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Abstract—The dramatic rise of time-series data produced in
a variety of contexts, such as stock markets, mobile sensing,
sensor networks, data centre monitoring, etc., has fuelled the
development of large-scale distributed real-time computation
systems (e.g., Apache Storm, Samza, Spark Streaming, S4, etc.).
However, it is still unclear how certain time series mining tasks
could be performed using such new emerging systems. In this
paper, we focus on the task of efficiently discovering statistically
significant correlations among a large number of time series via
a distributed realtime computation engine. We propose a frame-
work referred to as SigCO. In SigCO, we put forward a novel
partition-aware data shuffling, which is able to adaptively shuffle
time series data only to the relevant nodes of the distributed
real-time computation engine. On the other hand, in SigCO we
design a δ-hypercube structure based correlation computation
approach which is capable of pruning unnecessary correlation
computations. Finally, our extensive experimental evaluations on
real and synthetic datasets establish that SigCO outperforms the
baseline approaches in terms of diverse performance metrics.

I. INTRODUCTION

Due to the explosion of devices producing time-series data

(e.g., sensor networks, mobile phones, Internet of Things)

[5], [8], [20], for contemporary large-scale time series mining

applications, it is not feasible to simply load real-time time

series data into a traditional stream processing system [4],

[5] run on a standalone machine, which cannot handle the

rapidly increasing amount of time series data. This has led to

the development of many distributed, fault-tolerant, and real-

time computation systems [2], [3], [13], [24]. Analogous to the

trend observed in map-reduce systems (e.g., Apache Hadoop);

where efficiently performing complex joins using map-reduce

was a challenging problem [7], [19], [22], using distributed

real-time computation engines for efficiently and continuously

mining meaningful information from time-series is becoming

challenging, as we will see later.

In this paper, we concentrate on one such important prob-

lem, using a distributed real-time computation engine to con-

tinuously discover statistical significant correlations (Pearson

or Spearman correlations) from massive time-series over slid-

ing windows, which has not been studied before, to the best

of our knowledge. Statistical significant correlations not only

reveal the values of strong correlations among time series,

but also can tell us the probability that the correlation value

we have found is due only to random chance [14]. It plays an

important role in diverse applications. In performance monitor-

ing for large scale systems e.g. data centres [12], correlations

between performance counters (e.g. CPU, memory usage, etc.)

across large number of servers are continuously queried for

recognizing the servers with correlated performance patterns

so as to balance loads, for instance. Traders utilize timely cor-

relations among stock prices to spot investment opportunities

[10]. In on-line recommendation systems, correlation mining

is used to find customers with similar shopping patterns.

All these applications require the discovery of significant

correlations as their fundamental building blocks.

Challenges in Distributed and Real-time Significant Corre-
lation Discovery: as time series are continuously pushed into

different computing nodes of a distributed real-time compu-

tation engine cluster, in order to find the correlation partners

for the local time series of a node, it has to replicate and

shuffle the local time series to other nodes. Since each node

has no prior-knowledge about the timely properties of time

series other nodes receive and communicating such knowledge

among nodes is prohibitively expensive for real-time correla-

tion mining, one idea is to compute the correlations of all pairs

of time series by replicating the local time series among all

other nodes and then perform significance test over individual

computed correlation to find significant ones, which generates

quadratic computation and communication costs w.r.t. the

number of time series under processing at worst (i.e., similar

to the idea of cross join using MapReduce [15]). On the other

hand, in the real-time environment where time series data

continuously arrives, each node of the cluster continuously

receives in a high speed, parses and sends time series data,

high communication cost produced by shuffling time series

data among nodes will slow down the data processing as

well as deplete precious network resources in a concurrent

query processing. [15] Unfortunately, existing approaches for

mining correlations either work in a centralized way or for

static data and thus can not solve our problem efficiently in

our distributed and real-time environment. (refer Section II).

Contributions: Overall, this paper makes the following con-

crete contributions.

• We define the problem of using a distributed real-

time computation engine to mine statistically significant

correlations from the time series over a sliding window

(DisSiCo problem).
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• We proposes SigCO , which integrates correlation mining

and significance testing processes into one framework.

SigCO is able to directly mine statistically significant

correlations and circumvent the significance testing proce-

dure over individual correlation by deriving an alternative

correlation threshold.

• Built into SigCO is a novel shuffling technique called PAS
(Partition-Aware Shuffling) that has the ability to know

specifically where to replicate and shuffle the sliding win-

dow of a certain time series without the need to exchange

among nodes the information about local time series. PAS

achieves O(1) replication for each sliding window and

avoids the naive data replication and shuffling among

all the nodes as mentioned above, thereby dramatically

reducing the communication overhead.

• In SigCO, we further propose a δ-Hypercube structure

based pruning approach to circumvent unnecessary cor-

relation computations over the sliding windows shuffled

to each node by PAS.

• We implement SigCO and a variety of baseline approaches

using a widely used open source distributed real-time com-

putation engine, Storm and experimentally demonstrate the

efficiency of SigCO.

The rest of the paper is organized as follows. Section III

introduces the background knowledge and problem definition.

Section V and Section VI present the SigCO framework.

We analyse the communication and computation cost in Sec-

tion VII. We perform exhaustive experimental evaluations

comparing SigCO with baselines in Section VIII.

II. RELATED WORK

Numerous distributed systems [2]–[4], [13], [24] have been

developed to process massive data in a high-speed environ-

ment. Storm [3] is a widely-used platform, which provides

fault tolerance and tuple processing guarantees. Unlike Storm,

some systems like S4 [13] cannot guarantee that each tuple

will be processed. Zaharia et al. [24] proposed a new model

using micro-batches for distributed stream processing, which

has larger processing latency compared to the one-tuple-at-a-

time model of [3], [4], [13]. Although these systems provide

an extensive set of operators for real-time processing, they do

not support operators for correlation queries.

Various indexing techniques for querying the correlations

of static time-series data stored in a centralized system have

been proposed in [11], [12], [20], [23]. Such techniques are

not suitable for our dynamic environment, where the index

maintenance cost incurs high processing latency. Computing

real-time correlations using a standalone machine has been

a key focus of [6], [9], [18], however these techniques are

ineffective in a distributed environment. The StatStream sys-

tem [25] specializes in discovering correlations using a grid

structure, but it incurs prohibitive communication cost in a dis-

tributed environment. Recently, partitioning-based approaches

have attracted attention for distributed batch data processing

[7], [19], [22]. However, such approaches are data-dependent

and need an aprori data pre-scanning step to estimate the

data distribution. Scanning the entire data to update the data

distribution is impossible in a streaming environment.

III. PRELIMINARIES

In this section, we first present the key concepts of the

distributed real-time computation engine. Then, we provide

the formal problem definition of this paper.

A. Distributed Real-time Computation Engine
A distributed real-time computation engine is deployed in a

cluster of computing nodes. The core concept is the notion of

a topology [3], [13]. A topology is a DAG (directed acyclic

graph) where the vertexes are known as processing elements
discussed later. A processing element continuously transforms

the incoming data according to its programmed operation

and transmits it to neighbouring processing element(s) as

defined by the topology. The communication between elements

is again dictated by the topology. In addition to the above

real-time computation principles, the following concepts are

important as well:

• Tuple is a key-value(s) pair, which is the basic data unit

for communication among the vertexes in a topology. The

key or any value could be a number, string or a generic

object. We denote a tuple as τ = (τk, τv) where τk is the

key and τv is the value.

• Source Element is responsible for fetching data from

different sources (e.g., file, REST, JSON, etc.), converting

it to tuples and pushing them into a topology. We denote

a source element by S .

In this paper, time series is a sequence of data points

consisting of successive measurements made over time

and thus source element continuously reads such discrete

data points and outputs tuples of the form (i, si,t) (i =
1, . . . , n), where i is time series index and si,t is the value

of time series i at time-stamp t, to a topology processing

DisSiCo. i is the key of the tuple, such that the data points

for a certain time series are always shuffled to the same

task of the subsequent processing element.

• Processing Element consumes tuples it receives from a

source element or another processing element, processes

them according to the user-defined logic, and emits or

transmits tuples to other processing elements that have

subscribed to it; we denote a processing element by P(x).

Typically, a processing element also has a local buffer

for temporarily storing incoming data. While processing

a tuple, a processing element also modifies the key of the

tuple.

• Task is an instance of either a source or processing

element. One or more tasks of a source or processing

element are executed in parallel in different nodes of the

cluster. The data processed by a task is referred to as its

local data (e.g., local time series in our case).

• Parallelism of a given source or processing element is

the number of its tasks. This is a user-defined param-
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eter. The parallelism of a processing element P(x) is

denoted as p(x). These p(x) tasks of P(x) are denoted by

P(x,1), · · · ,P(x,p(x)).

• Shuffling function is a function defined for each edge of

the topology. It determines the task(s) of the subsequent

processing element to which a tuple emitted from a task

of the preceding processing or source element should be

sent. The default key-based shuffling function computes

the hash value of a tuple key and sends it to the task to

which the hash value is assigned. A customized shuffling
function can be programmed to replicate a tuple to multiple

tasks of the next processing element.

B. Problem statement

In this paper, we focus on two important statistical correla-

tions, Pearson and Spearman correlation for time series [10],

[14].

Correlation Defintion: We first define a generic correlation

function, based on which the definitions of Pearson and

Spearman correlations are given later. For two vectors x1 and

x2 (x1,x2 ∈ Rh, h is the sliding window size for time series),

the generic correlation function is defined as:

corre(x1,x2) =
(x1 − μ(x1)1) · (x2 − μ(x2)1)

(h− 1)σ(x1)σ(x2)
(1)

where 1 is all one vector (1 ∈ Rh), σ(x) and μ(x) are

the sample standard deviation and mean of the elements in x,

respectively.

We use n to denote the total number of time series

input to the engine. For time series i (i ∈ (1, · · · , n)),
the sliding window ending at time stamp t is denoted by

sti = (si,t−h+1, · · · , si,t) and sti ∈ Rh. For the sake of

simplicity, we use t to represent the ending timestamp of

current sliding windows under processing.

Then, the Pearson correlation coefficient ρpi,j between slid-

ing windows sti and stj of time series i and j, which evaluates

the linear relationship between two variables, is defined as

follows:

ρpi,j = corre(sti, s
t
j) (2)

Additionally, the non-parametric Spearman’s rank-order cor-

relation measures the strength of monotonic relationship be-

tween two ranked variables. Compared with Pearson correla-

tion, Spearman’s rank correlation coefficient is more robust

to outliers [17]. We define rank vector rti of sliding window

sti is a vector of size h, the entries of which are the ranks

of the corresponding entries in the original sliding window

sti. For instance, given sti = (1.3, 4.6, 3.7), its rti is (1, 3, 2),
since sorted elements in sti are (1.3, 3.7, 4.6). Then, Spearman

correlation ρsi,j for sliding windows sti and stj of time series

i and j is defined on rti and rtj as:

ρsi,j = corre(rti , r
t
j) (3)

Significant Correlation: A correlation of the sliding windows

of two time series tells us about the strength of the relationship

between time series. However, only knowing this is not enough

for mining statistical significant correlations, since sliding

windows are actually samples from the time series, and there

is the possibility that the detected correlation would have

occurred due to sampling error alone.

Therefore, statistical significance testing of correlations is

necessary for determining the reliability of a computed corre-

lation value. Given a correlation threshold ε of user’s interest,

significance testing of a correlation value, whether the derived

correlation is significantly larger than ε at significance level α
(α is usually set as 0.05) is formulated as the hypothesis test

framework [17]. Here for simplicity we use ρi,j to represent

the correlation between the sliding windows of time series i
and j. The null hypothesis is labelled as H0, written as [17]:

H0 : ρi,j = ε (4)

The alternative hypothesis labelled as Ha is written as [17]:

Ha : ρi,j > ε (5)

Significance test of correlations adopts Fisher transfor-

mation, Zρ = 1
2 ln(

1+ρ
1−ρ ). First, define the null Znull for

correlation threshold ε, which is used for significance test:

Znull =
1

2
ln(

1 + ε

1− ε
) (6)

For a derived correlation ρi,j , its Fisher transformation is

Zρi,j
=

1

2
ln(

1 + ρi,j
1− ρi,j

) (7)

Then, we can obtain z-value in statistics as: z =
Zρi,j

−Znull

σZ

where σZ =
√

1
h−3 . Given zα, which is a function of signifi-

cance level α addressing probability Pr(X > zα) = α, where

X ∼ N(0, 1), based on hypothesis test theory, if z ≥ zα,

we can reject the null hypothesis and say that correlation

ρi,j is statistically significantly larger than ε at α significance

level. Otherwise, ρi,j is not statistically significant w.r.t. ε at

α significance level [17]. The other types of significance tests

could be the future work.

Problem Definition: Now we formally define DisSiCo prob-

lem as:

Definition 3.1 (DisSiCo problem): Given n time-series,
which are continuously arriving and distributed to different
nodes of a distributed real-time computation engine, correla-
tion threshold ε, significance level α and sliding window size
h, it is required that the time series pairs with statistically
significant correlations above ε over the sliding window are
continuously reported.

We say such reported time series pairs are significantly

correlated. Threshold ε is always assumed to be greater than

zero in this paper. It can be shown that if the entries in one

of the sliding windows are reversed, then the negative ε can

be treated as positive [25]. Thus, without loss of generality,

henceforth we only focus on the positive threshold ε.



750

IV. CORRELATION TRANSFORMATION

In this part, we first derive the significant correlation thresh-

old that allows the following proposed SigCO to circumvent

the process of significance testing over individual computed

correlation. Second, we present the relation between the cor-

relation and Euclidean distance, which enables us to develop

communication and computation optimization methods avail-

able in Euclidean space for solving DisSiCo efficiently.

Significant Correlation Threshold: The intuitive idea of

discovering statistically significant correlations is to perform

significance test over the computed correlations above ε and

filter out insignificant ones (i.e., hypothesis test on the corre-

lation fails to reject the null hypothesis). However, given the

sliding window length h and correlation threshold ε, we have

the following lemma:

Lemma 4.1: Significant correlation threshold εs is defined
as:

εs = 1− 2(1− ε)

1− ε+ (1 + ε) · e2zασZ
and εs ≥ ε

such that for the pairs of time series having correlation val-
ues above εs, their correlations must be statistically significant
w.r.t. ε.

Proof Please refer [1].

Therefore, our SigCO can focus on directly mining sig-

nificant correlations using significant correlation threshold εs
instead of ε so as to avoid redundant correlation mining and

significance test procedures.

Sliding Window Normalization: First, we define a normal-

ization function over a vector x (x ∈ Rh) as [25]:

x̂ = norm(x) =
(x− μ(x)1)√
(h− 1)σ(x)

(8)

where 1h is an all-one vector of size h. The vector x̂
is of unit length, namely x̂ · x̂ = 1. Then the normalized

sliding windows for Pearson and Spearman correlation are

respectively defined as

ŝti = norm(sti) and r̂ti = norm(rti) (9)

The correlation can also be written using the normalized

sliding windows as follows: ρpi,j = ŝti · ŝtj and ρsi,j = r̂ti · r̂tj .

For simplicity, we only use ŝti for presentation in the rest

of the paper. Since ŝti is a unit length vector, each of its

entries ŝi,k varies between −1 ≤ ŝi,k ≤ 1. Thus the range of

variation of the normalized sliding window is known apriori,

and is independent of the variation in the original sti. We shall

later exploit this important observation to create partitions over

the space of normalized sliding windows for efficient data

shuffling in SigCO.

Additionally, there exists an important relationship between

the correlation coefficient and the Euclidean distance between

normalized sliding windows [25],

D(ŝti, ŝ
t
j) =

√
2(1− ρi,j), (10)

where D(ŝti, ŝ
t
j) is the Euclidean distance between ŝti and

ŝtj . The correlation coefficient between two normalized siding

windows increases as the Euclidean distance between them

decreases. Alternatively, DisSiCo problem can be defined as

a query over the Euclidean distance between two normalized

sliding windows, which aims to continuously query a set of

time series pairs as {〈i, j〉|i �= j,D(ŝti, ŝ
t
j) ≤ δ}, where δ is

related to εs as δ =
√

2(1− εs). As εs decreases, δ increases

and vice versa. δ will be utilized for computation pruning later.

V. PARTITION-AWARE DATA SHUFFLING

This section introduces our core contribution SigCO frame-
work, which will exhibit performance improvements in both

communication and computation efficiency.

The topology of SigCO is depicted in Figure 1. Processing

element P(pre) maintains the sliding windows for all the input

time series, updates the normalized sliding windows incre-

mentally [25] and then emits a tuple consisting of time series

id, current time instant and the normalized sliding window

at current time instant per time series at each time instant.

Between P(pre) and P(cmp), we design a novel partition-aware

data shuffling (PAS) approach, which is able to adaptively

shuffle a tuple from P(pre) only to the tasks of P(cmp) con-

taining correlation partners with the sliding window contained

in this tuple. Then, each task of P(cmp) exploits δ-hypercube

structure to prune unnecessary correlation computation and

real-time outputs tuples consisting of a significantly correlated

time series pair. At last, processing element P(agg) aggregates

the qualified time series pairs from P(cmp) by removing

duplicate pairs via hash-set.

Fig. 1. Topology architecture of SigCO framework.

The idea of PAS is to create partitions over the high-

dimensional space of the normalized sliding windows of all

the time series. Based on these partitions, PAS performs two

intelligent steps: 1) it always ensures that each partition is

handled by a unique task of processing element P(cmp). 2) in

a certain partition, for the contained sliding windows that could

be correlated with the ones from other partitions, it replicates

and shuffles the tuples containing these sliding windows only

to the tasks responsible for the relevant partitions. The rest of

sliding windows in this partition are only shuffled to the task

of this partition.

Partitioning: In this part, we describe how to partition the

space of normalized sliding windows and locate the partition

in which a sliding window is contained.

Initially, we apply 2-way partitioning on each dimension

of the space over the normalized sliding windows and thus

obtain 2h partitions. In order to associate partitions with pcmp

tasks of processing element P(cmp), we should adjust the

dimensionality used for partitioning. The need for reducing
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the dimensionality is evaluated as follows: we compute hp =
	log2(p(cmp))
 and if hp ≤ h, space partitioning only utilizes

the latest hp entries of the sliding window, which is enough for

maintaining the one-to-one correspondence between partitions

and tasks of P(cmp).

The benefits of such dimension-reduced partitioning are

two-fold. First, based on this one-to-one correspondence be-

tween partitions and tasks, we can derive a concise scheme for

sliding window replication among the partitions (i.e., tasks),

which will be shown later. Second, using only hp entries for

locating partitions and deciding the replication plan for sliding

windows is much efficient. Normally, hp � h, because h
could be up to hundreds or more for mining significant corre-

lations (see the experiment section). However, it is impossible

for hp > h, as it requires pcmp > 2h, which is a prohibitive

large value for parallelism pcmp. In the implementation, we

could set p(cmp) as an exponential of 2 to make full use of

the tasks of P(cmp).

Fig. 2. Illustration of PAS shuffling: (a) parallelism based space partitioning:
hyper-rectangles derived by partitioning over dimension t and t − 1; (b)
normalized sliding window replication and shuffling amongst partitions; each
partition is handled by a unique task of processing element P(cmp).

Now, we define partition vector of size hp, which uniquely

identifies a partition for each normalized sliding window ŝti
for instance as:

pt
i = (sgn(ŝi,t−hp+1)�|ŝi,t−hp+1|
, · · · , sgn(ŝi,t)�|ŝi,t|
),

where sgn(x) extracts the sign of its argument: sgn(x) = 1 if

x ≥ 0 and sgn(x) = −1 if x < 0. Since −1 ≤ ŝi,t ≤ 1, each

entry of the partition vector pt
i is either −1 or 1.

Example 5.1: As is demonstrated in Figure 2(a) for 3D
sliding windows. Suppose p(cmp) = 4 then we have hp = 2.
Since hp < 3, only dimensions t and t − 1 are used to
obtain 4 partitions as are shown in Figure 2(b). Each of them
corresponds to one hyper-rectangle with the same colour in
Figure 2(a). Thus, normalized sliding windows lying in the
blue-grey hyper-rectangle are assigned to the blue partition
(i.e., task P(cmp,3)) in Figure 2(b), so on and so forth.

Sliding Window Replication and Shuffling: In this part, we

discuss how to judge whether a normalized sliding window

should be replicated to other partitions as well as locate such

relevant partitions (i.e., tasks).

Let us start by defining the following terms. Let Hi ⊆
(1, . . . , hp) be a subset of dimensions referred to as the

dimension subset of a sliding window ŝti. Given a dimension

subset Hi, the sub-permutation set RHi of sti is defined as

the set of all the permutations of pt
i of ŝti, such that only

the entries corresponding to the dimensions present in Hi are

permuted (recall that the entries of a partition vector is either

1 or −1) and the remaining are held constant. For example,

if the partition of sti is pt
i = (−1, 1, 1) and Hi = {2, 3}, then

only the 2nd and 3rd dimension of pt
i are permuted to form

RHi as follows:

RHi = {(−1,−1,−1), (−1,−1, 1), (−1, 1,−1), (−1, 1, 1)}.

The sub-permutation set should have the following desirable

property: for a sliding window ŝti in pt
i, the derived partitions

in RHi
have the sliding windows that are significantly cor-

related with ŝti, while the partitions not present in RHi
must

not have such sliding windows.
Therefore, once such a sub-permutation set is constructed

for sliding window ŝti, we know where to replicate and shuffle

ŝti. Now we present the lemma about how to construct the

dimension subset for the sub-permutation set.

Lemma 5.1 (Dimension Subset Generation): Given a sliding
window ŝti in partition pt

i, dimension k (k = 1, · · · , hp) is
added to set Hi, if and only if si,k · (si,k − sgn(si,k) · δ) ≤ 0.

Proof Please refer [1].

Now, each task of processing element P(pre) essentially

scans each local normalized sliding window ŝti, for instance

and checks the condition given by Lemma 5.1 to generate the

dimension subset Hi. If Hi = ∅, ŝti is only shuffled to the task

responsible for partition pt
i. Otherwise, Hi is used for creating

the sub-permutation set RHi , and ŝti is replicated to the tasks

corresponding to all the partitions present in RHi
.

Example 5.2: Consider Figure 2(b), sliding window ŝt3 (in
blue) is contained in the partition (1,−1) and both dimension
t and t − 1 of ŝt3 are not qualified for the condition in
Lemma 5.1, therefore it is only shuffled to partition (1,−1).
Sliding window ŝt1 (in green) is qualified on dimension t,
therefore in addition to partition (−1, 1) where ŝt1 is located, it
is also replicated to partition (1, 1). Likewise, ŝt2 is replicated
to partitions (1, 1), (−1, 1), (−1, 1), and (−1,−1).

Lastly, we provide two theorems to verify the efficiency and

effectiveness of PAS approach.

Theorem 5.2 (Complexity of Sliding Window Replication in
PAS): Given a certain parallelism for the processing elements
in SigCO, for the sliding window of each time series, PAS
achieves O(1) replication independent of the sliding window
size h and number of time series n.

Proof Please refer [1].

Theorem 5.3 (Correctness and Completeness of PAS):
Through PAS shuffling, each task of P(cmp) receives the nor-
malized sliding windows located in the partition corresponding
to this task and the sliding windows from other partitions
that are significantly correlated with this task’s local ones.
Therefore, the complete set of significantly correlated pairs of
time series can be mined from the tasks of P(cmp).

Proof Please refer [1].
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VI. COMPUTING CORRELATION MEASURES

In the previous section, we know that by using PAS shuffling

each task of processing element P(cmp) collects all the neces-

sary sliding windows for finding the correlations contained in

the partition corresponding to this task. In this part, we only

describe the actions performed by each task of P(cmp) over

its local sliding windows.

A. δ–Hypercube Structure

First, we introduce the δ-hypercube structure, which is

exploited to prune correlation computation.

We further partition the space of normalized sliding win-

dows into δ-hypercubes, which are h-dimensional orthogonal

regular hypercubes and have edges of length δ. The hypercube

in which a normalized sliding window ŝti is contained, is

identified by its coordinate vector, which is given as follows:

cti =

(⌈
ŝi,t−h+1

δ

⌉
, · · · ,

⌈
ŝi,t
δ

⌉)
. (11)

All the h entries of ŝti are used in coordinate vector cti.
Recall that δ is derived from significant correlation threshold

εs. Given a hypercube cti, the set of its neighbouring hyper-

cubes is denoted as N (cti). An important property of such

δ-hypercube structures is as follows:

Lemma 6.1: For a normalized sliding window ŝti and its
coordinate vector cti, all the sliding windows significantly
correlated with ŝti are either contained in hypercube cti or
the hypercubes in N (cti).

Proof Please refer [1].

Example 6.1: Figure 3(a) shows the set of the neighbouring
δ-hypercubes around the red δ-hypercube, which hosts normal-
ized sliding window ŝti (the blue star in Figure 3(a)). The red
δ-hypercube associated with ŝti is located in the black partition
in Figure 3(b) .

B. Correlation Computation

When a task of P(cmp) collects the normalized sliding

windows at time instant (i.e., t), it maps these local sliding

windows to different δ-hypercubes using coordinate vectors.

Then, we categorize this set of hypercubes in a task as the

following two types:

Definition 6.1 (Home hypercube): Home hypercube is the
one hosting the normalized sliding windows located in the
partition corresponding to this task.

Definition 6.2 (Outer hypercube): Outer hypercube is the
one hosting the normalized sliding windows, which are orig-
inally located in different partitions from the partition cor-
responding to this task, but replicated to this task by PAS
shuffling.

Based on above definitions, we obtain the following obser-

vation, which is used to avoid redundant correlation compu-

tation among the tasks of processing element P(cmp).

Observation 6.1: In a task of processing element P(cmp),
the correlation computation is only needed to be performed
over a pair of normalized sliding windows both from home

Fig. 3. (a) δ-hypercube (red cubic) containing normalized sliding window ŝti
(blue star) and its neighbouring δ-hypercubes (b) hypercubes containing local
sliding windows in blue partition; the dotted hypercube is an outer hypercube
while the others are home ones. (c) correlation computation performed in the
task of P(cmp) corresponding to the blue partition.

Algorithm 1 Correlation computation in each task of P(cmp)

Input: local normalized sliding windows at time instant t, δ
1: for each normalized sliding window ŝt

i do
2: derive cti =

(⌈
ŝi,t−h+1

δ

⌉
, ...,

⌈
ŝi,t
δ

⌉)
;

3: add ŝt
i to list Lcti

of hypercube cti;

4: if cti is not existent in Ct then
� Ct is a set of hypercubes hosting sliding windows.

5: add cti to hypercube set Ct;

6: for each hypercube ctk in Ct do
7: if ctk is a home hypercube then
8: perform correlation computation over pairs of sliding
9: windows in Lct

k
;

10: for each k = 1, · · · , |Ct| do � iterate the hypercubes in Ct

11: for each l = k + 1, · · · , |Ct| do
12: if ctk and ctl are both outer hypercubes then
13: continue;
14: else if ctk and ctl are qualified for Lemma 6.2 then
15: perform correlation computation over pairs of sliding
16: windows respectively from Lct

k
and Lct

l
;

hypercube(s) or respectively from a home and an outer hy-
percube, since the correlations from intra- and inter-outer
hypercubes are processed by the tasks of P(cmp) hosting these
outer hypercubes as home ones.

Now based on above analysis we proposed the correlation

computation approach (refer Algorithm 1) including two steps

as follows:

Intra-Hypercube Correlation: For each home hypercube in a

task, the correlation computation is performed over the pairs of

sliding windows from this hypercube and output the qualified

time series pairs.

Inter-Hypercube Correlation: for two different hypercubes

(i.e, both are home hypercubes or one home and one outer

hypercube), we first need a pruning criterion telling us whether

there could be any significantly correlated time series pairs, out

of the total pairs formed by considering the normalized sliding

windows in both hypercubes together. The following lemma

discusses such a criteria:

Lemma 6.2 (Pruning Criterion): Given two hypercubes

cti and ctj (both home hypercubes or one home and one

outer hypercube), if there exists a dimension k such that

|ci,k − cj,k| > 1, where k ∈ {t − h + 1, · · · , t}, then all
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the normalized sliding windows in cti and ctj can not be

significantly correlated. Otherwise, we have to compute the

correlation coefficient on each pair of sliding windows in cti
and ctj to verify whether they are significantly correlated.

Proof Please refer [1].

Example 6.2: In Figure 3(b), we have four partitions. In the
task of P(cmp) corresponding to blue partition, local sliding
windows are mapped to four hypercubes, of which hypercube
ct1 to ct3 are home hypercubes and ct4 is an outer hypercube,
since normalized sliding windows in ct4 are replicated from the
red partition. In Figure 3(c), correlation computation is first
performed over individual home hypercubes. Regarding inter-
hypercube correlation, intuitively a hypercube pair requires
further examination if they share a boundary with each other.
Therefore only two pairs of hypercubes, ct1,ct2 and ct3,ct4 need
further examination, while other pairs can be pruned.

Finally, all the qualified significantly correlated time series

pairs that are emitted by tasks of processing element P(cmp)

are aggregated by P(agg) as shown in Figure 1, where the

duplicate pairs are removed. Such resultant time series pairs

are statistically significant correlated, as is discussed in Sec-

tion IV.

C. Computing Alternative Correlation Measures

Besides Pearson and Spearman correlation, our proposed

framework is able to handle diverse correlation (or similarity)

measures by adopting specific normalization processes for

different measures. Limited by the space, refer [1] for details.

D. Integrating Dimension Reduction Techniques

Even though dimensionality reduction methods are not the

focus of this paper, we briefly discuss how our framework can

incorporate such techniques [12], [20]. Orthonormal transfor-

mation based dimensionality reduction (e.g., discrete Fourier

transformation (DFT), random projections, etc.) can be seam-

lessly performed in the processing element P(pre). Tasks of

P(pre) perform dimension reduction on individual normalized

sliding window and send only these dimension-reduced sliding

windows to processing element P(cmp) through PAS shuffling.

Then, due to the distance preserving property, processing

element P(cmp) is able to perform aforementioned correlation

computation over these dimension-reduced sliding windows.

Therefore, our proposed framework is able to be robust to

queries with variable sliding window lengths. This could be

our future work.

VII. COST ANALYSIS

In this part, we provide theoretical complexity analysis.

Computation Cost of Processing Element P(pre): Statistics

on each time series (i.e., mean, variance) are updated in

constant time. PAS only uses the first hp (hp � h) entries

of each normalized sliding window to derive relevant tasks in

linear time w.r.t. hp, which is independent of h and n.

Communication Cost between Processing Element P(pre)

and P(cmp): The communication cost for the sliding window

of each time series is decomposed as a product of the number

of replicas produced by PAS and the cost of each replica

(i.e., size of a normalized sliding window). As is proved in

Theorem 5.2, the number of replicas for a sliding window

in PAS is independent of n and h and is bounded by the

parallelism of processing element P(cmp) ( P(cmp) � n ).

The cost of each replica can be optimized via dimension-

reduction techniques. Overall, the communication cost in PAS

is dramatically decreased compared to the naive quadratic data

communication method in Section I.

Note that when parallelism is increased, the amount of data

that each task of P(cmp) deals with is decreased. This is

because under the assumption of uniform data distribution,

the number of sliding windows each task processes is ap-

proximately modelled as n
2hp

, which declines as parallelism

of P(cmp) (p(cmp) = 2hp ) increases.

Computation Cost of Processing Element P(cmp): Each

task of P(cmp) performs correlation computation only over

the sliding windows from neighbouring δ-hypercubes, thereby

circumventing pair-wise computation. In Section VIII, we will

experimentally show the pruning power of such method.

The communication cost between processing element

P(cmp) and P(agg) depends on the number of qualified time

series pairs. Since this number is unknown apriori, we have

to omit the analysis of P(agg) and the computation cost of

hash-set based duplicate removal in P(agg) is negligible as

well.

VIII. EXPERIMENTAL EVALUATION

In this section, we perform extensive experimental evalua-

tion comparing SigCO with baseline approaches. Due to the

space limitation, we put some of experiment results in [1].

The implementations of SigCO and baselines are done using

Apache Storm. We choose Storm here, because Storm has

lower processing latency compared to other distributed real-

time computation system (e.g, S4, Spark Streaming, Samza)

due to the one-at-a-time data processing model [3]. Moreover,

Storm provides flexible interfaces which allow to develop

advanced customized data processing logics. Processing and

source elements are respectively implemented as bolts and

spouts in Storm.

A. Baselines

GC: it is based on distributed group-based join [15], which

optimizes the sliding window replication and enables incre-

mental correlation computing [11]. GC computes pair-wise

correlations and then performs significance tests.

DFTC: This is a DFT (discrete Fourier Transform) based

approach proposed in [25], but we have adapted it to the

distributed setting. It has a topology consisting of three pro-

cessing elements. The first element shuffles a DFT-reduced

sliding window according to the grid structure. The second

element computes the correlations, performs the significance

test and forwards qualified pairs to the last element, where

duplicate removal is performed.
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Fig. 4. Performance metrics as a function of the parameters at a constant number of input time series on real dataset. (a)-(d) communication cost and (e)-(h)
processing latency.

LSHC: LSHC is based on locality sensitive hashing (LSH)

[21], which use the property that the normalized sliding

windows of significant correlated time series are close in

Euclidean space (refer Section IV). The topology of LSHC

consists of three processing elements. The first element com-

putes the hash value of the normalized sliding windows for

each hash table. Sliding windows that are mapped to a bucket

in each hash table are shuffled to the same task of the second

element, where the correlation computation is performed over

the sliding windows in each bucket per hash table. LSHC

parameters are chosen to minimize the processing latency

while ensuring the failure probability (i.e., the probability of

not reporting a certain qualified pair) at 5% [21]. Likewise,

the last element aggregates correlated time series pairs

B. Parameters and Metrics

We use four evaluation parameters to establish the efficacy

of SigCO: sliding window size h, query threshold ε, paral-

lelism P and the time interval Δ between time series tuples

input to the engine known as the injection interval. For the

fair evaluation, all the approaches have the same parallelism.

For these parameters, we have a basic setup where: Δ = 2sec,

h = 100, ε = 0.95 and P = 8 for tuning.

We use five performance metrics as follows. Communi-
cation cost is measured by the amount of data units com-

municated between the front two elements of each approach

divided by the parallelism. Here, a data unit is a basic data

type, which could be float, integer, etc. As the communication

cost between the last two elements depends on the qualified

time series pairs, we omit it here. Processing latency is the

average processing time for each task of elements considered

together. Peak capacity is the maximum number of time

series that an approach can simultaneously process without

causing bottlenecks in the system [3], [25]. A bottleneck is

caused when sliding windows at the current time instant have

to wait (in memory) for the sliding windows at a previous

time instant to finish processing [3], [25]. Bottlenecks leads

the processing of the following sliding windows to lag further

and further and even memory overflows. Bottlenecks caused

by any tasks are detected and reported by the Storm cluster

UI [3]. Replication rate is defined as the number of tuples

carrying sliding windows produced by the first processing

element, divided by the number of time series n. That is, the

replication rate is the average number of replicas per time

series sliding window communicated between the front two

processing elements. Pruning power is defined as the ratio of

the number of sliding window pairs that are pruned (without

having to compute correlation and test significance ) to the

total number of time-series pairs. Higher values of pruning

power are considered better. All the performance metrics are

computed by averaging every 20 seconds for 10 times, after

the cluster reaches a stable state.

C. Datasets and Cluster Details

We use one synthetic and one real dataset for evaluations.

The synthetic dataset is generated as follows. Given the

required number of time series n, we first generate n
α seed

time series. Each seed time series is generated using a random

walk model [25]. From each seed time series si, we produce

α dataset as follows:

sj,t = γj,t + βj · si,t,
where γj,t and βj are real random numbers between [0, 100],
and βj is sampled once for each time series sj , while γj,t
is sampled once for each entry in time series sj . In our

experiments, we set α = 1000 and n = 20000.

The real dataset is the Google Cluster Usage [16] data. It

records extensive activities of 12K cluster nodes from a data

center over a span of 29 days. We extract three parameters:
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CPU usage, memory usage and disk space usage for each

cluster node. The total number of extracted time series is 36K.

Cluster Setup: The experiments are performed using a cluster

consisting of 1 master and 8 slaves. The master node has 64GB

RAM, 4TB disk space and 12 x 2.30 GHz cores. Each slave

node has 6 x 2.30 GHz cores, 32GB RAM and 6TB disk space.

All the nodes are connected via 1GB Ethernet.

D. Analysing Efficiency

In this part, we present two groups of experiments. The first

one compares the communication and computation cost of the

approaches using constant number of input time series. Then,

we vary the number of input time series to evaluate the peak

capacity.

Communication Cost and Processing Latency: We set

constant number of time series (n = 10000) for all the

experiments in this part and report the communication cost

and processing latency as a function of the four parameters.

For each parameter, the two metrics are measured by varying

this parameter within a pre-defined range, while setting the

other parameters to their basic set-up values.

In Figure 4(a) and (c) the communication costs of all

approaches are relatively stable w.r.t. injection interval Δ and

query threshold ε. The increase of parallelism enables to have

more computing resource and therefore the communication

cost distributed to each task is decreased. For the sliding

window size h in Figure 4(d), SigCO has nearly 3x and 8x

lower cost as compared to GC and DFTC at the highest level

of sliding window size. Specifically, because LSHCQ requires

a large number of hash tables to achieve low failure rate [21],

it incurs high communication cost.

As for the processing latency, in Figure 4(e), SigCO ap-

proach has nearly 2x lower latency as compared to LSHC at

the maximum injection interval. Regarding the parallelism in

Figure 4(f ), as its increase lowers down the average amount

of data each task processes, the processing latencies of all

approaches decrease. In Figure 4(g) about the query threshold

ε, average improvement in the latency of SigCO w.r.t. LSHC is

approximately 2x. When sliding window length increases, the

processing latencies of all the approaches increase as is shown

in Figure 4(h). Specifically, the latency of SigCO is about 50%

lower as compared to DFTC at the maximum window length.

Peak Capacity: This set of experiments is to demonstrate

how peak capacity of each approach varies as a function of

each parameter. When a certain parameter is varied during the

experiment, the other parameters are set to their basic set-up

values.

The peak capacity increases as a function of the injection

interval and parallelism (refer Figure 5(a) and (b)). This is

because their increases lead to more computing resources and

available processing time interval , thereby improving peak

capacity. At the highest level of parallelism and injection

interval, SigCO respectively exhibits 50% and 60% more

peak capacities than DFTC. In addition, the increase of query

threshold has very little effect on the peak capacities of

Fig. 5. Peak capacity as a function of the parameters on real dataset.

all the approaches (refer Figure 5(c)). On the other hand,

the sliding window size affects the peak capacity adversely

(refer Figure 5(d)) for all approaches. This is because when

the sliding window size increases, DFTC typically needs

more DFT coefficients to retain the same amount of energy,

and LSHC takes more time for computing hash values and

correlations. And since the parallelism (or available resources)

is constant in this experiment, the peak capacity drops to keep

the system bottleneck free. However, in practice peak capacity

can be maintained by increasing parallelism or incorporate

dimension reduction techniques.

E. Analysing Replication Rate

As time interval and query threshold have no effects on

the replication rate, this set of experiments measures the

variation of replication rate w.r.t. number of input time series,

parallelism and sliding window size. Figure 6(a) shows that

the replication rates of all the approaches are robust to varying

n. SigCO achieves around 20x less replication rate than DFTC.

LSHC has 10x more replicate rate than SigCO, since it

constructs large number of hash tables to attain low failure

rate. In Figure 6(b), GC presents an increasing replication

rate, because GC performs group-based sliding window repli-

cation, where the group scheme depends on the parallelism in

order to save communication cost [15]. SigCO has a slightly

increasing replication rate, which is 2x times less than GC

at the maximum parallelism. In Figure 6(c), DFTC exhibits

fast increasing replication rate due to its increased number

of DFT coefficients and neighbouring-cell data replication

[25]. The other approaches are relatively stable w.r.t. h. In

summary, above results testify the theorems of PAS shuffling

in Section V. One point to note is that LSHC’s replication rate

is 10x larger that SigCO at most, although it is little affected

by parameter variations.

F. Analysing Pruning Power

This set of experiments evaluates the pruning power (the

higher, the better) of SigCO against DFTC and LSHC. Because
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Fig. 6. Replication rate as a function of the parameters on real dataset.

GC performs pair-wise correlation computation, we omit it

here. The pruning power is directly affected by the query

threshold ε and sliding-window length h, thus in Table I

we present the pruning power as a function of these two

parameters, while Δ and P are set to their basic set-up values.

The upper, middle and lower values in each cell of Table I

respectively correspond to DFTC, LSHC and SigCO.
In SigCO, based on the relation among ε, εs and δ (refer

Section IV), higher values of ε lead to shrinking δ-hypercubes

and therefore more pairs of sliding windows are pruned. On

the other hand, higher h leads to more sparse distribution

of normalized sliding windows in Euclidean space, thereby

pruning more sliding window pairs [15]. Therefore, at the

maximum ε and h, SigCO achieves the maximum pruning

power 0.817, which is around 50% better than DFTC and

LSHC.

TABLE I
PRUNING POWERS OF DFTC, LSHC AND SIGCO AS A FUNCTION OF

QUERY THRESHOLD ε AND SLIDING-WINDOW LENGTH h FOR REAL

DATASET.

����ε
h

200 400 600 800 1000

0.7: DFTC 0.421 0.436 0.423 0.454 0.427

LSHC 0.525 0.534 0.539 0.542 0.535

SigCO 0.625 0.644 0.659 0.642 0.705

0.8: DFTC 0.467 0.485 0.472 0.486 0.497

LSHC 0.535 0.544 0.551 0.548 0.535

SigCO 0.632 0.687 0.748 0.789 0.792

0.9: DFTC 0.561 0.542 0.533 0.572 0.542

LSHC 0.529 0.549 0.539 0.542 0.535

SigCO 0.676 0.718 0.748 0.788 0.817

IX. CONCLUSION

In this paper, we thoroughly investigated the problem of

mining statistically significant correlations from time series

using distributed real-time computation engine. Through ex-

tensive experimental evaluation against various baselines, we

have established the efficiency and effectiveness of proposed

SigCO approach.
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