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Abstract—In the database community Polystores is an emerg-
ing and promising approach for data federation that aims at
designing a unified querying layer over multiple data models.
In the Semantic Web community a similar in spirit approach of
Ontology-Based Data Access (OBDA) has been recently proposed,
attracted a lot of attention, and proved its success in several
industrial scenarios. In this paper we discuss a semantic approach
to building polystores using the OBDA paradigm. We also present
our system Optique that is utilized in an industrial application
of performing turbine diagnostics in Siemens.

I. INTRODUCTION

It is common that large companies nowadays possess many
types of databases, data, and storage models. Developing
applications that work across these different modalities is often
limited by the incompatibility of systems or the difficulty of
creating new connectors and translators between them [16],
[14], [12]. For instance, performing diagnostics of turbines
requires Siemens engineers to query and analyze sensor
streaming data, static data about equipment’s structure, history
of its exploitation and repairs, and even weather conditions.
Analyzing such complex and heterogeneous data requires a
new generation of federated databases that support seamless
access to the different database management systems or stor-
age engines used in the back-ends. A new breed of systems
that provide this functionality have been recently introduced in
the database community under the name of polystores in order
to distinguish them from traditional federated databases that
largely supported access to multiple engines using the same
data model [16].

In the Semantic Web community an approach to data
federation similar in spirit to polystores, called Ontology-
Based Data Access has been recently proposed, attracted a
lot of attention, and proved its success in several industrial
scenarios [14], [12], [8]. The key concept of Ontology Based
Data Access (OBDA) is to use an ontology, i.e. a formal
conceptualisation of the application domain, to mediate access
to relational and non-relational data-sources. The proposed
methodology (i) offers a semantic view on the application data
domain, (ii) while allowing to infer implicit information, via a
reasoning procedure. The traditional OBDA approach assumes
that users formulate their information needs as queries using
terms defined in the ontology, and these are then translated
into some database query languages and executed over the data
automatically, without an IT expert’s intervention. To this end
a set of mappings is maintained that describes the relationship

between the ontological vocabulary and the schema of the data.
In the course of the OPTIQUE project we had to extend the
traditional OBDA definition in order to tackle our versatile
use-cases:

Use Case

Our approach is motivated by industrial scenarios that
demand for real-time processing of streaming and static data.
Siemens runs service centres dedicated to diagnostics of
thousands of power-generation appliances across the globe.
One typical task for such centres is to detect in real-time
potential faults caused by, e.g., an abnormal temperature and
pressure increase. Such tasks require simultaneous processing
of sequences of digitally encoded coherent signals produced
and transmitted from thousands of power generating turbines,
generators, and compressors installed in power plants, and of
static data that include the structure of relevant equipment,
history of its exploitation and repairs, and even weather
conditions. As illustrated in Figure 1, these data are scattered
across a large number of heterogeneous data streams in
addition to static DBs with hundreds of TBs of data.

Even for a single diagnostic task, such as checking if a
given turbine might develop a fault, Siemens engineers have
to analyse streams with temperature and other measurements
from up to 2, 000 sensors installed in different parts of the tur-
bine, analyse historical temperature data, compute temperature
patterns, compare them to patterns in other turbines, compare
weather conditions, etc. This requires to pose a collection of
hundreds of queries, the majority of which are semantically the
same (they ask about temperature), but syntactically different
(they are over different schemata). Formulating and executing
so many queries, and then assembling the computed answers,
takes up to 80% of the overall diagnostic time [12].

A different type of processing, relates to creating a virtual
ontology on top of large relational databases that contain
geometries and get frequently updated. Such an extension has
been motivated by the Statoil use case [14] in the context
of the project OPTIQUE. The Statoil use case demands for
spatial predicates that are used by geologists in order to
combine information from wellbores, seismic investigations,
and general geological knowledge to assess, for example, what
types of rock are in each wellbore.



Several Species of OBDA

In order to manage such diagnostic processes, we had to
extend existing OBDA solutions in order to handle streaming
and geospatial information. The OPTIQUE platform provides
for three different user-facing abstractions consisting of a data
model, a query language, and mappings to translate each data
model to the local dialect supported by each local end-point.
The three different user-facing abstractions rely on different
semantics in order capture (i) standard ontology relations as
well as (ii) their streaming and (iii) geospatial extensions.

• In each approach the data model is an ontology: a formal
conceptualisation of the domain of interest that consists of
a vocabulary, i.e., names of classes, attributes and binary
relations, and axioms over the terms from the vocabulary
that, e.g., assign attributes of classes, define relationships
between classes, compose classes, class hierarchies, etc.
The Siemens ontology that we developed [12] encodes
generic specifications of appliances, characteristics of
sensors, materials, processes, descriptions of diagnostic
tasks, etc.

• In order to model our data to the local dialect we use
mappings from the underlying language to ontology as-
sertions. These mappings relate each ontological term to
a set of queries over the underlying data. For example, the
generic attribute temperature-of-sensor from the Siemens
ontology is mapped to all specific data and procedures
that return temperature readings from sensors in dozens
of different turbines and DBs storing historical data, thus,
all particularities and varieties of how the temperature of
a sensor can be measured, represented, and stored are
captured in these mappings.

• The integrated data can be accessed by posing queries
over the ontology, i.e., ontological queries. These queries,
depending on the user-facing abstraction are either stan-
dard ontological queries, hybrid queries that refer to both
streaming and static data, and geospatial queries. Evalua-
tion of such queries has three stages: (i) in the enrichment
stage ontology axioms are used to expand the ontological
query in order to access as much of relevant data as
possible; (ii) in the unfolding stage the mappings are used
to translate the enriched ontological query into (possibly
many) queries over the data; and (iii) in the execution
stage the unfolded queries are executed over the data.

The main benefit of our approach is that the combination
of ontologies and mappings provide for location transparency
by allowing to ‘hide’ the technical details of how the data
is produced, represented, and stored in data sources, and to
show only what this data is about. This allows us to formulate
the Siemens diagnostic task above using only one ontological
query instead of a collection of hundreds data queries that
today have to be written or configured by IT specialists. Note
that this collection of queries does not disappear: the enrich-
ment and unfolding stages of the evaluation by an OBDA
system will automatically compute it from the high-level
ontological query. Another important benefit of the approach

Fig. 1. Streaming and static processing in the Siemens use case.

is modularity and compositionality of its assets: each mapping
relates one ontological term to the data, which allows the
mappings to be constructed independently and on demand; and
the same ontological term can be used in different queries, so
defining mappings for even a few terms enables the evaluation
of many different ontological queries.

It should be noted, that the OPTIQUE platform, additionally
to OBDA, provides a relational user-facing abstraction for
static and stream processing via the system’s federation hubs.
The two hubs, EXAREME and EXASTREAM, process infor-
mation based on SQL language extensions with user defined
functions. The latter allow to express complex dataflows,
such as data mining and data analytics tasks, that cannot be
captured in standard OBDA because of the strict semantics of
ontologies.

Research Challenges

The benefits of OBDA come at a price. The main prac-
tical challenges that are not addressed by existing Semantic
Technologies include:
[C1] development of tools for semi-automatic support to

construct high quality ontologies and mappings over
relational and streaming data;

[C2] development of a query language over ontologies that
combines streaming and static data, and allows for effi-
cient enrichment and unfolding that preserves the seman-
tics of ontological queries;

[C3] development of a geospatial extension of the OBDA
approach, that leverages the technologies of geospatial
databases into ontological query processing.

[C4] development of a backend that can optimise large num-
bers of queries automatically generated via enrichment
and unfolding, and efficiently execute them over dis-
tributed streaming and static data; and

[C5] development of the corresponding visualisations tools
that will aid non-experts in formulating complex queries
and accessing their corresponding results.

Construction of ontologies and mappings in OBDA is done
independently and prior to query formulation and processing.
Nevertheless, addressing C1 is practically important since such
tools can dramatically speed up deployment and maintenance



(e.g., adjustment to new query requirements) of OBDA sys-
tems. Addressing C2 is crucial since, to the best of our
knowledge, no dedicated query language for streaming-static
semantic queries has the required properties. Addressing C3
is of primary importance in order to ensure that geospatial-
semantic queries can be adopted to access information residing
in geospatial databases. Addressing C4 is vital to ensure that
OBDA queries are executable in reasonable time. Note that
C4 is not trivial since even in the context where the data
is only static and not distributed, query execution without
dedicated optimisation techniques performs poorly since the
queries that are automatically computed after enrichment and
unfolding can be very inefficient, e.g., they may contain many
redundant joins and unions [5]. Challenging C5 is of primary
importance in a working environment, that non-experts need
to access complicated data-sources without any knowledge of
the underlying schema.

Besides proposing OBDA, we addressed the challenges C1-
C5 and implemented our solutions in the OPTIQUE [13] system
that has been successfully applied in several industrial con-
texts [14], [12], [31], [?]. In Section II we provide an overview
of the OPTIQUE platform and illustrate the processes that
take place during a query formulation/execution/analysis cycle.
Section III presents BOOTOX [11], [4], a system for “boot-
strapping” OBDA assets by extracting, ontologies and map-
pings from static and streaming relational schema and data.
Section IV presents the visual components of the OPTIQUE
platform. OPTIQUEVQS is a visual query formulation system
that allows domain experts to formulate and pose queries.
The answers to these query are returned by a flexible wiki-
based Diagnostic Dashboard that can be easily customised
by end users themselves. Section V introduces the distinct
OBDA systems that are responsible for mapping semantic
queries over OWL 2 QL ontologies (and their streaming and
geospatial extensions), to the underlying data via global-as-
view mappings [10]. It also presents STARQL [25], a query
language that allows for semantic queries over both streaming
and static data. Section VI, presents EXAREME [18], [23],
a highly optimised database engine, and EXASTREAM, its
streaming counterpart capable of handling complex streaming-
static queries in real time. EXAREME supports parallel query
execution and its Infrastructure as a Service architecture en-
ables us to elastically scale the system to support user-demand
in complex diagnostic scenarios.

II. SYSTEM OVERVIEW & RELATION TO POLYSTORES

OPTIQUE is an integrated system that consists of multiple
components to support OBDA end-to-end [13], [15], [?]. For
IT specialists OPTIQUE offers support for the whole lifecycle
of ontologies and mappings: semi-automatic bootstrapping
from relational data sources, importing of existing ontologies,
semi-automatic quality verification and optimisation, cata-
loging, manual definition and editing of mappings. For end-
users OPTIQUE offers tools for query formulation support,
query cataloging, answer monitoring, as well as integration
with GIS systems. Query evaluation is done via OPTIQUE’s

It-expert
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Fig. 2. Bootstrapping Ontologies

query enrichment, unfolding, and execution backends that
allow to execute complex ontological queries in highly dis-
tributed environments.

In this section we give some details of the OPTIQUE
components that address the C1-C5 challenges above.

For the system deployment, one can bootstrap ontologies
and mappings from the underlying relational data sources,
incorporate external ontologies into the system, and edit
ontologies and mappings [19]. This is performed by the
BOOTOX component as illustrated in Figure 2.

The query formulation, transformation, execution, and an-
swer visualisation procedures are performed in a sequence of
stages presented in Figure 3:

• Query Formulation: After the system is deployed, the
underlying data sources can be queried via our query
formulation tool OPTIQUEVQS. OPTIQUEVQS allows
to compose queries by navigating over the system’s
ontology and constructing simple graphs corresponding to
queries for standard ontologies or their streaming/geospa-
tial extensions. Graphs, depending on their type, are
internally translated by OPTIQUEVQS to: (i) SPARQL
expressions, i.e. queries designed to retrieve information
from standard ontologies; (ii) STARQL expressions, i.e.
queries designed to retrieve information from streaming
ontologies; (iii) GeoSPARQL expressions, i.e. queries de-
signed to retrieve information from geospatial ontologies.

• Query Transformation: The aforementioned expressions
are sent to the corresponding query transformation en-
gine for processing. The processing includes rewriting
against the ontology and further unfolding into rela-
tional queries based on the corresponding mappings [7].
(i) SPARQL expressions are rewritten and unfolded to
SQL queries by the ONTOP query transformation en-
gine [27]; (ii) STARQL expressions are rewritten and un-
folded to SQL⊕ queries by the STARQL2SQL⊕ query
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Fig. 3. Querying heterogeneous Data Sources

transformation engine[25]. SQL⊕ extends standard SQL
with operators for stream handling; (iii) GeoSPARQL
expressions are rewritten and unfolded to SQL queries
by the ONTOP-SPATIAL query transformation engine[25].
The corresponding SQL queries also contain geospatial
operators.

• Query Execution: SQL queries (possibly containing
geospatial operators) are executed by EXAREME, a sys-
tem for large scale elastic data processing on the cloud.
EXAREME federates information from the underlying
endpoints and examines the possibility to push specific
query fragments whenever it is beneficial for the over-
all query execution time. SQL⊕ streaming queries are
executed by EXASTREAM, i.e. EXAREME’s streaming
counterpart that uses parallelism to cope with the huge
data sets provided by Siemens.

• Visualisation & Analysis: Resulting query answers are vi-
sualised using templates and widgets such as tables, time-
lines, maps, charts, etc., depending on the data modali-
ties. The Optique platform implementation is based on
the Information Workbench (IWB) [20], a generic and
extensible platform for semantic data management which
provides a rich infrastructure for platform.

The OPTIQUE platform shares many common characteris-
tics with Polystores. The different OBDA variants that allow
to federate information from relational data-sources via a
query language, an ontology, and mappings can be matched to
islands of information in Polystore terminology consisting of
a query language, a data model, and shims to translate island
utterances into the local dialect supported by each storage
system. OPTIQUE also preserves the location transparency
prerequisite, ensuring that the same answer is produced to
any given query, even though the data may reside in perhaps
multiple federation end-points. OPTIQUE federates relevant

information from underlying data sources without altering
the initial information and without suppressing local database
functionality, while pushing specific query fragments for exe-
cution to relational endpoints, whenever it is beneficial.

We now consider the different aspects of the OPTIQUE
platform:

III. DEPLOYMENT SUPPORT

The BOOTOX component extracts W3C standardised
OWL 2 ontologies and R2RML mappings from relational
streaming and static data. Consider, e.g., a class Tur-
bine; a mapping for it is an expression: Turbine(f(~x)) ←
∃~y SQL(~x, ~y), that can be seen as a view definition, where
SQL(~x, ~y) is an SQL query, ~x are its output variables, ~y are
its variables that are projected out and f is a function that
converts tuples returned by SQL into identifiers of objects pop-
ulating the class Turbine. Intuitively, mapping bootstrapping
of BOOTOX boils down to discovery of ‘meaningful’ queries
∃~y SQL(~x, ~y) over the input data sources that would correspond
to either a given element of the ontological vocabulary, e.g.,
the class Turbine or attribute temperature-of-sensor, or to
a new ontological term. BOOTOX employs several novel
schema- and data-driven query discovery techniques. E.g.,
BOOTOX can map two tables like Turbine and Country into
classes by projecting them on primary keys, and the attribute
locatedIn of Turbine into an object property between these
two classes if there is either an explicit or implicit foreign key
between Turbine and Country. For more complex mappings,
BOOTOX requires users to provide a set of examples of
entities from the class, e.g., Turbine, where each example is a
set of keywords, e.g., {albatros, gas, 2008}. Then the system
turns these keywords into SQL queries by exploiting graph-
based techniques similar to [21] for keyword-based query
answering over DBs. Moreover, BOOTOX also allows us



to incorporate third party OWL 2 ontologies in an existing
OPTIQUE’s deployment using ontology alignment techniques.

The ontological terms bootstrapped by means of BOOTOX
provide the vocabulary for the formulation of STARQL
ontological queries and the bootstrapped mappings. In the
following we will discuss STARQL queries and how we
process them.

IV. VISUAL QUERY SYSTEM & DIAGNOSTICS
DASHBOARD

A. Visual Query System

Most diagnostic engineers cannot be expected to learn
formal query languages like SPARQL, STARQL, and
GEOSPARQL. The Optique platform therefore contains a vi-
sual query system [?], called OptiqueVQS [31], [29], [30], that
makes it easy for users without IT background to formulate
the most commonly needed queries.

OptiqueVQS is widget-based and supports tree-shaped con-
junctive queries [29]. In Figure 4, an example query is shown
as a tree, representing typed variables as nodes and object
properties as arcs. Typed variables can be added to the query
by using the concept-object property list. If a query node
is selected, a faceted widget displays controls for refining
the corresponding typed variable, e.g. constraining a data
property. Once a restriction is set on a data property or a
data property is selected for output, it is reflected in the label
of the corresponding node in the query graph. The user can
always jump to a specific part of the query by clicking on the
corresponding variable-node in the query diagram.

Dynamic properties (i.e., whose extensions are time de-
pendent) are colored in blue and as soon as one is selected
OptiqueVQS switches to STARQL mode. A stream button
appears on top of the query diagram and lets the user configure
parameters such as slide and window width interval. If the
user clicks on the “Result Overview” button, a template
selection widget appears for selecting a template for each
stream attribute, which is by default “echo”. The user can
register the query in by clicking on the “Register query”
button.

The STARQL language is very expressive, but as Listing 1
demonstrates, a simple idea like a value increasing throughout
a time interval may require a query with several quantifiers –
a far too demanding formalisation task for the average user.
Thus OptiqueVQS splits the formulation of streaming queries
into two steps where the user has to specify (i) which data
streams are of interest, this corresponds to the static part in the
WHERE clause, and (ii) what is to be done to the specified
streams. The interface for the latter allows users to pick from a
list of options that include range checks, gradient checks, and
spikes, and cover a large part of the query tasks needed day to
day. Adding more options, or changing the queries produced
for each, are simple programming tasks.

For handling GEOSPARQL queries, OPTIQUEVQS does
not consider any extended features. This is because geospatial
relations are expressed with the use of ordinary object and
datatype properties.

Fig. 4. Visual Query System

Fig. 5. Components of Diagnostic Dashboard

B. Diagnostics Dashboard

In order to address diverse needs of end users in query
formulation and answer visualisation we developed a flexible
wiki-based Diagnostic Dashboard that can be easily cus-
tomised by end users themselves. Result visualisation widgets
allow to visualise query answers, inspect query results, do
incremental query refinement, and export of relevant result
fragments to external diagnostic tools. Moreover, the widgets
allow to perform monitoring of incoming data streams and
query answers for continuos queries over these streams. In
Figure 5 we present three examples of our visualisation
widgets. Depending on the type of data (e.g., time series
data, appliance structure), a suitable visualisation paradigm
has to be selected (e.g., pivot table, trend diagram, histogram).
The diagnostic dashboard can also choose the representation
paradigm for query answers automatically by analysing the
corresponding SPARQL query.

V. QUERY TRANSFORMATION

This Section is dedicated to the enrichment and unfolding
stages that occur during a query execution cycle. As illus-
trated in Section II, depending on the type of the semantic
query, a different component is responsible for making the
translation to the appropriate formalism. ONTOP is dedi-
cated to transforming SPARQL queries to SQL queries, the



STARQL2SQL⊕ component transforms STARQL stream-
ing queries to SQL⊕ queries, while ONTOP-SPATIAL trans-
forms GeoSPARQL queries to SQL queries containing geospa-
tial operators.

A. ONTOP

ONTOP is an open-source OBDA system released under the
Apache license, developed at the Free University of Bozen-
Bolzano [5], [22]. The ONTOP system exposes relational
databases as virtual RDF graphs by linking the terms (classes
and properties) in the ontology to the data sources through
mappings. This virtual RDF graph can then be queried us-
ing SPARQL, by translating the SPARQL queries into SQL
queries over the relational databases. This translation process
is transparent to the user.

ONTOP allows for RDFS [3] and OWL 2 QL [24] as
ontology languages. OWL 2 QL is based on the DL-Lite
family of lightweight description logics [6], which guarantees
that queries over the ontology can be rewritten into equiv-
alent queries over the databases. ONTOP supports the W3C
RDB2RDF Mapping Language (R2RML), which is a widely
used standard. Intuitively, a mapping assertion consists of a
source (an SQL query retrieving values from the database) and
a target (defining RDF triples with values from the source). For
querying ontologies, ONTOP supports essentially all features
of SPARQL 1.0 and the OWL 2 QL entailment regime of
SPARQL 1.1. The core of ONTOP is the SPARQL engine
Quest, which is in charge of rewriting SPARQL queries over
the virtual RDF graph into SQL queries over the relational
database. It does so by first enriching the SPARQL query using
the axioms in the ontology, and then unfolding the resulting
query by means of the mapping.

Example 1: In the corresponding example, we provide an
overview of the enrichment and unfolding stages. The follow-
ing ontology captures a fragment of the domain knowledge of
our running example. It describes the concepts of a turbine
with the following OWL axioms:

:GasTurbine rdfs:subClassOf :Turbine.
:DieselTurbine rdfs:subClassOf :Turbine.

These axioms simply say that if an individual belongs to the
class GasTurbine or the class DieselTurbine, then it
belongs to the class :Turbine. I.e. each diesel or gas turbine
is also a turbine. The ontology instance assertions in this
example can be populated from a database by means of the
following mappings:

:{gtid} rdf:type :GasTurbine.
←− SELECT gtid FROM tbl_Gas_Turbines

:{dtid} rdf:type :DieselTurbine.
←− SELECT dtid FROM tbl_Diesel_Turbines.

The simple SPARQL query asking for turbines:

SELECT ?s WHERE {?s rdf:type :Turbine.}

first will be enriched using the ontology axioms so as to ask for
gas and for diesel turbines, and then will be unfolded into the
following SQL query, which performs the appropriate union
between the relevant tables in the relational database:

SELECT concat(":", T1.gtid) AS s
FROM tbl_Gas_Turbines T1
UNION

SELECT concat(":", T2.dtid) AS s
FROM tbl_Diesel_Turbines T2

B. STARQL2SQL⊕ Translator

In order to express semantic queries blending streaming
with static data we developed the STARQL query lan-
guage [25].

The syntax of STARQL extends so-called basic graph
patterns of W3C standardised SPARQL query language for
RDF databases. STARQL queries can express basic graph pat-
terns, and typical mathematical, statistical, and event pattern
features needed in real-time diagnostic scenarios. Moreover,
STARQL queries can be nested, in the sense that the result
of one query may be used in the construction of another
query. STARQL has a formal semantics that combines open
and closed-world reasoning and extends snapshot semantics
for window operators [1] with sequencing semantics that can
handle integrity constraints such as functionality assertions.

Example 2: Due to the space limitation we cannot present
STARQL in details. Instead, we will illustrate its main
features on the following example diagnostic task: Detect
a real-time fault in a turbine caused by a temperature in-
crease within 10 seconds. This task can be expressed in
STARQL over the Siemens ontology [12] as in Listing 1 and
it requires to combine streaming and static data. An output
stream S_out is defined by the following language constructs:
The CONSTRUCT specifies the format of the output stream,
here instantiated by RDF triples asserting that there was a
monotonic increase. The FROM clause specifies the resources
on which the query is evaluated: the ONTOLOGY, STATIC
DATA, and input STREAM(s), for which a window operator
is specified with window range (here 10 sec) and with slide
(here 1 sec). The PULSE declaration specifies the output
frequency. In the WHERE clause, bindings for sensors (attached
to the assembly structure of the turbine) are chosen. For every
binding, the relevant condition of the diagnostic task is tested
on the window contents. Here this condition is abbreviated by
MONOTONIC.HAVING(seq, ?c, sie:hasValue) us-
ing a macro that is defined at the bottom of Fig. 1 in
an AGGREGATE declaration. In words, the conditions asks
whether there is some state ?k in the window s.t. the sensor
shows a failure message at ?k and s.t. for all states before
?k the attribute value ?attr (in the example instantiated by
sie:hasValue) is monotonically increasing.

STARQL has favourable computational properties [25]: de-
spite its expressivity, answering STARQL queries is efficient
since they can be efficiently enriched and then unfolded into
efficient relational stream queries. STARQL query enrichment
is polynomial-time in the size of the input ontology if the
ontology is expressed in the OWL 2 QL ontology language and
the queries are essentially conjunctive with value comparison
and aggregates. STARQL unfolding is linear-time in the
size of both mappings and query and enriched STARQL



Listing 1. An example diagnostic task in STARQL, where the prefix sie stands for the URI of the Siemens ontology
CREATE STREAM Str_out AS
CONSTRUCT GRAPH NOW { ?c2 rdf:type :MonInc }
FROM STREAM Str_Msmt [NOW-"PT10S"ˆˆxsd:duration, NOW]->

"PT1S"ˆˆxsd:duration,
STATIC DATA sie:Static,
ONTOLOGY sie:Ontology

USING PULSE WITH START = "00:10:00CET", FREQUENCY = "1S"
WHERE {?c1 a sie:Assembly. ?c2 a sie:Sensor.

?c1 sie:inAssembly ?c2.}
SEQUENCE BY StandardSequencing AS seq
HAVING MONOTONIC.HAVING(seq, ?c2, sie:hasValue)

CREATE AGGREGATE MONOTONIC.HAVING ($seq, $var, $attr) AS
HAVING EXISTS ?k IN $seq: GRAPH ?k {$var sie:showsFault "true"}
AND FORALL ?i, ?j IN $seq:

IF ( ?i < ?j < ?k AND GRAPH ?i {$var $attr ?x}
AND GRAPH ?j {$var $attr ?y}) THEN ?x < ?y

queries can be unfolded into relational stream queries. We
developed a dedicated STARQL2SQL⊕ translator that
unfolds STARQL queries to SQL⊕ queries, i.e. SQL queries
enhanced with the essential operators for stream handling.

C. ONTOP-SPATIAL

ONTOP-SPATIAL1 extends Ontop to enable the on-the-
fly GeoSPARQL-to-SQL translation on top of geospatial
databases and thus becomes the first OBDA system with
geospatial support. It is able to connect to a geospatial database
(currently PostGIS, Spatialite or Oracle-spatial) and create
virtual geospatial RDF graphs on top of it, using ontolo-
gies and mappings. It supports the following components
of GeoSPARQL [26]: Core, Topology Vocabulary, Geometry
topology extension, RDFS entailment and a subset of Ge-
ometry Extension. To the best of our knowledge, it is also
the first GeoSPARQL implementation that supports the query
rewrite extension of GeoSPARQL. In [2] we explain how
GeoSPARQL queries are processed by ONTOP-SPATIAL and
are transformed into the respective spatial SQL queries that
are evaluated by geospatial databases.

For example, the GeoSPARQL query:

SELECT DISTINCT ?name ?build ?type
WHERE {?s1 f:type ?type .
?s1 geo:asWKT ?g1 .
?s2 geo:asWKT ?g2 .
?s2 rdf:type osm:Building .
?s2 osm:hasName ?name .
?s2 osm:buildingCategory ?build .

FILTER(geof:sfIntersects(?g1, ?g2)) }

retrieves buildings that are affected by floods (i.e., they have
intersecting geometries with the flood geometries).

VI. QUERY PLANNING & EXECUTION

A. EXAREME

Relational queries produced by ONTOP, are handled by
EXAREME, OPTIQUE’s distributed Database Management
System (DBMS) that also operates as the platforms federation

1https://github.com/ConstantB/ontop-spatial

hub. EXAREME is a system for elastic large-scale dataflow
processing in the cloud [23], [18] that is publicly available as
an open source project under the MIT License. It is responsi-
ble for federating information from external datasources and
executing intensive queries. In the following, we present some
of its key aspects:

EXAREME, that supports parallelism by allocating process-
ing across different workers in a distributed environment, is
separated into the following components (Figure 6): (i) the
Master is the main entry point to the system, through the
gateway, and is responsible for the coordination of the rest of
the components; (ii) the Query Optimizer determines the most
efficient distributed way to execute a given query; (iii) the
Scheduler translates the optimal query plan into the distributed
machine code of the system and creates the final execution
plan by assigning tasks to workers; (iv) the Execution Engine
schedules the operators of the query, respecting their depen-
dencies in the dataflow graph and the available resources; it
also monitors the dataflow execution and handles failures;
(v) finally workers execute tasks and transfer intermediate
results by fetching the partitions needed for the execution,
each task is executed by an SQLite2 database engine instance
running on each worker.

Query evaluation over federated data sources takes into con-
sideration processing capabilities of endpoints and examines
the possibility to push specific query fragments for execution
there. Exareme uses a Volcano-style optimizer [17], capable
of identifying common subexpressions coming from different
parts of complex queries and deciding on the re-usage of
these subexpressions [28]. Possibilities to push processing are
considered as a post-optimization step for each run of the
search algorithm. Specifically, each node in the resulted query
plan is marked as candidate for execution in an endpoint, if
all data below him are coming from a single endpoint and no
descendant node in the plan is re-used from a different part
of the query. The final decision for the candidates depends on
the number of descendant tables of each candidate. If this
number in one, then the fragment is sent for execution in

2https://www.sqlite.org
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the endpoint, otherwise a cost-based comparison of the two
alternatives is conducted. Exareme uses a federated analyser
that gathers statistics about data from the external sources.
This is an offline process, that only needs to be done for data
mentioned in the OBDA mappings. After some sub-plan has
been chosen for external evaluation, a specific virtual table
operator responsible for the communication with the specific
endpoint is called in order to send the fragment for execution
and import the result into the system.

The EXAREME system natively supports User Defined
Functions (UDFs) with arbitrary user code. The engine blends
the execution of UDFs together with relational operators using
JIT tracing compilation techniques that greatly speeds up
the execution process. UDFs allow to express very complex
dataflows using simple primitives. For OPTIQUE we used
UDFs to implement communication with external sources,
window partitioning on data streams, and data mining algo-
rithms.

B. EXASTREAM

Relational queries produced by the STARQL2SQL⊕ trans-
lation, are handled by EXASTREAM [?], OPTIQUE’s high-
throughput distributed Data Stream Management System
(DSMS).

EXASTREAM is built as a streaming extension of
EXAREME, taking advantage of existing Database Manage-
ment technologies and optimisations. It provides a declarative
language, namely SQL⊕, for querying data streams and rela-
tions. In contrast to other DSMSs, the user does not need to
consider low-level details of each query execution. Instead, the
system’s query planner is responsible for choosing an optimal
plan depending on the query, the available stream/static data
sources, and the execution environment.

EXASTREAM’s optimizer makes it possible to process
SQL⊕ queries that blend streaming with static data. This has
proven particularly useful in the Siemens use case since it
allows us to combine streaming attributes (such as temperature
measurements of a turbine) with metadata that remain invariant
in time (such as the model or structure of a turbine) as well as
archived stream data (such as past sensor readings, temperature
measurements, etc.). Static relational tables may be stored in
our system, or, they may be federated from external data-
sources. Moreover, EXASTREAM allows defining database
schemata on top of streaming and static data. This gives a wide
range of opportunities for applying Semantic Web technologies
and optimisations, e.g., bootstrapping techniques, that rely on
these features.

Whenever SQL abstractions are not sufficient (or efficient)
for complex stream processing scenarios, we use standard
SQL to combine data and process them with UDFs. Two
main operators, implemented as UDFs, that incorporate the
algorithmic logic for transforming SQLite into a DSMS
are timeSlidingWindow and wCache: (i) timeSlidingWindow
groups tuples from the same time window and associates them
with a unique window id, (ii) wCache acts as an index for
answering efficiently equality constraints on the time column
when processing infinite streams. The time column may be
the window identifier produced by the timeSlidingWindow
operator. WCache will then produce results to multiple queries
accessing different streams. The purpose of these UDFs is to
perform the STARQL2SQL⊕ translation, while they remain
hidden from OPTIQUE’s users.

VII. CONCLUSIONS & FUTURE WORK

In this paper we presented OBDA, and explained the
mechanisms that allow to provide direct end-user access to
static, streaming, and geospatial information. We discussed
the main requirements that an OBDA solution should fulfil
in order to process disparate streaming and static sources and
based on our findings we developed the OPTIQUE platform.
The OPTIQUE platform can be seen as a federation hub where
an ontology provides a ‘global’ schema that consolidates local
schemata of the integrated data sources.

The OPTIQUE platform is currently being tested within
the Siemens IT environment. The overall goal is to integrate
the OPTIQUE platform into the Siemens system for stream
monitoring and data analytics. Future work involves extending
the OPTIQUE platform and the OBDA paradigm in order to
(i) access NoSQL datasources such as SPARK and MongoDB
endpoints [?], [?]; (ii) examine temporal extensions of the
underlying formalisms [?]; (iii) and incorporate uncertainty
and imprecision via fuzzy and probabilistic extensions of the
traditional OBDA paradigm [?], [?], [?].
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E. Kharlamov, J. W. Klüwer, C. Pinkel, R. Rosati, V. Santarelli, A. Soylu,

and D. Zheleznyakov. Optique system: towards ontology and mapping
management in obda solutions. In WoDOOM, pages 21–32, 2013.

[20] P. Haase, C. Hütter, M. Schmidt, and A. Schwarte. The Information
Workbench as a Self-Service Platform for Linked Data Applications. In
WWW, 2012.

[21] V. Hristidis and Y. Papakonstantinou. Discover: Keyword Search in
Relational Databases. In VLDB, 2002.

[22] R. Kontchakov, M. Rezk, M. Rodrı́guez-Muro, G. Xiao, and M. Za-
kharyaschev. Answering sparql queries over databases under owl 2 ql
entailment regime. In International Semantic Web Conference, pages
552–567. Springer, 2014.

[23] M. Tsangaris et al. Dataflow Processing and Optimization on Grid and
Cloud Infrastructures. IEEE D. Eng. Bull., 32, ’09.

[24] B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue, C. Lutz, et al.
Owl 2 web ontology language: Profiles. W3C recommendation, 27:61,
2009.
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