowledge. Statistical significant correlations not only
reveal the values of strong correlations among time series,
but also can tell us the probability that the correlation value
we have found is due only to random chance [14]. It plays an
important role in diverse applications. In performance monitor-

978-1-4799-9926-2/15/$31.00 ©2015 IEEE

Hao Zhuang Karl Aberer
EPFL EPFL
Lausanne, Switzerland Lausanne, Switzerland
hao.zhuang@epfl.ch karl.aberer@epfl.ch

ing for large scale systems e.g. data centres [12], correlations
between performance counters (e.g. CPU, memory usage, etc.)
across large number of servers are continuously queried for
recognizing the servers with correlated performance patterns
so as to balance loads, for instance. Traders utilize timely cor-
relations among stock prices to spot investment opportunities
[10]. In on-line recommendation systems, correlation mining
is used to find customers with similar shopping patterns.
All these applications require the discovery of significant
correlations as their fundamental building blocks.

Challenges in Distributed and Real-time Significant Corre-
lation Discovery: as time series are continuously pushed into
different computing nodes of a distributed real-time compu-
tation engine cluster, in order to find the correlation partners
for the local time series of a node, it has to replicate and
shuffle the local time series to other nodes. Since each node
has no prior-knowledge about the timely properties of time
series other nodes receive and communicating such knowledge
among nodes is prohibitively expensive for real-time correla-
tion mining, one idea is to compute the correlations of all pairs
of time series by replicating the local time series among all
other nodes and then perform significance test over individual
computed correlation to find significant ones, which generates
quadratic computation and communication costs w.r.t. the
number of time series under processing at worst (i.e., similar
to the idea of cross join using MapReduce [15]). On the other
hand, in the real-time environment where time series data
continuously arrives, each node of the cluster continuously
receives in a high speed, parses and sends time series data,
high communication cost produced by shuffling time series
data among nodes will slow down the data processing as
well as deplete precious network resources in a concurrent
query processing. [15] Unfortunately, existing approaches for
mining correlations either work in a centralized way or for
static data and thus can not solve our problem efficiently in
our distributed and real-time environment. (refer Section II).

Contributions: Overall, this paper makes the following con-
crete contributions.

e We define the problem of using a distributed real-
time computation engine to mine statistically significant
correlations from the time series over a sliding window
(DisSiCo problem).

747

e We proposes SigCO , which integrates correlation mining
and significance testing processes into one framework.
SigCO is able to directly mine statistically significant
correlations and circumvent the significance testing proce-
dure over individual correlation by deriving an alternative
correlation threshold.

e Built into SigCO is a novel shuffling technique called PAS
(Partition-Aware Shuffling) that has the ability to know
specifically where to replicate and shuffle the sliding win-
dow of a certain time series without the need to exchange
among nodes the information about local time series. PAS
achieves O(1) replication for each sliding window and
avoids the naive data replication and shuffling among
all the nodes as mentioned above, thereby dramatically
reducing the communication overhead.

e In SigCO, we further propose a J-Hypercube structure
based pruning approach to circumvent unnecessary cor-
relation computations over the sliding windows shuffled
to each node by PAS.

e We implement SigCO and a variety of baseline approaches
using a widely used open source distributed real-time com-
putation engine, Storm and experimentally demonstrate the
efficiency of SigCO.

The rest of the paper is organized as follows. Section III
introduces the background knowledge and problem definition.
Section V and Section VI present the SigCO framework.
We analyse the communication and computation cost in Sec-
tion VII. We perform exhaustive experimental evaluations
comparing SigCO with baselines in Section VIII.

II. RELATED WORK

Numerous distributed systems [2]—[4], [13], [24] have been
developed to process massive data in a high-speed environ-
ment. Storm [3] is a widely-used platform, which provides
fault tolerance and tuple processing guarantees. Unlike Storm,
some systems like S4 [13] cannot guarantee that each tuple
will be processed. Zaharia et al. [24] proposed a new model
using micro-batches for distributed stream processing, which
has larger processing latency compared to the one-tuple-at-a-
time model of [3], [4], [13]. Although these systems provide
an extensive set of operators for real-time processing, they do
not support operators for correlation queries.

Various indexing techniques for querying the correlations
of static time-series data stored in a centralized system have
been proposed in [11], [12], [20], [23]. Such techniques are
not suitable for our dynamic environment, where the index
maintenance cost incurs high processing latency. Computing
real-time correlations using a standalone machine has been
a key focus of [6], [9], [18], however these techniques are
ineffective in a distributed environment. The StatStream sys-
tem [25] specializes in discovering correlations using a grid
structure, but it incurs prohibitive communication cost in a dis-
tributed environment. Recently, partitioning-based approaches
have attracted attention for distributed batch data processing
[7], [19], [22]. However, such approaches are data-dependent

and need an aprori data pre-scanning step to estimate the
data distribution. Scanning the entire data to update the data
distribution is impossible in a streaming environment.

III. PRELIMINARIES

In this section, we first present the key concepts of the
distributed real-time computation engine. Then, we provide
the formal problem definition of this paper.

A. Distributed Real-time Computation Engine

A distributed real-time computation engine is deployed in a
cluster of computing nodes. The core concept is the notion of
a topology [3], [13]. A topology is a DAG (directed acyclic
graph) where the vertexes are known as processing elements
discussed later. A processing element continuously transforms
the incoming data according to its programmed operation
and transmits it to neighbouring processing element(s) as
defined by the topology. The communication between elements
is again dictated by the topology. In addition to the above
real-time computation principles, the following concepts are
important as well:

e Tuple is a key-value(s) pair, which is the basic data unit
for communication among the vertexes in a topology. The
key or any value could be a number, string or a generic
object. We denote a tuple as 7 = (1%, 7,) wWhere 7, is the
key and 7, is the value.

e Source Element is responsible for fetching data from
different sources (e.g., file, REST, JSON, etc.), converting
it to tuples and pushing them into a topology. We denote
a source element by S.

In this paper, time series is a sequence of data points
consisting of successive measurements made over time
and thus source element continuously reads such discrete
data points and outputs tuples of the form (i,s;,) (i =
1,...,n), where i is time series index and s; ; is the value
of time series ¢ at time-stamp ¢, to a topology processing
DisSiCo. 7 is the key of the tuple, such that the data points
for a certain time series are always shuffled to the same
task of the subsequent processing element.

e Processing Element consumes tuples it receives from a
source element or another processing element, processes
them according to the user-defined logic, and emits or
transmits tuples to other processing elements that have
subscribed to it; we denote a processing element by P(*).
Typically, a processing element also has a local buffer
for temporarily storing incoming data. While processing
a tuple, a processing element also modifies the key of the
tuple.

e Task is an instance of either a source or processing
element. One or more tasks of a source or processing
element are executed in parallel in different nodes of the
cluster. The data processed by a task is referred to as its
local data (e.g., local time series in our case).

e Parallelism of a given source or processing element is
the number of its tasks. This is a user-defined param-

748

eter. The parallelism of a processing element P®) is
denoted as p(*). These p(*) tasks of P(*) are denoted by
plad) ... 77>(as,p<“”)).

o Shuffling function is a function defined for each edge of
the topology. It determines the task(s) of the subsequent
processing element to which a tuple emitted from a task
of the preceding processing or source element should be
sent. The default key-based shuffling function computes
the hash value of a tuple key and sends it to the task to
which the hash value is assigned. A customized shuffling
Jfunction can be programmed to replicate a tuple to multiple
tasks of the next processing element.

B. Problem statement

In this paper, we focus on two important statistical correla-
tions, Pearson and Spearman correlation for time series [10],
[14].

Correlation Defintion: We first define a generic correlation
function, based on which the definitions of Pearson and
Spearman correlations are given later. For two vectors x; and
xo (1,22 € R, his the sliding window size for time series),
the generic correlation function is defined as:

(1 — p(@1)1) - (z2 — p(x2)1)
(h = 1)o(x1)o(x2)
where 1 is all one vector (I € R"), o(x) and u(x) are
the sample standard deviation and mean of the elements in x,
respectively.

We use n to denote the total number of time series
input to the engine. For time series i (i € (1,---,n)),
the sliding window ending at time stamp t is denoted by
st = (Sit—nt1, - ,5¢) and 8¢ € R". For the sake of
simplicity, we use ¢ to represent the ending timestamp of
current sliding windows under processing.

Then, the Pearson correlation coefficient pﬁ ; between slid-
ing windows s! and s§- of time series 4 and j, which evaluates
the linear relationship between two variables, is defined as

follows:

corre(xy, x2) =

6]

P = corre(s;, st) (2)

Additionally, the non-parametric Spearman’s rank-order cor-
relation measures the strength of monotonic relationship be-
tween two ranked variables. Compared with Pearson correla-
tion, Spearman’s rank correlation coefficient is more robust
to outliers [17]. We define rank vector rf of sliding window
st is a vector of size h, the entries of which are the ranks
of the corresponding entries in the original sliding window
st. For instance, given s! = (1.3,4.6,3.7), its =} is (1,3,2),
since sorted elements in s! are (1.3,3.7,4.6). Then, Spearman
correlation pj ; for sliding windows st and s§- of time series

i and j is defined on 7} and r! as:

pi.j = corre(ri,r}) 3)
Significant Correlation: A correlation of the sliding windows
of two time series tells us about the strength of the relationship

between time series. However, only knowing this is not enough
for mining statistical significant correlations, since sliding
windows are actually samples from the time series, and there
is the possibility that the detected correlation would have
occurred due to sampling error alone.

Therefore, statistical significance testing of correlations is
necessary for determining the reliability of a computed corre-
lation value. Given a correlation threshold € of user’s interest,
significance testing of a correlation value, whether the derived
correlation is significantly larger than € at significance level o
(v is usually set as 0.05) is formulated as the hypothesis test
framework [17]. Here for simplicity we use p; ; to represent
the correlation between the sliding windows of time series ¢
and j. The null hypothesis is labelled as Hy, written as [17]:

Hy:pij=c¢ “4)

The alternative hypothesis labelled as H,, is written as [17]:

H, : pPij > € @)

Significance test of correlations adopts Fisher transfor-
mation, Z, = %ln(}iﬂ) First, define the null Z,,,; for
correlation threshold ¢, which is used for significance test:

1 1+e€
21
2T

For a derived correlation p; ;, its Fisher transformation is

Znull =

) (6)

1 1+ pi;
Z, = —Iln(——L 7
ro =5 —Pm‘) 7
. . .. Zp; i —Znull
Then, we can obtain z-value in statistics as: z = 7072

1

h—3"
cance level « addressing probability Pr(X > z,) = «, where
X ~ N(0,1), based on hypothesis test theory, if z > z,,
we can reject the null hypothesis and say that correlation
pi,; s statistically significantly larger than € at o significance
level. Otherwise, p; ; is not statistically significant w.r.t. € at
« significance level [17]. The other types of significance tests
could be the future work.

where o7 = Given z,, which is a function of signifi-

Problem Definition: Now we formally define DisSiCo prob-
lem as:

Definition 3.1 (DisSiCo problem): Given n time-series,
which are continuously arriving and distributed to different
nodes of a distributed real-time computation engine, correla-
tion threshold ¢, significance level o and sliding window size
h, it is required that the time series pairs with statistically
significant correlations above € over the sliding window are
continuously reported.

We say such reported time series pairs are significantly
correlated. Threshold e is always assumed to be greater than
zero in this paper. It can be shown that if the entries in one
of the sliding windows are reversed, then the negative € can
be treated as positive [25]. Thus, without loss of generality,
henceforth we only focus on the positive threshold e.

749

IV. CORRELATION TRANSFORMATION

In this part, we first derive the significant correlation thresh-
old that allows the following proposed SigCO to circumvent
the process of significance testing over individual computed
correlation. Second, we present the relation between the cor-
relation and Euclidean distance, which enables us to develop
communication and computation optimization methods avail-
able in Euclidean space for solving DisSiCo efficiently.

Significant Correlation Threshold: The intuitive idea of
discovering statistically significant correlations is to perform
significance test over the computed correlations above € and
filter out insignificant ones (i.e., hypothesis test on the corre-
lation fails to reject the null hypothesis). However, given the
sliding window length h and correlation threshold €, we have
the following lemma:

Lemma 4.1: Significant correlation threshold € is defined
as:

2(1—¢)

1—e+(1+¢)-e22a0z

€s =1 — and €5 > €

such that for the pairs of time series having correlation val-
ues above €, their correlations must be statistically significant
WLl €.

Proof Please refer [1].

Therefore, our SigCO can focus on directly mining sig-
nificant correlations using significant correlation threshold e
instead of € so as to avoid redundant correlation mining and
significance test procedures.

Sliding Window Normalization: First, we define a normal-
ization function over a vector x (x € IR”) as [25]:

(
(x — p(z)1)
V(h=1)o(x)

where 1, is an all-one vector of size h. The vector &
is of unit length, namely & - & = 1. Then the normalized
sliding windows for Pearson and Spearman correlation are
respectively defined as

3! = norm(s!) and #! = norm(rl))

®)

& = norm(x) =

The correlation can also be written using the normalized
sliding windows as follows: pf ; = &} - 8% and pj ; = 7} - 7},

For simplicity, we only use 8! for presentation in the rest
of the paper. Since 8! is a unit length vector, each of its
entries §;;, varies between —1 < §; ;, < 1. Thus the range of
variation of the normalized sliding window is known apriori,
and is independent of the variation in the original s!. We shall
later exploit this important observation to create partitions over
the space of normalized sliding windows for efficient data
shuffling in SigCO.

Additionally, there exists an important relationship between
the correlation coefficient and the Euclidean distance between

normalized sliding windows [25],

D(3,8%) = \/2(1 — pi), (10)

where D(8t,8) is the Euclidean distance between &

and
at ;- The correla]tion coefficient between two normalized siding
windows increases as the Euclidean distance between them
decreases. Alternatively, DisSiCo problem can be defined as
a query over the Euclidean distance between two normalized
sliding windows, which aims to continuously query a set of
time series pairs as {(i, j)|i #], D(8},8%) < o}, where § is
related to €5 as & = /2(1 — €5). As €, decreases, 0 increases

and vice versa. & will be utilized for computation pruning later.

V. PARTITION-AWARE DATA SHUFFLING

This section introduces our core contribution SigCO frame-
work, which will exhibit performance improvements in both
communication and computation efficiency.

The topology of SigCO is depicted in Figure 1. Processing
element P(P"¢) maintains the sliding windows for all the input
time series, updates the normalized sliding windows incre-
mentally [25] and then emits a tuple consisting of time series
id, current time instant and the normalized sliding window
at current time instant per time series at each time instant.
Between P (7€) and P(¢P) we design a novel partition-aware
data shuffling (PAS) approach, which is able to adaptively
shuffle a tuple from P("¢) only to the tasks of P(¢™P) con-
taining correlation partners with the sliding window contained
in this tuple. Then, each task of P(¢"?) exploits J-hypercube
structure to prune unnecessary correlation computation and
real-time outputs tuples consisting of a significantly correlated
time series pair. At last, processing element P(99) aggregates
the qualified time series pairs from P(¢*P) by removing
duplicate pairs via hash-set.

Sliding window Correlahon Result
(1 51) Preprocessing tati Aggreg

LR s1 t

v S, (2 52 (Pre -’ (cmp) (agg)

fon Gl g m G O
LR] 4 t (4 s)

Fig. 1.

Topology architecture of SigCO framework.

The idea of PAS is to create partitions over the high-
dimensional space of the normalized sliding windows of all
the time series. Based on these partitions, PAS performs two
intelligent steps: 1) it always ensures that each partition is
handled by a unique task of processing element P(¢™?)_ 2) in
a certain partition, for the contained sliding windows that could
be correlated with the ones from other partitions, it replicates
and shuffles the tuples containing these sliding windows only
to the tasks responsible for the relevant partitions. The rest of
sliding windows in this partition are only shuffled to the task
of this partition.

Partitioning: In this part, we describe how to partition the
space of normalized sliding windows and locate the partition
in which a sliding window is contained.

Initially, we apply 2-way partitioning on each dimension
of the space over the normalized sliding windows and thus
obtain 2" partitions. In order to associate partitions with p°?
tasks of processing element P(“™?) we should adjust the
dimensionality used for partitioning. The need for reducing

750

the dimensionality is evaluated as follows: we compute h, =
|logy (p{™)) | and if h, < h, space partitioning only utilizes
the latest h,, entries of the sliding window, which is enough for
maintaining the one-to-one correspondence between partitions
and tasks of P(c7P),

The benefits of such dimension-reduced partitioning are
two-fold. First, based on this one-to-one correspondence be-
tween partitions and tasks, we can derive a concise scheme for
sliding window replication among the partitions (i.e., tasks),
which will be shown later. Second, using only h,, entries for
locating partitions and deciding the replication plan for sliding
windows is much efficient. Normally, h, < h, because h
could be up to hundreds or more for mining significant corre-
lations (see the experiment section). However, it is impossible
for h, > h, as it requires p°™? > 2", which is a prohibitive
large value for parallelism p“”*?. In the implementation, we
could set p(“™P) as an exponential of 2 to make full use of
the tasks of P(cmP),

f'z dimension reduced partition-task
1 partition vector 1 assignment
(cmp,1)
1) gl (1) O-»
3] 19 (cmp,2)
9 s% 1 D- P
- — ¢ (cmp,3)
R A e | tOP
3 'mp,4)
(1.1) o O-P
t-1 -1't1

H hyper-rectangle

(a) (b)
Fig. 2. Illustration of PAS shuffling: (a) parallelism based space partitioning:
hyper-rectangles derived by partitioning over dimension ¢ and t — 1; (b)

normalized sliding window replication and shuffling amongst partitions; each
partition is handled by a unique task of processing element P(¢™P)

Now, we define partition vector of size h,, which uniquely
identifies a partition for each normalized sliding window 8!
for instance as:

P! = (sgn(8it—np+-1)[18i0—n, 4111+ sgn(8i0)[13:.4]1),

where sgn(z) extracts the sign of its argument: sgn(xz) = 1 if
x>0 and sgn(z) = —1 if © < 0. Since —1 < §;; < 1, each
entry of the partition vector p! is either —1 or 1.

Example 5.1: As is demonstrated in Figure 2(a) for 3D
sliding windows. Suppose pl“™P) = 4 then we have hp = 2.
Since h, < 3, only dimensions t and t — 1 are used to
obtain 4 partitions as are shown in Figure 2(b). Each of them
corresponds to one hyper-rectangle with the same colour in
Figure 2(a). Thus, normalized sliding windows lying in the
blue-grey hyper-rectangle are assigned to the blue partition
(i.e., task P(Cmp’g)) in Figure 2(b), so on and so forth.

Sliding Window Replication and Shuffling: In this part, we
discuss how to judge whether a normalized sliding window
should be replicated to other partitions as well as locate such
relevant partitions (i.e., tasks).

Let us start by defining the following terms. Let H; C
(1,...,hp) be a subset of dimensions referred to as the
dimension subset of a sliding window &!. Given a dimension
subset H;, the sub-permutation set Ry, of s! is defined as

the set of all the permutations of p! of 8!, such that only
the entries corresponding to the dimensions present in H,; are
permuted (recall that the entries of a partition vector is either
1 or —1) and the remaining are held constant. For example,
if the partition of s! is p! = (—1,1,1) and H; = {2, 3}, then
only the 2% and 3"¢ dimension of p! are permuted to form
Ry, as follows:

Ry, ={(-1,-1,-1),(-1,-1,1),(—=1,1,—-1),(—=1,1, 1) }.
The sub-permutation set should have the following desirable
property: for a sliding window 8! in pl, the derived partitions
in Ry, have the sliding windows that are significantly cor-
related with 8!, while the partitions not present in Ry, must
not have such sliding windows.

Therefore, once such a sub-permutation set is constructed
for sliding window &, we know where to replicate and shuffle
3!, Now we present the lemma about how to construct the
dimension subset for the sub-permutation set.

Lemma 5.1 (Dimension Subset Generation): Given a sliding
window 8! in partition p, dimension k (k = 1,--- ,hy) is
added to set H;, if and only if s; 1 - (s —sgn(six)-6) <O0.

Proof Please refer [1].

Now, each task of processing element P(#"¢) essentially
scans each local normalized sliding window .§§ for instance
and checks the condition given by Lemma 5.1 to generate the
dimension subset H;. If H; = (), 8¢ is only shuffled to the task
responsible for partition p!. Otherwise, H; is used for creating
the sub-permutation set Rj,, and 8! is replicated to the tasks
corresponding to all the partitions present in Ry, .

Example 5.2: Consider Figure 2(b), sliding window 8% (in
blue) is contained in the partition (1,—1) and both dimension
t and t — 1 of 84 are not qualified for the condition in
Lemma 5.1, therefore it is only shuffled to partition (1,—1).
Sliding window 8% (in green) is qualified on dimension t,
therefore in addition to partition (—1,1) where 8% is located, it
is also replicated to partition (1,1). Likewise, 8% is replicated
to partitions (1,1), (=1,1), (=1,1), and (—1,-1).

Lastly, we provide two theorems to verify the efficiency and
effectiveness of PAS approach.

Theorem 5.2 (Complexity of Sliding Window Replication in
PAS): Given a certain parallelism for the processing elements
in SigCO, for the sliding window of each time series, PAS
achieves O(1) replication independent of the sliding window
size h and number of time series n.

Proof Please refer [1].

Theorem 5.3 (Correctness and Completeness of PAS):
Through PAS shuffling, each task of P(c™P) receives the nor-
malized sliding windows located in the partition corresponding
to this task and the sliding windows from other partitions
that are significantly correlated with this task’s local ones.
Therefore, the complete set of significantly correlated pairs of
time series can be mined from the tasks of P(c™P).

Proof Please refer [1].

751

VI. COMPUTING CORRELATION MEASURES

In the previous section, we know that by using PAS shuffling
each task of processing element P(¢?) collects all the neces-
sary sliding windows for finding the correlations contained in
the partition corresponding to this task. In this part, we only
describe the actions performed by each task of P(¢™P) over
its local sliding windows.

A. O—Hypercube Structure

First, we introduce the &-hypercube structure, which is
exploited to prune correlation computation.

We further partition the space of normalized sliding win-
dows into §-hypercubes, which are h-dimensional orthogonal
regular hypercubes and have edges of length §. The hypercube
in which a normalized sliding window §f is contained, is
identified by its coordinate vector, which is given as follows:

¢ ([Sit—hir| |8
= (] 1)

All the h entries of 8! are used in coordinate vector c!.
Recall that § is derived from significant correlation threshold
€s. Given a hypercube c!, the set of its neighbouring hyper-
cubes is denoted as N (cl). An important property of such
d-hypercube structures is as follows:

Lemma 6.1: For a normalized sliding window 8% and its
coordinate vector ¢!, all the sliding windows significantly
correlated with 8t are either contained in hypercube c. or

7

the hypercubes in N'(ct).

Y

Proof Please refer [1].

Example 6.1: Figure 3(a) shows the set of the neighbouring
0-hypercubes around the red 6-hypercube, which hosts normal-
ized sliding window 8! (the blue star in Figure 3(a)). The red
8-hypercube associated with 8t is located in the black partition
in Figure 3(b) .

B. Correlation Computation

When a task of P(P) collects the normalized sliding
windows at time instant (i.e., t), it maps these local sliding
windows to different d-hypercubes using coordinate vectors.
Then, we categorize this set of hypercubes in a task as the
following two types:

Definition 6.1 (Home hypercube): Home hypercube is the
one hosting the normalized sliding windows located in the
partition corresponding to this task.

Definition 6.2 (Outer hypercube): Outer hypercube is the
one hosting the normalized sliding windows, which are orig-
inally located in different partitions from the partition cor-
responding to this task, but replicated to this task by PAS
shuffling.

Based on above definitions, we obtain the following obser-
vation, which is used to avoid redundant correlation compu-
tation among the tasks of processing element P (")

Observation 6.1: In a task of processing element P("P),
the correlation computation is only needed to be performed
over a pair of normalized sliding windows both from home

t-2 [Intra-Hypercube Correlation: s1111:

6 Inter-Hypercube Correlation: = =
g ! Ct Outer Home
= __:.r—_» uf
= = E _;,f' t4 hypercube hypercube
1 1C3 t Ly
< =t __..1 p ; __t c|4 ’/cfm.
3 \ b
- it 1 \ ~Cr
'/S\t_‘ 4”” 1 ‘CI \ & 2t
* t
t-1 = CZ . ,C3":

(a) (b) (c)

Fig. 3. (a) d-hypercube (red cubic) containing normalized sliding window .§§
(blue star) and its neighbouring J-hypercubes (b) hypercubes containing local
sliding windows in blue partition; the dotted hypercube is an outer hypercube
while the others are home ones. (c) correlation computation performed in the
task of P(¢™P) corresponding to the blue partition.

Algorithm 1 Correlation computation in each task of P(¢»)

Input: local normalized sliding windows at time instant ¢, §
1: for each normalized sliding window &} do

2: derive ¢! = ([L“‘gh“-‘ s [S;'—D,

3: add 8! to list £ of hypercube ct;

4: if ¢! is not existent in C* then
> C' is a set of hypercubes hosting sliding windows.

5: add ¢! to hypercube set C*;

6: for each hypercube cf, in C* do

7: if ¢}, is a home hypercube then

8: perform correlation computation over pairs of sliding

9: windows in LC%;

10: for each k = 1,--- ,|C*| do b iterate the hypercubes in C*
11: foreachl=k+1,---,|C'| do

12: if ¢}, and c] are both outer hypercubes then

13: continue;

14: else if ¢, and ¢ are qualified for Lemma 6.2 then

15: perform correlation computation over pairs of sliding
16: windows respectively from ﬁci and £c§9

hypercube(s) or respectively from a home and an outer hy-
percube, since the correlations from intra- and inter-outer
hypercubes are processed by the tasks of P\™P) hosting these
outer hypercubes as home ones.

Now based on above analysis we proposed the correlation
computation approach (refer Algorithm 1) including two steps
as follows:

Intra-Hypercube Correlation: For each home hypercube in a
task, the correlation computation is performed over the pairs of
sliding windows from this hypercube and output the qualified
time seri