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Abstract—Most applications deployed in a Cloud require a
high degree of availability. For the data layer, this means that
data have to be replicated either within a data center or across
Cloud data centers. While replication also allows to increase
the performance of applications if data is read as the load
can be distributed across replica sites, updates need special
coordination among the sites and may have an adverse effect on
the overall performance. The actual effects of data replication
depend on the replication protocol used. While ROWAA (read-
one-write-all-available) prefers read operations, quorum-based
replication protocols tend to prefer write operations as not all
replica sites need to be updated synchronously. In this paper,
we provide a detailed evaluation of ROWAA and quorum-based
replication protocols in an amazon AWS Cloud environment on
the basis of the TPC-C benchmark and different transaction
mixes. The evaluation results for single data center and multi
data center environments show that in general the influence of
transaction coordination significantly grows with the number
of update sites and a growing number of update transactions.
However, not all quorum-based protocols are well suited for
high update loads as they may create a hot spot that again
significantly impacts performance.

I. INTRODUCTION

Data is an essential part of any application deployed in
the Cloud [1]. Data replication is a means to increase data
availability by hosting the data at different replica sites. For
read-only transactions, replication can additionally increase
the performance as the load can be distributed between the
sites. However, there are fundamental trade-offs in the design
of distributed, thus replicated databases, that are captured by
the CAP-theorem [2], [3]. According to the CAP theorem,
any distributed database faces the Consistency, Availability
and Partition Tolerance tradeoff, and it is only possible to
jointly provide two out of these three of these properties —
even though the majority of applications would need all three
at the same time. Usually, tolerance to network partitions
must be considered [4]. For update-transactions in presence
of network partitions, this means that availability must be
sacrificed if strong consistency is a demand [4], [5]. As a
consequence of the CAP trade-offs, new relaxed consistency
models such as Causal Consistency [6] or Eventual Consis-
tency [7] have been defined that are compatible with the high
availability demands of applications. Relaxed consistency
models are the default models in most NoSQL databases [8],
[9], [10]. However, with weak consistency models, it is
difficult to reason about the execution semantics and the

execution guarantees of concurrent applications. This poses
a challenge to application developers as they need to com-
pensate for possible inconsistencies at application level [11],
[12]. In reaction to that, many NoSQL databases have newly
incorporated stronger consistency models and the possibility
to specify the desired consistency guarantees at operation
level. That allows clients to choose the optimal consistency
model and design their applications accordingly [8], [13],
[14].

The stronger the consistency model, the higher is the
performance penalty for applications. The intuition is that
for strong consistency models, such as Strong One-Copy
Serializability (1SR) [15]", 1SR [17], and Snapshot Isolation
(SI) [18], [19], [20] the database system has to ‘invest’
more resources in coordination compared to weaker models
such as eventual consistency [4], [6], [21]. In the latter
case, it is the application developer who has (if at all) to
guarantee consistency. This consistency vs. latency trade-off
is prevalent in both centralized and distributed databases and
has been well-known in databases such as Oracle, MySQL
as they have ever since included consistency models that
are weaker than serializability [5]. However, it is especially
eminent in distributed databases with geo-replication as in
those configurations the network communication becomes a
critical factor for the overall latency [5], [22].

In the past decade(s), different protocols have been deve-
loped that implement a certain consistency model and that
target the optimization of one or more parameters, such as
latency and/or throughput [23], [24], [25]. However, while
all of them are well suited for a certain application workload,
they are at the same time less suited for others.

The goal of this work is to asses the performance of
the 1SR protocol defined in [17] using different replication
protocols (RP) on the basis of the TPC-C benchmark [26].
For this, we have considered the following RPs: read-
one-write-all-available (ROWAA) and quorum protocols
(e.g., majority-based (MQ) [27] and a tree-based quorum
(TQ) [28]). The latter target the reduction of communication
overhead by reducing the number of sites involved in the
consensus required for providing 1SR consistency.

The contributions of this paper are twofold: First, we
provide a thorough analysis of the performance implications

lequivalent to linearizability for distributed shared memory [16].
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Figure 1: (a) fully replicated, (b) partitioned, (c) pure-partially replicated, and (d) hybrid-partially replicated configurations

of different RPs in a single data center environment for diffe-
rent transaction mixes on the basis of the TPC-C benchmark
using the real Cloud infrastructure. Second, we asses the
impact of geo-replication to the overall performance of the
replication protocols by deploying the replica sites in diffe-
rent data centers of the AWS infrastructure. Both evaluations
show how the number of sites needed for read and write
operations influence the overall transaction throughput. In
short, ROWAA outperforms quorum-based approaches for
read-dominated workloads as reads can be executed on a
single site. Quorum-based approaches, however, outperform
ROWAA if the transaction mix is dominated by update
transactions and the quorum construction strategy considers
the avoidance of hotspot-sites.

This paper is structured as follows: Section II presents the
system model. In Section III introduce replication protocols
for 1SR consistency. Section V discusses implementation
details of these protocols and provides in detail the results
of the evaluation. In Section VI we summarize related work
and Section VII concludes.

II. SYSTEM MODEL

Typical Cloud environments host applications in a three-
tier architecture consisting of a web tier, an application tier
in the middle, and a data layer hosting the database system
(DBS) which, in turn, consists of the actual database (DB)
and the database management system (DBMS). It is impor-
tant that all these layers guarantee the desired availability
and scalability level. This is particularly true for the DBS,
as otherwise the guarantees of the entire application may
degrade [29], [1], [30], [31], [32]. As a consequence, DBSs
are usually distributed and replicated across different data
centers [29], denoted as Distributed DBSs (DDBS).

In our system model, we assume flat transactions spawned
by the applications and a DDBS consisting of a set of sites
S = {s1, $2, 83, . . . }. We distinguish between logical objects
LOs with LO = {o01,09,...} and physical copies (PCs)
denoting copies of the LOs hosted at the sites. pc; ; denotes
a physical copy of logical object o; located at the site s;.

There are two types of operations, namely reads and
writes: OP = {r,w}. An action ac denotes an operation that
acts on a specific lo € LO, i.e., ac € OPx LO. A read r(0;)

returns the value of o; without any side-effects, whereas a
write w(o;) changes the value of o;. Let A denote the set
of all actions, then a transaction ¢ is a tuple with:

t= (A, <y)

A = {acy, acy, ..

acgtUterm, A CA b

where term € {c,a} is a termination action (commit or
abort) and <; C (A; x A;) denotes the precedence relation
defined on the transaction’s actions. The termination action
must be ordered after all other actions of a transaction ¢ with
regards to <y, i.e., ac; <; term for all ac; € A;.

A read-only transaction (t,.) —in contrast to an update (t,,)
transaction— does not include any write action.

As depicted in Figure 1, different mappings of LOs to
sites lead to different types of DDBSs: i.) Fully replicated
DB in which each LO is present at each site. ii.) Partially
replicated DB. Each o € LO is available at a subset of sites.
We distinguish between pure partial replication and hybrid
partial replication. In a pure partial replication, no site
contains all data objects. Hybrid partial replication means
that some sites contain copies of all data objects, whereas
others contain copies of only a subset of data objects. iii.)
Partitioned DBs in which LOs are available at exactly on
site, without replication. Compared to a partially replicated
system, in a partitioned system the sets of objects at the sites
are disjoint.

III. REPLICATION PROTOCOLS

Transaction execution in a DDBS needs to address two
challenges: First, the concurrent access of transactions to dis-
tributed data should be coordinated. This task is commonly
referred to as concurrency control (CC) and implemented
by a concurrency control protocol (CCP) [17], [33]. Second,
the actions on LOs must be mapped to actions on a set of
physical copies available at different sites (Figure 2). This
task is commonly referred to as replica control (RC) and
implemented by a replication protocol (RP) [33].

A. Classification of Replica Control Protocols

RPs can be classified according to where transactions are
executed and when the results of updates are propagated
to other replica sites in the system. The ‘where’ defines
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Figure 2: Action on LO mapped to physical copies

which site is allowed to execute a transaction [34]. In a
primary-copy approach there is a dedicated site that executes
transactions, whereas in the update-everywhere any site in
the system can execute transactions.

The ‘when’ defines the point in time in the transaction
lifecycle at which updates are propagated to other replica
sites in the system. RPs can be either eager or lazy. Eager
RPs update all replica sites in the scope of the running
transaction, i.e., before a response is returned to the client.
Lazy RPs postpone the update propagation to other replica
sites to dedicated refresh transactions and return results
immediately to the client.

A read r(o;) is mapped to R(o;) with R(o;) C
{r(pci1),r(pciz2),...,r(pcin)}, ie., depending on the re-
plication protocol used, either one or several physical copies
have to be read. For a write w(o;), eventually all physical
objects of o; have to be updated; however, depending on
the replication protocol used, within the update transaction,
the changes have to be applied either at a subset of the
physical copies (lazy replication) or at all physical copies
(eager replication).

B. Transaction Lifecycle

Depending on the desired consistency level, the system
configuration (e.g., number of sites, site configuration), etc.,
transactions will undergo the following phases during their
life-cycle:

1.) Processing: consists of the actions (reads, writes)
needed for the execution of the transaction. One of the
main tasks of this phase is the choice of the optimal site
for executing the transactions. Optimality can be defined in
terms of monetary cost, response time, etc.

2.) Concurrency control: the objective of this phase
is to guarantee the correct concurrent execution of tran-
sactions; usually, correctness means equivalence to a se-
rial (non-concurrent) execution. Example of CCPs include,
for instance, Two-Phase Locking (2PL), timestamp-based
protocols, etc. [35] that differ in the optimizations they
incorporate.

3.) Commit: consists the activities needed for making
the transaction results durable. Commit protocols differ in
the choice of site: commit only a subset of all sites, commit

locally at a site, or commit at all sites. If only a subset of
sites is committed in the context of a transaction, then the
commit strategy may incorporate a means of choosing the
optimal sites for commit.

4.) Refresh: consists of activities for pulling the recent
updates from one or more sites (in case not all sites are
jointly committed in the previous phase). It may incorporate
different strategies for choosing the optimal sites to pull
updates from.

5.) Synchronization: consists of activities for pushing
updates to other sites. The strategies usually incorporated
are related to choosing the optimal time for propagation.
Usually, updates of many transactions are batched instead
of sending updates of each transaction separately.

Depending on the actual protocols used, phases 4.) and/or
5.) may be superfluous.

IV. REPLICATION PROTOCOLS AND 1SR CONSISTENCY

One-Copy Serializability (1SR) requires that the effects of
an interleaved transaction execution on a replicated system
is equivalent to a serial execution on an one-copy (single-
copy) database. In [17], this is achieved by using Two-Phase
Locking (2PL) as a CCP and Two-Phase Commit (2PC) for
the eager propagation of updates. We have implemented the
1SR protocol with the goal of assessing the performance of
different RPs. The RPs differ in the number of sites that are
updated eagerly before a response is delivered to the client
leading to different flavors of the 1SR protocol.

In what follows we will shortly summarize the RPs that
are evaluated as part of this work.

A. ROWA and ROWAA

ROWA (read-one-write-all) follows the update everywhere
approach (i.e., it can be executed at any site) and updates
all available physical copies eagerly. Thus, a read can
be executed at a single site. ROWAA (read-one-write-all-
available) also provides update-everywhere eager replication
semantics. Again, reads can be executed at a single site. Ho-
wever, in contrast to ROWA, it provides a higher degree of
availability as updates are performed only at available sites.
As a consequence, ROWAA requires costly and complex
reconciliation algorithms once a failed site recovers.

B. Quorum Protocols

In quorum-based RPs, only a subset of replica sites is
updated eagerly. However, the subsets must be chosen in
such a way that any two writes or a write and read on the
same data object overlap. This is known as the intersection
property. For quorum-based RPs, this is crucial as it allows
a consistent decision taken by a subset of sites on behalf of
all sites [36], which, in turn, is necessary for guaranteeing
strong consistency as demanded by 1SR. It is well known
that quorum-based RPs have a lower overhead compared to
ROWA(A) for writes at the cost of increased overhead for
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Figure 3: Site Structure for a Log-Write Tree Quorum

reads [36]. Reads must access a subset of sites that form a
read quorum. Based on timestamps that are attached to the
updates, it is possible to determine the most recent version in
a read quorum, which is then also guaranteed to be globally
the most recent one due to the intersection property.

Different quorum RPs have been developed, such as
the majority quorum (MQ) [27], [37] or the tree quorum
(TQ) [28]. All have the intersection property in common,
but they differ on the costs generated for transaction execu-
tion. Additionally, they differ in the overhead generated for
organizing the sites in a certain logical structure, which is a
precondition for the intersection property in some protocols,
and for maintaining that structure [36].

Quorum RPs can be static or dynamic w.r.t. quorum
construction. In static protocols the quorums do not change
except in cases of site failures, whereas dynamic protocols
are able to adapt the quorums to application workload.

Majority Quorum (MQ): is a simple quorum RP, in
which each site has a nonnegative number of votes. The
quorums are then chosen in such a way so that they exceed
half of total votes [27], [37], [36]:

wq = L#votesJ 1
2 ()
#votes + 1
rg=——%—]

In the simplest form, each site has the same amount of
votes, all with the same weight. It follows that wq can be
created from a majority of sites, whereas an rq by half of
the sites if |S| is even, or majority of sites if |S| is odd.

Tree Quorum (TQ): it logically organizes the sites in a
tree structure [28] where each tree is defined by its degree d
(the maximum number of children of a node or site, resp.)
and its height h (the longest path from the root to a leaf
node). A tree quorum g = (I, w) for a tree is constructed as
follows: First, the root of the tree is selected and w children
are added to the root. Then, child nodes are recursively
added to each node until the depth [ is reached [38].

In order to guarantee the intersection property, quorums
must overlap both in height and degree. For a read quorum
rq = (l,,w,) and a write quorum wq = (l,,, w,) to overlap,

Transaction mix  Description

Readonly Consists of read-only transactions.

RW8020 Consists of 80% read-only and 20% update transactions.
RWS5050 Consists of 50% read-only and 50% update transactions.
Writeonly Consists of update transactions only.

Table I: Transaction Mixes

the following must hold: I, +1,, > h and w, + w, > d and
for two write quorums to overlap: 2-1,, > h and 2-w,, > d.

Log-Write Tree Quorum (LWTQ): it is a special in-
stance of the generic TQ protocol with r¢ = (1,d) and
wq = (h,1) [38]. Thus, in a failure-free environment,
reads access a single site, namely the root — and update
operations are executed on a path down the tree. As depicted
in Figure 3, a read quorum consists of the root node (s1).
In case s; fails, a rq consisting of the root’s children must
be found. In the example in Figure 3, the rq would then
consist of the sites so, s3 and sg. In general, if a node is not
available, then for a rq all its children must be accessed and
this increases the quorum size. Write quorums must access
one node at each level. In the tree depicted in Figure 3, the
wq may consist of the sites s;, s2, and s3.

V. IMPLEMENTATION AND EVALUATION

In [39], we have introduced PolarDBMS (Policy-based
and modular DBMS for the Cloud), our prototype system
that is based on a modular architecture. Each module pro-
vides certain data management functionality, such as a RP,
data consistency, atomic commitment, consensus protocols
and others, and for each module, different implementations
may exist (e.g., ROWA, ROWAA, quorums for RP). The
main objective of PolarDBMS is to automatically select and
dynamically adapt the modules and their implementations
to best provide the guarantees requested by Cloud users.
All RPs considered in this evaluation are implemented as
PolarDBMS modules, with each module providing a web
service interface.

A. Implementation of RPs

In the RPs evaluated as part of this work, transaction life-
cycles consist of three phases, namely a locking phase, a
processing phase, and a 2PC (commit coordination) phase.
Once a transaction has been submitted for execution at a
certain site, that site will become the coordinator. In the first
step, the site will acquire the necessary locks at a centrali-
zed LockManager as part of Strict Two-Phase Locking
(S2PL). Next, the processing is initiated which is dependent
on the RP. In ROWAA, transactions can be executed at
any site. In the quorum RPs, read-only transactions must
access all sites as defined by the read quorum (rq) in
order to determine the most recent values for the objects
to be read. This can be achieved by considering the commit
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timestamp of the objects. During the 2PC phase, the updates
will eagerly propagate their changes to other sites using a
log-based approach [33]. ROWAA will eagerly update all
available sites, whereas the quorum RPs will update those
sites that consist the write quorum (wq).

The quorums for MQ are constructed using a random stra-
tegy, in which each site constructs its quorum by randomly
selecting a set of sites so that conditions in Equation (2) are
satisfied. Clearly, using such a strategy, certain sites may be
included in too many quorums and thus become a bottleneck.
In our implementation, each site has the same amount of
votes with the same weight.

In LWTQ, the rq consists of the root site, whereas the wq
will randomly choose a path from the root down a leaf and
include the sites that consist that path.

B. Evaluation Set-Up

TPC-C is an On-Line Transaction Processing (OLTP)
benchmark, that models transactions of a wholesale sup-
plier [26] and consists of a mix of read-only and update
transactions. In our implementation of TPC-C, we have
defined different transaction mixes, which are depicted in
Table I. Transactions according to a specific mix are ge-
nerated by client terminals, which run separately from the
system under test (SUT). The client will start a number of
worker threads that will submit transactions to a specific
site for execution. The distribution of transactions to sites
is done in a round-robin manner. The workers will wait
for the response of their submitted transactions, report the
statistics to a StatisticsModule before submitting a
new transaction for execution. The TPC-C data is generated
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of transactions in ROWAA

with the following parameters: the number of warehouses
is set to 1, the number of districts to 10, the number of
customers to 3’000, and the number of stock entries to
100°000. Each object has the same probability of being
accessed, i.e., there are no hot-spots. Thus, the conflict rate
between transactions is mainly influenced by the r/w ratio
of the transaction mix.

We have conducted our evaluations in the AWS Cloud
Environment using c1.medium? as machine type. Each
evaluation is executed 10 times for each different RP and
configuration, and the results are averaged over the runs.

C. Single Data Center

The goal of this evaluation, which is similar to the size-
up test defined in [40], is to analyze the response time of
transactions with increasing throughput in order to depict
the overhead of the different transaction phases. All sites
are deployed in the eu-west region. We have measured a
round-trip time (RTT) between sites of up to 3 ms, thus
network overhead is negligible.

We have evaluated all RPs for different number of sites
(4, 8 and 16) by varying the read/write ratio as described in
Table I. The client will initially start with 10 workers, which
will continuously submit new transactions for execution,
after having received the response of previously submitted
transactions. During a period of 30 seconds the number of
workers is kept constant and afterwards increased by 10 until
the maximum number of 150 workers is reached.

Zhttp://aws.amazon.com/de/ec2/instance-types/
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Figure 5: Throughput of transactions in ROWAA

| ROWAA | LWTQ
R/W ratio | 4 8 16 | 4 8 16
RWS8020: total | 3.60 394 481 | 233 206 180
RWS8020: 2PL | 333 374 461 | 124 093 073
RWS050: total | 827 934 1144 | 374 314 262
RW5050: 2PL | 7.99 904 1114 | 250 182 136
Writeonly: total 14.21 16.64 2234 652 494 412
Writconly: 2PL | 1393 1624 2179 | 482 3.14 231

This table summarizes the average results over all runs, rounded to
two decimal places. As the proportion of update transaction increases
the 2PL overhead also increases and considerably impacts the overall
response time of transactions. Compared to ROWAA, the 2PL overhead
in LWTQ is lower as each transaction must be forwarded to the root, and
as the root gets overloaded the load at LockManager gets reduced.

Table II: Total response time and 2PL duration in [s] for ROWAA and LWTQ

Figure 4 depicts the average response time of transactions
in ROWAA for varying read/write ratio and site numbers
as the load increases. Figure 5 shows the corresponding
transaction throughput.

The response time of LWTQ and MQ relative to ROWAA
is depicted in Figures 6 to 9 and the throughput in Figu-
res 10, 11 and 13. Note that the y-axis is log-scaled and
that the ROWAA response time serves as baseline.

Readonly mix: ROWAA performs best for the read-
only mix as transactions can be executed at any site and it
can thus fully exploit the capacity of all sites in the system.
As depicted in Figures 4 and 5, the ROWAA performance
improves as the number of sites increases.

LWTQ and MQ have a higher response times and lower
throughput compared to ROWAA (see Figure 6). In LWTQ,
each read transaction must be executed by the root in order
to guarantee 1SR consistency and this leads to the root
becoming the bottleneck. In MQ, each read transaction must
read from the rq in order to determine the most recent values
of object and this leads to an increase of the response time
and decrease of throughput compared to ROWAA. Note that
the requests sent to the members of the rq in MQ is done
using a multicast. Thus, the slowest site in the rq determines
the additional read overhead.

Read/write mix: In ROWAA the higher the proportion
of update transactions in the mix, the higher is the 2PL
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overhead as the conflict rate between transactions increases
(Table II). The processing and 2PC overhead are rather
low compared to the 2PL overhead. Thus, the conflict rate,
which is influenced by the ratio of update transactions and
the transaction throughput, is the limiting factor for the
performance in ROWAA. Notice that, since we use round-
robin distribution of transaction to sites, the higher the
number of workers and sites, the higher is the number of
concurrent transactions and thus the conflict rate.

LWTQ outperforms ROWAA for transaction mixes that
contain update transactions (Figures 7 to 9). However, as
Table II shows, this is related to the lower concurrency
degree at the LockManager. As transactions need to be
forwarded from the sites to the root, the requests at the
LockManager arrive with a delay compared to ROWAA.

MQ performed worst of all RPs. In our evaluations, we
have constructed the quorums using a random strategy,

in which each site randomly chooses other sites for its
quorum. This may lead to some sites being more frequently
included in write quorums and thus become a bottleneck
(see Figure 15 and Figure 14). 2PC duration increases the
overall transaction duration which, in turn, increases the 2PL
overhead.

In summary, 2PL considerably impacts the overall perfor-
mance of transactions in all evaluated RPs, and accounts
in some cases for up to 98% of the overall overhead.
The application workload, i.e., transaction mix and the
corresponding access patterns of transactions, is a critical
factor that influences the cost of 2PL. However, one cannot
influence the application workload. So, it is important to
invest in clever strategies with the goal of reducing 2PC
and processing overhead.

As we have seen with MQ, it is important to avoid
situations in which some sites become a hotspot by including
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them more frequently in quorums compared to others. By
doing that, one can impact both the 2PC and processing
overhead and in turn the lock duration.

D. Multi Data Center

This experiment is similar to the Single Data Center
with the difference that now the network delay at two
sites is increased with the goal of assessing the impact of
network RTT to the overall performance of the RPs. We
used the netem?® tool to increase the delay as follows.
The delay of the first site was increased by 85ms and
that of the second site to 175ms. The values correspond
to the half of the distance from the eu-west—-1 datacenter
to us—-west-1 (170ms) and ap—-southeast—-2 (350ms)
datacenters [22]. We halved the distance in order to cope
with the additional overhead generated by the entire web

3www.linuxfoundation.org/collaborate/workgroups/networking/netem

service stack. However, it is still 20 - 40 times higher
compared to the RTT inside the same datacenter. The client
submits transactions only to the sites in the eu-west-1
datacenter, i.e., to the closest sites*, as the goal is to analyze
the impact of the increased RTT to the 2PC overhead
and then to the overall performance. In LWTQ, the root
is located in the eu-west-1 and the write quorums are
chosen randomly on a per transaction basis, which means
that for some transactions the quorums will consist of sites
located in the eu-west-1 datacenter. Other transactions
however may pick a quorum that includes one of the distant
sites located in the us-west-1 or ap-southeast-2
datacenter. Clearly, as only two sites are located in remote
datacenters, the more sites available in the system, the lower
the probability of accessing a distant site as part of a wq.

4This corresponds to how usually load balancing is done in Multi Data
Centers [41].
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As depicted in the evaluation results in Table III, ROWAA
and MQ show a similar performance behavior. One can ob-
serve that the increase of number of sites in the eu-west -1
data center does not impact the 2PC overhead in ROWAA
and MQ as now the geographical distance (increased RTT)
of the sites that reside outside the eu-west -1 data center
are the limiting factor to the performance. This additional
2PC overhead has a cascading effect to 2PL and subse-
quently to the overall performance. As locks need to be kept
longer compared to the Single Data Center case, conflicts
between the transactions are more eminent.

LWTQ achieves lower throughput compared to ROWAA
and MQ mainly due to the necessity of forwarding tran-
sactions to the root node, which becomes a bottleneck. In
Table III one can observe that with an increasing number
of sites, the 2PC overhead decreases as the probability of
including one of the distant sites in the wq decreases, which
leads to a lower 2PL/total overhead. Notice however that

RP 4 8 16

ROWAA  0.1331  0.1713  0.2971
LWTQ 0.1118  0.1148  0.1180
MQ 03975  0.7451 1.6340

2PC overhead (rounded to four decimal
places) for MQ is between 3-5 times hig-
her compared to ROWAA, and 3-14 times
compared to LWTQ.
Figure 15: 2PC overhead in [s] for different RPs

(writeonly)

with an increase of the update ratio in the transaction mix,
it is more likely that a distant site is involved in a commit.
This explains the higher 2PC overhead for the writeonly mix
in LWTQ compared to the 50% — 50% mix (Table IIT).

E. Lessons Learned

In summary, the number of sites is not the determining
factor for the overall performance of the RPs, but rather
the properties of the sites, such as their load and the RTT
between sites.

In Single Data Centers, in which the RTT between the
sites is negligible, 2PL is the limiting factor to performance.
For transaction mixes containing update transactions, 2PL
overhead accounts for 40% — 98% of the total overhead and
this is the best case as there are no hotspot-objects. Hotspots
would make things only worse. If, however, 2PL is manda-
tory in a certain application, then one can invest in reducing
the overhead for the processing phase by incorporating load



| ROWAA MQ | LWTQ
R/W ratio | 4 8 16 4 8 16 | 4 8 16
RWS5050: total 216.25 23434 22423 217.46 197.73 213.86 70.79 34.00 5.88
RW5050: 2PL 211.91 229.76 219.84 202.37 191.16 207.66 65.60 30.80 3.56
RWS5050: 2PC 407 441 423 5.67 404 421 1.46 0.79 0.19
RWS050: #Trx | 1'223/2'533  1°231/2°370  1'231/ 29497 | 848/ 17722  1'120/2'325 1’176 /2329 | 659/ 1’865 296 / 1'496 541 /2212
Writeonly: total 451.48 455.56 458.70 43415 42007 42321 246.92 178.95 20.18
Writeonly: 2PL 442.90 446.86 449.85 425.90 412,08 414.87 23547 165.14 15.10
Writconly: 2PC 842 8.49 8.50 8.06 781 7.83 458 411 0.96
Writconly: #Trx | 1'244 / 1244 1244/ 1’244 1244/ 1244 | 1257/ 1'257 1325/ 1325 1’247/ 1247 | 698 /698  304/304 496/ 496

Average results over all runs, rounded to two decimal places. Due to space limitations,

interesting results as they generate more 2PC overhead.

Table III: Total response time, 2PL & 2PC duration in [s], no.

balancing strategies, as this would shorten the lifetime of
transactions and thus reduce the conflict rate between them
[42].

In Multi Data Centers, the quorum construction strategy
is crucial in order to avoid bottlenecks. As we have seen in
case of MQ (Figure 14), if certain sites are included more
frequently in the quorums they will become overloaded and
thus degrade the overall performance. The same applies for
LWTQ, which needs to consider the site properties when
constructing the tree and the resulting quorums. Compared
to the Single Data Centers, it is necessary to jointly address
both the load and the RTT when constructing the quorums.
As depicted in Table III, 2PC costs are doubled by increasing
the RTT of some sites by a factor of 20 to 40. The increased
2PC overhead leads to an increase of the transaction lifetime
and this considerably impacts the conflict rate and by that
the overall performance (Figure 16).

In the context of the Cloud, users are charged for each
resource in a fine-grained way. Thus, actions (e.g., 2PC
messages) consuming those resources generate a precisely
defined monetary cost. In addition to performance, applica-
tion providers should also consider the monetary cost when
choosing the RP. For example, each 2PC message generates
a cost (due to bandwidth consumption). The overall 2PC cost
per transaction is dependent of the number of sites involved
in the commit, which is dependent on the RP.

VI. RELATED WORK

Different replication protocols have been developed with
the goal of reducing the overhead for transactions when
strong consistency is required [33], [36], [28], [27], [43].
However, currently there is a lack of work that assesses the
performance of different replication protocols using a real
implementation on the basis of a concrete benchmark.

In [44], [45], [46], the performance of replication proto-
cols are characterized on the basis of an asymptotic analysis
and considered as being representative for the overall system
performance.

we have only depicted the results for rw5050 and writeonly, which are also the most

of executed write transactions for ROWAA, MQ & LWTQ

The work in [47] analyzes the performance of different
replication protocols and considers the response time and
the ratio of committed transactions to the total number of
transactions.

[36] provides an analysis of the scalability and availability
of different replication protocols by defining the upper bound
of what can be achieved in the best case. However, as impor-
tant aspect, the impact of 2PL on the overall performance,
is neglected.

In contrast to existing work, we have assessed the perfor-
mance of different replication protocols by considering all
components (phases) of transactions and also their impact on
the overall performance on the basis of the widely accepted
TPC-C benchmark and by also considering geo-replicated
databases in the Cloud.

VII. CONCLUSION AND OUTLOOK

In this paper, we have provided an in-depth analysis of the
performance of different replication protocols on the basis of
the TPC-C benchmark using the AWS Cloud infrastructure.
Our evaluations are run in two configurations, a single and
a multi-data centers environment, and analyze the overhead
generated by the different transaction phases. Compared to
existing work, our results are based on a concrete benchmark
and provide a more detailed view on where exactly the

2 =
R 0.9702‘

o

2pC [s]

Figure 16: Correlation between 2PC and 2PL



overhead is generated. As part of a future work, we plan to
complement our evaluations by considering additional RPs,
and also by considering additional parameters, such as the
capacity of sites and the monetary costs that incur in a Cloud
due to the use of the resources needed by the RPs.
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