
Lawrence Berkeley National Laboratory
LBL Publications

Title
Matrix Factorizations at Scale: a Comparison of Scientific Data Analytics in Spark and C+MPI 
Using Three Case Studies:

Permalink
https://escholarship.org/uc/item/13q8t1hg

Authors
Gittens, Alex
Devarakonda, Aditya
Racah, Evan
et al.

Publication Date
2016-05-12

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/13q8t1hg
https://escholarship.org/uc/item/13q8t1hg#author
https://escholarship.org
http://www.cdlib.org/


Matrix Factorizations at Scale: a Comparison of Scientific Data Analytics in Spark
and C+MPI Using Three Case Studies

Alex Gittens∗, Aditya Devarakonda†, Evan Racah‡, Michael Ringenburg§, Lisa Gerhardt‡,
Jey Kottalam†, Jialin Liu‡, Kristyn Maschhoff§, Shane Canon‡, Jatin Chhugani¶, Pramod Sharma§,

Jiyan Yang‖, James Demmel∗∗, Jim Harrell§, Venkat Krishnamurthy§, Michael W. Mahoney∗ and Prabhat‡
∗ICSI and Department of Statistics, UC Berkeley

†EECS, UC Berkeley
‡NERSC, Lawrence Berkeley National Laboratory

§Cray, Inc.
¶Hiperform Consulting LLC
‖ICME, Stanford University

∗∗EECS and Math, UC Berkeley

Abstract—We explore the trade-offs of performing linear
algebra using Apache Spark, compared to traditional C and
MPI implementations on HPC platforms. Spark is designed for
data analytics on cluster computing platforms with access to
local disks and is optimized for data-parallel tasks. We examine
three widely-used and important matrix factorizations: NMF
(for physical plausability), PCA (for its ubiquity) and CX
(for data interpretability). We apply these methods to 1.6TB
particle physics, 2.2TB and 16TB climate modeling and 1.1TB
bioimaging data. The data matrices are tall-and-skinny which
enable the algorithms to map conveniently into Spark’s data-
parallel model. We perform scaling experiments on up to 1600
Cray XC40 nodes, describe the sources of slowdowns, and
provide tuning guidance to obtain high performance.

Keywords-matrix factorization; linear algebra; Apache
Spark; PCA; NMF

I. INTRODUCTION

Modern experimental devices and scientific simulations
produce massive amounts of complex data: in high energy
physics, the LHC project produces PBs of data; the cli-
mate science community relies upon access to the CMIP-
5 archive, which is several PBs in size; the multi-modal
imagers used in biosciences can acquire 100GBs-TBs of
data. Several scientific domains are currently rate-limited by
access to productive and performant data analytics tools that
operate on data of these sizes.

We have seen recent substantial progress in the
adoption of Big Data software frameworks such as
Hadoop/MapReduce [1] and Spark [2]. Ideally, the scientific
data analysis and high performance computing (HPC) com-
munities would leverage the momentum behind Hadoop and
Spark. Unfortunately, these frameworks have been developed
for industrial applications and commodity hardware, and the
performance of such frameworks at scale on conventional
HPC hardware has not been investigated extensively. For
matrix factorizations in particular, there is a gap between the
performance of well-established libraries (SCALAPACK,

LAPACK, BLAS, PLASMA, MAGMA, etc. [3, 4]) and
the tools available in Spark. Our work takes on the important
task of testing nontrivial linear algebra and matrix factoriza-
tion computations in Spark using large-scale scientific data
analysis applications. We compare and contrast its perfor-
mance with C+MPI implementations on HPC hardware. The
main contributions of this paper are as follows:

• We develop parallel versions of three leading matrix
factorizations (PCA, NMF, CX) in Spark and C+MPI;
and we apply them to several TB-sized scientific data
sets. To ensure that our comparison of Spark to MPI is
fair, we implement the same algorithms in Spark and
MPI, drawing on a common set of numerical linear
algebra libaries for which Spark bindings are readily
available (BLAS, LAPACK, and ARPACK).

• We conduct strong scaling tests on a XC40 system, and
we test the scaling of Spark on up to 1600 nodes.

• We characterize the performance gap between Spark
and C+MPI for matrix factorizations: by identifying the
causes of the slow-downs in algorithms that exhibit dif-
ferent bottlenecks (e.g. I/O time versus synchronization
overheads), we provide a clear indication of the issues
that one encounters attempting to do serious distributed
linear algebra using Spark.

• We comment on opportunities for future work in Spark
to better address large scale scientific data analytics on
HPC platforms.

II. SCIENCE DRIVERS AND DATA SETS

In this study, we choose leading data sets from experimen-
tal, observational, and simulation sources, and we identify
associated data analytics challenges. These data sets are
summarized in Table I.

The Daya Bay Neutrino Experiment: The Daya Bay
Neutrino Experiment (Figure 1a) detects antineutrinos pro-
duced by the Ling Ao and Daya Bay nuclear power plants



(a) Daya Bay Neutrino Experiment (b) CAM5 Simulation (c) Mass-Spec Imaging

Figure 1: Sources of various data sets used in this study

Table I: Summary of the matrices used in our study

Science Area Format/Files Dimensions Size

MSI Parquet/2880 8, 258, 911× 131, 048 1.1TB
Daya Bay HDF5/1 1, 099, 413, 914× 192 1.6TB
Ocean HDF5/1 6, 349, 676× 46, 715 2.2TB
Atmosphere HDF5/1 26, 542, 080× 81, 600 16TB

and uses them to measure theta-13, a fundamental constant
that helps describe the flavor oscillation of neutrinos. We
computed an NMF factorization on a sparse 1.6TB matrix
consisting of measurements from Daya Bay’s photodetector
arrays. The analytics problem that we hope to tackle with
NMF is that of finding characteristic patterns or signatures
corresponding to various particle types.

Climate Science: Climate scientists rely on HPC sim-
ulations to understand past, present and future climate
regimes. Vast amounts of 3D data (corresponding to at-
mospheric and ocean processes) are readily available in
the community. The most widely used tool for extracting
important patterns from the measurements of atmospheric
and oceanic variables is the Empirical Orthogonal Function
(EOF) technique. Mathematically, EOFs are exactly PCA
decompositions. Traditionally, the lack of scalable analyt-
ics methods and tools has prevented the community from
analyzing full 3D fields; typical analysis is performed only
on 2D spatial averages or slices. We compute the EOFs of
a dense 2.2TB matrix comprising global ocean temperature
data collected over 30 years [5], and of a dense 16TB matrix
comprising atmospheric humidity measurements collected
over 28 years [6] (Figure 1b). A better understanding of the
dynamics of large-scale modes of variability in the ocean
and atmosphere may be extracted from the 3D EOFs we
compute.

Mass-Spectrometry Imaging: Mass spectrometry mea-
sures ionic spectra derived from the molecules present in a
biological sample. We analyze one of the largest (1TB-sized)
mass-spec imaging data sets in the field, obtained from a
sample of a plant from the Peltatum species (Figure 1c).
The MSI measurements are formed into a sparse matrix the

sheer size of which has previously made complex analytics
intractable. CX decompositions select a small numbers of
columns (corresponding to ions) in the original data that
reliably explain a large portion of the variation in the data.

III. METHODS

Given an m × n data matrix A, low-rank matrix factor-
ization methods aim to find two or more smaller matrices
Y and Z such that

A
m×n

≈ Y
m×k
× Z

k×n
.

Depending on the particular application, various low-rank
factorization techniques are of interest. Popular choices
include the singular value decomposition [7], principal com-
ponent analysis [8], rank-revealing QR factorization [9],
nonnegative matrix factorization (NMF) [10], and CX/CUR
decompositions [11]. In this work, we consider the PCA
decomposition, due to its ubiquity, as well as the NMF
and CX/CUR decompositions, due to their usefulness in
scalable and interpretable data analysis. In the remainder
of the section, we briefly describe these decompositions and
the algorithms we used in our implementations, and we also
discuss related implementations. Throughout, we assume the
data matrix A has size m×n and can be well approximated
by a rank r approximation, with r � n � m; this “tall-
skinny”, highly rectangular setting is common in practice.

Prior Work: The body of theoretical and practical
work surrounding distributed low-rank matrix factorization
is large and continuously growing. The HPC community
has produced many high quality packages specifically for
computing partial SVDs of large matrices: PROPACK [12],
BLOPEX [13], and ANASAZI [14], among others. We refer
the interested reader to [15] for a well-written survey. As
far as we are aware, there are no published HPC codes for
computing CX decompositions, but several HPC codes exist
for NMF factorization [16].

The machine learning community has produced many
packages for computing a variety of low-rank decompo-
sitions, including NMF and PCA, typically using either
an alternating least squares (ALS) or a stochastic gradient



Algorithm 1 PCA Algorithm

Require: A ∈ Rm×n, rank parameter k ≤ rank(A).
Ensure: UkΣkV

T
k = PCA(A, k).

1: Let (Vk, ) = IRAM(MULTIPLYGRAMIAN(A, ·), k).
2: Let Y = MULTIPLY(A, Vk).
3: Compute (Uk,Σk, ) = SVD(Y ).

descent approach [17, 18, 19]. We mention a few of the
high-visibility efforts in this space. The earlier work [20]
developed and studied a distributed implementation of the
NMF for general matrices under the Hadoop framework,
while [21] introduced a scalable NMF algorithm that is par-
ticularly efficient when applied to tall-and-skinny matrices.
We implemented a variant of the latter algorithm in Spark,
as our data matrices are tall-and-skinny. The widely used
MLLIB library, packaged with Spark itself, provides imple-
mentations of basic linear algebra routines [22]; we note
that the PCA algorithm implemented in MLLIB is almost
identical to our concurrently developed implementation. The
Sparkler system introduces a memory abstraction to the
Spark framework which allows for increased efficiency in
computing low-rank factorizations via distributed SGD [23],
but such factorizations are not appropriate for scientific
applications which require high precision.

Our contribution is the provision of, for the first time,
a detailed investigation of the scalability of three low-
rank factorizations—PCA, NMF, and CX—using the linear
algebra tools and bindings provided in Spark’s baseline
MLLIB [22] and ML-MATRIX [24] libraries.

Principal Components Analysis: Throughout, we use
the term principal component analysis (PCA) of a centered
matrix A (i.e., one whose columns are zero-mean) to refer to
the rank-k approximation given by Ak = UkΣkV

T
k , where

the columns of Uk and Vk are the top k left and right
singular vectors of A, respectively, and Σk is a diagonal
matrix containing the corresponding top k singular values.

Direct algorithms for computing the PCA decomposition
scale as O(mn2), so are not feasible for the scale of the
problems we consider. Instead, we use the iterative algorithm
presented in Algorithm 1: a series of matrix-vector products
against ATA (MULTIPLYGRAMIAN) are used to extract
Vk by applying the implicitly restarted Arnoldi method
(IRAM) [25], then the remaining factors Uk and Σk are
computed by taking the SVD of AVk. Here QR and SVD
compute the “thin” versions of the QR and SVD decompo-
sitions [7]. (Algorithm 1 calls MULTIPLYGRAMIAN, which
is summarized in Algorithm 2).

Nonnegative Matrix Factorization: Nonnegative matrix
factorizations (NMFs) provide interpretable low-rank matrix
decompositions when the columns of A are nonnegative and
can be viewed as additive superpositions of a small num-
ber of positive factors [26]. NMF has found applications,

Algorithm 2 MULTIPLYGRAMIAN Algorithm

Require: A ∈ Rm×n, B ∈ Rn×k.
Ensure: X = ATAB.

1: Initialize X = 0.
2: for each row a in A do
3: X ← X + aaTB.
4: end for

Algorithm 3 NMF Algorithm

Require: A ∈ Rm×n with A ≥ 0, rank parameter k ≤
rank(A).

Ensure: WH ≈ A with W,H ≥ 0
1: Let ( , R) = TSQR(A).
2: Let (K, H) = XRAY(R, k).
3: Let W = A(:,K).

among other places, in medical imaging [27], facial recog-
nition [28], chemometrics [29], hyperspectral imaging [30],
and astronomy [31].

To find an NMF decomposition, we seek matrices W ∈
Rm×k and H ∈ Rk×n such that the approximation error
‖A − WH‖F is small and W and H are entrywise non-
negative. We adopt the one-pass algorithm of [21] to solve
this problem. This approach assumes that W can be formed
by selecting columns from A. In this setting, the columns
of A constituting W as well as the corresponding H can
be computed directly from the (much smaller) R factor in
a thin QR factorization of A. More details are given in
Algorithm 3: in step 1, a QR factorization is used to compute
the R factor of A; in step 2, the XRAY algorithm of [32] is
applied to R to simultaneously compute H and the column
indices K of W in A. Finally, W can be explicitly computed
once K is known.

CX decompositions: CX decompositions are low-rank
matrix decompositions that are expressed in terms of a small
number of actual columns of A. They have been used in
scientific applications where interpretability is paramount,
including genetics [33], astronomy [34], and mass spectrom-
etry imaging [35].

To find a CX decomposition, we seek matrices C ∈
Rm×k and X ∈ Rk×n such that the approximation error
‖A − CX‖F is small and C contains k actual columns of
A. The randomized algorithm of [36] generates a C with
low approximation error. Details are given in Algorithm 4:
the first nine steps of the algorithm approximate Vk, and
the next step computes measures of the extent to which the
columns of A influenced Vk; the remaining two steps uses
these importance measures to sample from the columns of
A to form C. The matrix X is implicitly determined, and
for our purposes does not need to be computed.



Algorithm 4 CX Algorithm

Require: A ∈ Rm×n, number of power iterations q ≥ 1,
target rank k > 0, slack p ≥ 0, and let ` = k + p.

Ensure: C.
1: Initialize B ∈ Rn×` by sampling Bij ∼ N (0, 1).
2: for q times do
3: B ← MULTIPLYGRAMIAN(A,B)
4: (B, )← QR(B)
5: end for
6: Let Q be the first k columns of B.
7: Let Y = MULTIPLY(A,Q).
8: Compute (U,Σ, Ṽ T ) = SVD(Y ).
9: Let V = QṼ .

10: Let `i =
∑k

j=1 v
2
ij for i = 1, . . . , n.

11: Define pi = `i/
∑d

j=1 `j for i = 1, . . . , n.
12: Randomly sample ` columns from A in i.i.d. trials, using

the importance sampling distribution {pi}ni=1 .

IV. IMPLEMENTATION

Spark is a parallel computing framework, built on the
JVM, that adheres to the data parallelism model. A Spark
cluster is composed of a driver process and a set of executor
processes. The driver schedules and manages the work,
which is carried out by the executors. The basic unit of
work in Spark is called a task. A single executor has several
slots for running tasks (by default, each core of an executor
is mapped to one task) and runs several concurrent tasks
in the course of calculations. Spark’s primitive datatype is
the resilient distributed data set (RDD), a distributed array
that is partitioned across the executors. The user-defined
code that is to be run on the Spark cluster is called an
application. When an application is submitted to the cluster,
the driver analyses its computation graph and breaks it up
into jobs. Each job represents an action on the data set, such
as counting the number of entries, returning data set entries,
or saving a data set to a file. Jobs are further broken down
into stages, which are collections of tasks that execute the
same code in parallel on a different subset of data. Each
task operates on one partition of the RDD. Communication
occurs only between stages, and takes the form of a shuffle,
where all nodes communicate with each other, or a collect,
where all nodes send data to the driver.

Implementing Matrix Factorizations in Spark: All three
matrix factorizations store the matrices in a row-partitioned
format. This enables us to use data parallel algorithms and
match Spark’s data parallel model.

The MULTIPLYGRAMIAN algorithm is the computational
core of the PCA and CX algorithms. This algorithm is
applied efficiently in a distributed fashion by observing that
if the i-th executor stores the block of the rows of A denoted
by A(i), then ATAB =

∑`
i=1 A

T
(i)A(i)B. Thus MULTI-

PLYGRAMIAN requires only one round of communication.

The local linear algebra primitives QR and SVD needed for
PCA and CX are computed using the LAPACK bindings of
the Breeze numerical linear algebra library. The NETLIB-
JAVA binding of the ARPACK library supplies the IRAM
primitive required by the PCA algorithm.

The NMF algorithm has as its core the tall-skinny QR
factorization, which is computed using a tree reduction
over the row-block partitioned A. We used the TSQR
implementation available in the ML-MATRIX package. To
implement the XRAY algorithm, we use the MLLIB non-
negative least squares solver.

Implementing Matrix Factorizations in C+MPI: NMF,
PCA and CX require linear algebra kernels that are available
in widely-used libraries such as Intel MKL, Cray LibSci, and
arpack-ng. We use these three libraries in our implemen-
tations of the matrix factorizations. The data matrices are
represented as 1D arrays of double-precision floating point
numbers and are partitioned across multiple nodes using a
block row partitioned layout. The 1D layout enables us to
use matrix-vector products and TSQR as our main compu-
tational kernels. We use MPI collectives for inter-processor
communication and perform independent I/O using the Cray
HDF5 parallel I/O library.

V. EXPERIMENTAL SETUP

All performance tests reported in this paper were con-
ducted on the Cori system at NERSC. Cori Phase I is a
Cray XC40 system with 1632 dual-socket compute nodes.
Each node consists of two 2.3GHz 16-core Haswell pro-
cessors and 128GB of DRAM. The Cray Aries high-speed
interconnect is configured in a “Dragonfly’ topology. We use
a Lustre scratch filesystem with 27PB of storage, and over
700 GB/s peak I/O performance.

We use Spark’s Standalone Cluster Manager to run the
Spark cluster in an encapsulated Shifter image. Shifter is
a framework that delivers docker-like functionality to HPC
[37]. Shifter allows users with a complicated software stack
to easily install them in the environment of their choosing. It
also offers considerable performance improvements because
metadata operations can be more efficiently cached com-
pared to a parallel file system and users can customize the
shared library cache (ldconfig) settings to optimize access
to their analysis libraries.

H5Spark: Loading HDF5 data natively into Spark:
The Daya Bay and climate data sets are stored in HDF5.
We used the H5Spark [38] package to read this data into
an RDD. H5Spark partially relies on the Lustre file system
striping to achieve high I/O bandwidth. We chose a Lustre
configuration optimal for each data set: we stored the Daya
Bay data on 72 OSTs and the climate data sets on 140 OSTs,
both with striping size of 1MB.

Spark Tuning Parameters: We followed general Spark
guidelines for Spark configuration values. The driver and
executor memory were both set to 100 GB, a value chosen



to maximize the memory available for data caching and
shuffling while still leaving a buffer to hedge against running
the nodes out of memory. Generally we found that fetching
an RDD from another node was detrimental to performance,
so we turned off speculation (a function that restarts tasks
on other nodes if it looks like the task is taking longer
than average). We also set the spark locality wait to two
minutes, this ensures that the driver will wait at least two
minutes before scheduling a task on a node that doesn’t
have the task’s RDD. The total number of spark cores was
chosen such that there was a one-to-one correspondence
between spark cores and physical cores on each node (with
the exception of the 50-node NMF run which used a factor
of two more partitions because it ran into hash table size
issues). We used the KryoSerializer for deserialization of
data. We compiled Spark to use multi-threaded OpenBLAS
for PCA.

C+MPI Tuning Parameters: The NMF algorithm uses
the Tall-Skinny QR (TSQR) [39, 40] factorization imple-
mented as part of the Communication-Avoiding Dense Ma-
trix Computations (CANDMC) library [41] which links to
Intel MKL for optimized BLAS routines using the For-
tran interface and ensured that loops were auto-vectorized
when possible. We explored multi-threading options with
OPENMP but found that it did not significantly improve
performance. Applying TSQR on the Daya Bay data set
results in a 192 × 192 upper-triangular matrix. Due to
the small size we utilized a sequential non-negative least
squares solver by Lawson and Hanson [42] in the XRAY
algorithm. PCA requires EVD, SVD, matrix-vector products,
and matrix-matrix products. We use arpack-ng [43] for the
SVD and link to single-threaded Cray LibSci for optimized
BLAS routines using the C interface. All experiments were
conducted using a flat-MPI configuration with one MPI
process per physical core and disabled TurboBoost.

Spark Overheads: When reporting the overheads due to
Spark’s communication and synchronization costs, we group
them into the following bins:

• Task Start Delay: the time between the stage start and
when the driver sends the task to an executor.

• Scheduler Delay: the sum of the time between when
the task is sent to the executor and when it starts
deserializing on the executor and the time between
the completion of the serialization of the result of the
task and the driver’s reception of the task completion
message.

• Task Overhead Time: the sum of the fetch wait times,
executor deserialize times, result serialization times,
and shuffle write times.

• Time Waiting Until Stage End: the time spent waiting
on the final task in the stage to end.

VI. RESULTS

A. NMF applied to the Daya Bay matrix

The separable NMF algorithm we implemented fits nicely
into a data parallel programming model. After the initial dis-
tributed TSQR the remainder of the algorithm is computed
serially on the driver.

Figure 2: Running time breakdown when using NMF to
compute a rank 10 approximation to the 1.6TB Daya Bay
matrix at node counts of 50, 100, and 300. Each bin depicts
the sum, over all stages, of the time spent in that bin by the
average task within a stage. The 50 node run uses double
the number of partitions as physical cores because due to
out-of-memory errors using fewer partitions– this results in
a large task start delay.

C+MPI vs. Spark: The TSQR algorithm used performs
a single round of communication using a flat binary tree.
Because there are few columns, the NMF algorithm is en-
tirely I/O-bound. Figure 2 gives the running time breakdown
when computing rank 10 approximations using the MPI
implementation of NMF on 50 nodes, 100 nodes, and 300
nodes. Each bin represents the sum, over all stages, of the
time spent in that bin by the average task within a stage.

The running time for NMF is overwhelmingly dominated
by reading the input. In comparison, TSQR and XRAY
have negligible running times. Figure 2 shows that the
HDF5 read time does not scale linearly with the number
of nodes and is the primary source of inefficiency – this
is due to saturating the system bandwidth for 72 OSTs.
XRAY, which is computed on the driver, is a sequential
bottleneck and costs 100ms at all node counts. TSQR only
improves by tens of milliseconds, costing 501ms, 419ms,
and 378ms on 50, 100, and 300 nodes, respectively. This
poor scaling can be attributed to hitting a communication
bottleneck. Forming the TSQR binary tree is expensive for
small matrices, especially using flat MPI. We did not tune



our TSQR reduction tree shapes or consider other algorithms
since TSQR is not the limiting factor to scalabilty. These
results illustrate the importance of I/O scalability when
performing terabyte-scale data parallel analytics on a high-
performance architecture using MPI.

Figure 2 also illustrates the running time breakdown for
the Spark implementation of NMF on 50, 100, and 300
nodes. Unlike the MPI implementation, the Spark implemen-
tation incurs significant overheads due to task scheduling,
task start delays, and idle time caused by Spark stragglers.
For the 50 node run we configured Spark to use double
the number of partitions as physical cores because we
encountered out-of-memory errors using fewer partitions—
this incurs a task start delay overhead because some only half
of the total tasks can be executed concurrently. The number
of partitions was not doubled for the 100 and 300 node
runs, so the task start delay overhead is much smaller for
these runs. Similar to the MPI results, most of the running
time is spent in I/O and Spark overheads, with a small
amount of time spent in TSQR and XRAY. Figure 2 shows
that the Spark implementation exhibits good strong scaling
behavior up to 300 nodes. Although the NMF algorithm used
is entirely data parallel and suitable for Spark, we observed
a 4×, 4.6×, and 2.3× performance gap on 50, 100, and
300 nodes, respectively, between Spark and MPI. There is
some disparity between the TSQR costs but this can be
attributed to the lack of granularity in our Spark profiling,
in particular the communication time due to Spark’s lazy
evaluation. Therefore, it is likely that the communication
overhead is included in the other overhead costs whereas
the MPI algorithm reports the combined communication and
computation time.

Figure 3 shows the parallel efficiencies of the MPI and
Spark implementations of NMF, normalized to the 50 node
running time of the respective parallel frameworks. MPI
NMF is completely dominated by I/O and the results are
primarily indicative of scaling issues in the I/O subsystem.
Spark NMF displays good scaling with more nodes; this is
reflected in the parallel efficiency. However, the scaling is
due primarily to decreases in the Spark overhead.

B. PCA applied to the climate matrices

We compute the PCA using an iterative algorithm whose
main kernel is a distributed matrix-vector product. Since
matrix-vector products are data parallel, this algorithm fits
nicely into the Spark model. Because of the iterative nature
of the algorithm, we cache the data matrix in memory to
avoid I/O at each iteration.

C+MPI vs. Spark: Figure 4 shows the running time
breakdown results for computing a rank-20 PCA decompo-
sition of the Ocean matrix on 100, 300, and 500 nodes using
the MPI implementation. Each bin depicts the sum, over all
stages, of the time spent in that bin by the average task
within a stage.

Figure 3: Comparison of parallel efficiency for C+MPI
and Spark. The x-axis label “Node Bucket” refers to the
node counts. For NMF these are 50, 100, and 300 nodes
(left to right) and 100, 300, and 500 nodes for PCA. For
both algorithms, efficiency is measured relatively to the
performance at the smallest node count.

Figure 4: Running time breakdown of PCA on the 2.2TB
Ocean matrix at node counts of 100, 300 and 500. Each bin
depicts the sum, over all stages, of the time spent in that bin
by the average task within a stage.

I/O is a significant bottleneck and does not exhibit the
scaling observed for NMF in Figure 2. The I/O time is
reduced going from 100 to 300 nodes, but not 300 to
500 nodes because the I/O bandwidth is saturated for the
stripe size and number of OSTs used for the Daya Bay
and Ocean data sets. The Gram matrix-vector products are
a significant portion of the running time but scale linearly
with the number of nodes. The matrix-matrix product (AV )
does not scale due to a communication bottleneck. The
bottleneck is because we compute a rank-20 PCA which



Figure 5: Running time comparison of the Spark and MPI
implementations of PCA on the 16TB Atmosphere matrix.
Each bin depicts the sum, over all stage, of the time spent
in that bin by the average task within a stage.

makes communicating V expensive. This cost grows with
the number processors since it is entirely latency dominated.
The final SVD of AV is a sequential bottleneck and does
not scale. Unlike NMF the sequential bottleneck in PCA is
significant; future implementations should perform this step
in parallel.

Figure 4 also shows the scaling and running time break-
down of the Spark PCA implementation for 100, 300, and
500 nodes. The Gram matrix-vector products scale linearly
with the number of nodes, however this is outweighed by
inefficiencies in Spark. At this scale, Spark is dominated
by bottlenecks due to scheduler delays, task overhead and
straggler delay times. Task overhead consists of deserializing
a task, serializing a result and writing and reading shuffle
data. The Spark scheduling delay and task overhead times
scale with the number of nodes, due to the centralized
scheduler used in Spark. The iterative nature of the PCA
algorithm stresses the Spark scheduler since many tasks
are launched during each iteration. Under this workload
we observed a 10.2×, 14.5×, and 22× performance gap
on 100, 300, and 500 nodes, respectively, between Spark
and MPI. The disparity between the costs of the AV
products and sequential SVDs in MPI and Spark can be
attributed to the lack of granularity in our Spark profiling,
in particular the communication time due to Spark’s lazy
evaluation. Therefore, it is likely that the communication
overhead is included in the other overhead costs whereas
the MPI algorithm reports the combined communication and
computation time.

Figure 3 shows the parallel efficiency of MPI PCA and
Spark PCA. We observed that the MPI version hits an I/O
bottleneck, a communication bottleneck in the AV product

Algo Size # Nodes Spark Time (s)

CX 1.1 TB
60 1200
100 784
300 542

Table II: Spark CX running times

and a sequential bottleneck in SVD(AV ). All of these are
limiting factors and introduce inefficiencies to MPI PCA.
Spark PCA is less efficient than MPI PCA due to scheduler
delays, task overhead and straggler effects. The scheduler
delays are more prominent in PCA than in NMF due to the
larger number of tasks. NMF makes a single pass over the
data whereas PCA makes many passes over the data and
launches many tasks per iteration.

PCA Large-Scale Run.: We used all 1600 Cori nodes
to compute a rank-20 PCA decomposition of the 16TB
Atmosphere matrix. In order to complete this computation in
Spark in a reasonable amount of time, we fixed the number
of iterations for the EVD of ATA to 70 iterations. MPI
PCA was able to complete this run in 160s. Unfortunately
we were unsuccessful at launching Spark on 1600 nodes;
after many attempts we reduced the number of nodes to
1522. At this node count, Spark PCA successfully completed
the run in 4175s. Figure 5 shows the head-to-head running
time comparison for this full-system run; each bin depicts
the sum, over all stages, of the time spent within that bin
by the average task within a stage. The Gram matrix-vector
products are an order of magnitude more costly in Spark. We
noticed that the tree-aggregates were very slow at full-system
scale and are the likely cause of the slow Gram matrix-vector
products. The AV product and SVD are much faster in Spark
than in MPI due to limited profiling granularity. Finally,
we observed that the Spark overheads were an order of
magnitude larger than the communication and computation
time.

C. CX on the Mass-spec matrix

Much like PCA, the CX decomposition requires parallel
Gramian multiplies, and distributed matrix-matrix products
in order to compute extremal columns of A. CX was applied
to the 1.1TB MSI matrix; Table II shows the running times
and scaling behavior of Spark CX. We found that Spark
exhibited good scaling for the range of nodes tested and
attained speedups of 1.5× and 2.2× on 100 and 300 nodes,
respectively. The corresponding parallel efficiencies are 90%
for 100 nodes and 44% for 300 nodes. These results show
that the behavior of CX is similar to that of PCA, which is
expected due to the overlap in their linear algebra kernels.

D. Summary of Spark vs. C+MPI performance comparison

Table III summarizes the wall-clock times of the MPI and
Spark implementations of the considered factorizations, and
Table IV summarizes the performance gaps between Spark
and MPI. These gaps range between 2 × −25× when I/O



time is included in the comparison and 10×−40× when I/O
is not included. These gaps are large, but our experiments
indicated that Spark I/O scaling is comparable to MPI I/O
scaling, and that the computational time scales. The perfor-
mance gaps are due primarily to scheduler delays, straggler
effects, and task overhead times. If these bottlenecks can
be alleviated, then Spark can close the performance gap
and become a competitive, easy-to-use framework for data
analytics on high-performance architectures.

Algo Size # Nodes MPI Time (s) Spark Time (s)

NMF 1.6 TB
50 66 278
100 45 207
300 30 70

PCA 2.2 TB
100 94 934
300 60 827
500 56 1160

16 TB MPI: 1600 Spark: 1522 160 4175

Table III: Summary of Spark and MPI running times.

Algo # Nodes Gap with I/O Gap without I/O

NMF
50 4× 21.2×
100 4.6× 14.9×
300 2.3× 15.7×

PCA

100 10.2× 12.6×
300 14.5× 24.7×
500 22× 39.3×

MPI: 1600 Spark: 1522 26× 43.8×

Table IV: Summary of the performance gap between the
MPI and Spark implementations.

VII. LESSONS LEARNED

Throughout the course of these experiments, we have
learned a number of lessons pertaining to the behavior of
Spark for linear algebra computations in large-scale HPC
systems. In this section, we share some of these lessons and
conjecture on likely causes.

Scheduling Bottlenecks: The Spark driver creates and
sends tasks serially, which causes bottlenecks at high concur-
rency. This effect can be quantified by looking at Task Start
Delay and Scheduler Delay. Figure 6 gives a breakdown of
Spark’s overheads for one stage of the 16TB climate PCA
run. It is clear that the time spent waiting at scheduling
bottlenecks is orders of magnitude higher than the time
spent in actual computation. These significant per-stage cost
limits the scaling achievable by Spark for highly iterative
algorithms.

Spark Variability and Stragglers.: The time waiting for
stage to end bucket in Figure 6 describes the idle time
for a single stage in which a task has finished, but is
waiting for other tasks to finish. The main cause of this
idle time is what we call “straggler effect”, where some
tasks take a longer than average time to finish and thus
hold up the next stage from starting. In Figure 6, we can
see there is some variability in the MULTIPLYGRAMIAN
component of the tasks, but this is insignificant compared

Figure 6: Distribution of various components of all tasks in
a MULTIPLYGRAMIAN stage in the Spark PCA hero run.

to the remaining overheads. The straggler time may seem
insignificant, however, Figure 6 shows the statistics for a
single stage. When summed over all stages (i.e., all PCA
iterations) the straggler effect does a become significant
overhead at O(100) seconds (see Figure 5).

The bulk-synchronous execution model of Spark creates
scaling issues in the presence of stragglers. When a small
number of tasks take much longer to complete, many cores
waste cycles idling at synchronization barriers. At larger
scales, we see increases in both the probability of at least
one straggler, as well as the number of underutilized cores
waiting at barriers. During initial testing runs of the Spark
PCA algorithm, variations in run time as large as 25%
were observed (in our staging runs we had a median run
time of 645 seconds, a minimum run time of 489 seconds,
and a maximum run time of 716 seconds). Spark has
a “speculation” functionality which aims to mitigate this
variability by restarting straggling tasks on a new executor.
We found that enabling speculation had no appreciable effect
on improving the run time, because the overhead to fetch a
portion of the RDD from another worker was sufficiently
high. This is because requests for RDDs from other workers
must wait until the worker finishes its running tasks. This
can often result in delays that are as long as the run time of
the straggling task.

VIII. CONCLUSION

We conclude our study of matrix factorizations at scale
with the following take-away messages:

• Spark and C+MPI head-to-head comparisons of these
methods have revealed a number of opportunities for
improving Spark performance. The current end-to-end
performance gap for our workloads is 2 ×−25×; and



10 × −40× without I/O. At scale, Spark performance
overheads associated with scheduling, stragglers, result
serialization and task deserialization dominate the run-
time by an order of magnitude.

• In order for Spark to leverage existing, high-
performance linear algebra libraries, it may be worth-
while to investigate better mechanisms for integrating
and interfacing with MPI-based runtimes with Spark.
The cost associated with copying data between the
runtimes may not be prohibitive.

• Finally, efficient, parallel I/O is critical for Data Ana-
lytics at scale. HPC system architectures will need to
be balanced to support data-intensive workloads.
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