
An Incremental Local-First Community Detection Method for Dynamic Graphs

Hiroki Kanezashi
Tokyo Institute of Technology

IBM T.J. Watson Research Center
2-12-1 Oo-okayama Meguro Tokyo, JAPAN

kanezashi.h.aa@m.titech.ac.jp

Toyotaro Suzumura
IBM T.J. Watson Research Center

Barcelona Supercomputing Center, The University of Tokyo
New York, USA

suzumura@acm.org

Abstract—Community detections for large-scale real world
networks have been more popular in social analytics. In partic-
ular, dynamically growing network analyses become important
to find long-term trends and detect anomalies. In order to
analyze such networks, we need to obtain many snapshots and
apply same analytic methods to them. However, it is inefficient
to extract communities from these whole newly generated
networks with little differences every time, and then it is
impossible to follow the network growths in the real time.
We proposed an incremental community detection algorithm
for high-volume graph streams. It is based on the top of a
well-known batch-oriented algorithm named DEMON [1]. We
also evaluated performance and precisions of our proposed
incremental algorithm with real-world big networks with up to
410,236 vertices and 2,439,437 edges and computed in less than
one second to detect communities in an incremental fashion
- which achieves up to 107 times faster than the original
algorithm without sacrificing accuracies.

Keywords-Network theory (graphs); High performance com-
puting;

I. INTRODUCTION

Community detections for large-scale networks have been
important research problems in graph computing, and real-
time analyses of complex social networks are also important
to discover trends. Most of real-world networks like user-
relationships on social networking services are time-evolving
and dynamic networks. Consequently, in order to detect
and extract communities from large-scale and time-evolving
dynamic social network in nearly real-time fashion, it is
inefficient to compute them from the beginning of the entire
network every time, even though there is little change.
To overcome the problem, several approaches have been
proposed for community detection algorithms working in
an incremental fashion, which is often called incremental
community detection.

We propose an incremental community detection algo-
rithm based on one of well-known and scalable community
detection algorithms named DEMON [1] for incrementally
growing networks. We implemented the incremental algo-
rithm in C++, and conducted performance evaluations with
real-world networks representing relations of people. Then
we showed that our method took only less than a few
seconds to compute incrementally updated networks while

original DEMON needed to execute community detections
for a whole network in a batch fashion - which brought
tremendous amount of overhead.

Our contributions are following: we proposed an in-
cremental version of DEMON algorithm with DEMON
devising core functions, reduced unnecessary community
comparison procedures by defining a community mapping
table, and proved the effect of these proposed optimizations
using real-world networks.

The next section will describe related works about in-
cremental community detection. Section 3 will introduce
the original DEMON algorithm and its three core functions
our method based on. Our proposed incremental DEMON
algorithm will be introduced in Section 4, and the result
of performance evaluation of our method will be described
in Section 5. Finally, we will summarize our research and
future works in Section 6.

II. RELATED WORK

Zhenyu and Ming propose a scalable community detection
method for tag assignments stream clustering (TASC)[2].
The method requires not only network structures, but needs
tag set and user data for all network vertices. They used
three types of data sets with about 10,000 to 70,000 vertices
and 50,000 to 440,000 tag assignments, and no initial edges
were specified. Their performance experiment showed that
it took about 10 ms to 30 ms with one assignment.

Sheng et. al. focused an incremental label propagation
algorithm and added the time sequences as well as labels
to vertices [3]. The average computation complexity was
the same as the total number of local edges connected to
the local vertices O(m) (m: the number of edges), and the
worst case of the overall time was O(m+n) (n: the number
of vertices). They showed that the average iteration time was
4.411 seconds with on-line game players networks. In this
algorithm, additional tag data were necessary and the final
results of network division might change with the number
of iterations. Our proposed method considers only network
structures, and output results are stable.

Jingyong and Hongsheng proposed an incremental algo-
rithm based on growing social networks considering that
most communities tended to evolve gradually over time[4].

ar
X

iv
:1

80
8.

06
25

1v
1

 [
cs

.S
I]

 1
9

A
ug

 2
01

8

They used computer-generated data sets and internet peer-
to-peer network data with 10,876 vertices and 39,994 edges
for their experiments. Compared with RI (based on Radicci
method) and IC (finding nodes that are connected with
increments: almost same as this method), the computation
time was almost same as the IC method, and better than
the other methods especially increasing the total number of
vertices.

III. BACKGROUND - OVERLAPPING COMMUNITY
DETECTION

In this section we will introduce an overlapping commu-
nity detection algorithm called DEMON, since our proposed
incremental algorithm uses this as a base algorithm.

A. DEMON Overview

DEMON [1] is a scalable algorithm for detecting over-
lapping communities in complex networks. In this context,
a community is a group of nodes densely connected to each
other. It outputs overlapping communities, that means some
nodes will be in different communities at the same time.
We choose this algorithm as baseline of our research with
several reasons.

First, DEMON has fine-grained scalability. Because com-
munities will be generated in a bottom-up way and some
of the required computation for all the vertices can be inde-
pendently executed, it would fit with parallel and distribution
computation. We considers it is also suitable for incremental
extension.

Second, it is the state-of-the-art community detection
algorithm that outperforms other algorithms in terms of
accuracy. DEMON algorithm allows overlapped community
outputs, that is usual for real-world networks. Most of
large-scale social networks contains many vertices with
multiple properties, so DEMON algorithm should output
proper communities from these properties. Moreover, The
author of [1] showed DEMON provided higher accuracy
than other community detection algorithms in that the F-
Measure scores based on labels of vertices are the largest.
They also described that the community size distribution
of DEMON were more balanced than that of Infomap
algorithm.

Furthermore, three steps of DEMON algorithm including
Ego Minus Ego, Label Propagation and Merge functions
are performed for all vertices in an independent manner.
Because each vertex is processed independently, some func-
tions could be executed by incremental procedures.

B. Algorithm Details

DEMON algorithm repeats the following functions in-
cluding Extracting Ego Minus Ego Networks, Label Prop-
agation and Merge functions for each vertex in the input
network.

1) Extract an Ego Minus Ego network from a vertex.

2) Group vertices from the extracted Ego Minus Ego
network according to the result of label propagation.

3) Merge generated groups by the overlapping degree.

Next, we will describe details of these three functions
DEMON algorithm consists of.

1) Extracting Ego Minus Ego Networks: In DEMON
algorithm, the first step extracts an Ego Network for the
chosen vertex. Ego Network is a sub-graph of original
input network consists of the specified vertex (Ego), vertices
neighboring the Ego vertex and edges connecting these
vertices. Obviously a single node connecting the entire
sub-graph are connected directly and affect the similarities
of neighboring vertices, even if they are not in the same
community. For this reason, the ego vertex is removed
from its own ego network in this function. Ego Minus Ego
network is a sub-graph removed the Ego vertex from the
Ego Network.

2) Label Propagation: After the Ego Minus Ego graph
is extracted from the specified vertex, the next step is to
compute communities subsets of this network by Label
Propagation. The label propagation method is based on [5],
updating vertices labels by other label frequency of neighbor
vertices.

This function repeats the following procedures to find
small communities with the graph structure.

1) Set numerical labels to all vertices. Each label must
be different from those of other vertices.

2) Set time stamp t = 1.
3) Choose a vertex from the network randomly and put

labels gather from neighboring vertices.
4) Find the majority of gathered labels and set it as the

new label of this vertex.
5) After processing all vertices, if all labels are larger

number than those of neighbors or time stamp reaches
to the upper limit, finish this label propagation algo-
rithm.

6) Otherwise, increment the time stamp (t = t + 1) and
process vertices again.

3) Merge: Label Propagation function generates many
small communities and they are restricted to be sub-graphs
of Ego Minus Ego networks. In order to find the larger and
global communities in the given whole graph, they will be
merged in Merge function.

In Merge function, generated communities by Label Prop-
agation will be merged. Parameter ε is a given threshold
indicating overlaps between communities. They will be
merged if and only if at most the ε of the smaller one is not
included in the bigger one. When ε = 0, two communities
will be merged only if one of them is a proper subset of
the other, and when ε = 1, they will be merged together
even these communities do not share any nodes. In general,
two overlapped community will be more likely merged if
the value of ε is large.

ε = 0.3
(70% is
expected to be
overlapped)

Not merged

ε = 0.6
(40% is expected
to be overlapped)

2/4=0.5
(50%
overlapped)

Merged

Figure 1. An Example of Merge Function.

In this example described in Figure 1, two communities
are overlapping each other. The left one has 4 nodes, the
right one has 6 nodes and 2 vertices are overlapped. In this
situation, they are 50% (24) overlapped. If ε = 0.6, at least
40% vertices of the smaller community must be overlapped
to be merged, then these communities will be merged as a
community with 8 vertices. On the other hand, if ε = 0.3, at
least 70% vertices must be overlapped for merge, then they
will not be merged.

The Merge function also randomly chooses an existing
community to be chosen next by shuffling orders of com-
munities to prevent choosing the same communities in every
iterations, which causes unequal output of communities.

C. Performance Characteristics of DEMON algorithm

Coscia et. al. [1] evaluated their original DEMON algo-
rithm with real-world networks in Java implementation. In
these performance evaluations, they used Amazon data set
with 410,236 vertices and 2,439,437 edges. They mentioned
the core of DEMON algorithm (Ego Minus Ego and Label
Propagation) took less than a minute, while Merge function
with increasing thresholds elapsed one minute to one hour.

In Congress and IMDb data sets, the original DEMON
program detected the better community in F-Measure than
other referred algorithms (HLC [6], Infomap [7], Modularity
[8] and Walktrap [9]). However, they did not evaluate
more detailed DEMON’s performance comparing with those
algorithms or network data.

IV. PROPOSED METHOD - INCREMENTAL COMMUNITY
DETECTION

We propose an incremental version of DEMON algorithm
named ”Incremental DEMON” that incrementally detects
communities over time from streaming data. Incremental
DEMON is comprised of three functions: incremental Ego
Minus Ego network extraction and modification, incremental
Label Propagation and optimized Merge function.

A. Incremental Functions Description

In the original DEMON algorithm, intermediate networks
and communities are generated for all vertices (ego) in the
given graph from the first state. However, most of the results
of Ego Minus Ego extractions, Label Propagation and Merge
procedures from the incrementally updated network are the
same as from based networks if there are few differences
between network difference like only additional a couple of
vertices or edges with the real social network growth in a
few seconds.

In this situation, it is time-wasting to repeat same graph
processing every time and impossible to catch up a real-time
network growths. To overcome this problem, we proposed an
incremental version of DEMON by introducing incremental
algorithms for these three functions, and enabled it to
minimum modification for existing communities. We will
show incremental versions of them.

1) Incremental Ego Minus Ego Function: In the incre-
mental situation, An added vertex or edge will affect only the
neighbor vertices, and almost all Ego Minus Ego networks
will not be changed before and after the incremental process.
When a new vertex is added, we need only to re-construct
Ego Minus Ego networks for the neighboring vertices of the
newly added vertex like Figure 2. When a vertex is removed,
we need only to remove a vertex and edges from Ego Minus
Ego networks for the neighboring vertices of the removed
vertex.

v

original graph G
t =
Tk

v1

v2

v3

Added vertext =
Tk+1

Updated graph G’

Update
graph

v1

EgoMinusEgo(v1, G’)

Added vertex v2

EgoMinusEgo(v2, G’)

Added vertex

EgoMinusEgo(v3, G’)
v3

Added vertex

Figure 2. An Example of Incremental Ego Minus Ego (add single vertex
and neighboring edges).

The pseudo code of the incremental Ego Minus Ego
function is shown in Algorithm IV-A1. When single vertex

and connecting edges to neighbors are newly added, The
algorithm is repeated for each added edge. Compared with
the original Ego Minus Ego function coustructing Ego
Minus Ego networks for all vertices (Algorithm IV-A1), the
incremental function only updates two vertices for origin
and destination of an newly added edge.

Require: G : (V,E), v ∈ V
Ensure: G′ : (V ′, E′)

for all v ∈ V do
V ′ ← neighbors(v)
for all v′ ∈ V ′ do

for all e′ ∈ outer(v′) do
if target(e′) = v then
E′ ← E′ ∪ e′

end if
end for

end for
end for

Figure 3. Original Ego Minus Ego algorithm

Require: G : (V,E), e ∈ E,
EgoMinusEgo : G′ = (V ′, E′) ⊆ G

Ensure: Updated G′

for all v ∈ [source(e), target(e)] do
V ′ ← neighbors(v)
for all v′ ∈ V ′ do

for all e′ ∈ outer(v′) do
if target(e′) ∈ V ′ then
E′ ← E′ ∪ e′

end if
end for

end for
end for

Figure 4. Incremental Ego Minus Ego algorithm (add single edge)

2) Incremental Label Propagation Function: The incre-
mental label propagation for each extracted Ego Minus Ego
network will perform independently. At Label Propagation
algorithm, a frequently appeared vertex is selected or if
the frequency is the same, and then it randomly selects a
vertex. Repeat the Label Propagation algorithm only near
the added / removed vertex. Because the idea of label
propagation method in original DEMON is based on [5],
which chooses and sets the label with highest frequency in
neighbor vertices, it is natural to set the highest flequently
appeared labels to those added vertices.

An example of incremental Label Propagation procedure
with addition a vertex is shown Figure 5.

3) Merge Function: DEMON algorithm applies ”local-
first” approach rather than top-down view. Generated com-
munities from previous Label Propagation procedure are too

3
3

3

3

5

8

5

8

3
3

3

3

5

8

5

8

5

Set the label to most
frequent labels among
neighboring vertices

3
3

3

3

5

8

5

8

Newly added vertex

Figure 5. Incremental Label Propagation.

small and local. In order to detect more global communities,
all overlapping communities should be merged together.
Needless to say, the result of incremental Label Propagation
is incrementally changed, so we need to apply a little
modification to the original result of Merge process.

The authors of [1] mentioned, however, the Merge func-
tion does not hold the incrementality property, and an alter-
native simpler algorithm keeps incrementality were needed
as their future work.

On the other hand, an alternative Merge function can be
defined to combine the results provided by the core of the
algorithm, thus preserving its possibility to scale up in a
parallel framework. We cannot adjust the result of merge
function only by adding or removing sub-graphs because
the decisions whether some communities should be merged
would change and future scenarios might be different.

On the other hand, most communities with no common
vertices do not have any relationships with added single
vertex, and we can reduce the number of comparisons
between an incrementally updated community and other
communities. In order to specify communities which each
vertex belongs to, we defined a mapping table between
vertex ID and set of community ID. Elements of the table
will be constructed and refereed during the initial Merge

function and the construction cost of this table object can
be ignored in the incremental process by reusing it.

We describe optimized merge function to Algorithm 6.

Require: C : Total community set,
c : Updated community,
T : Mapping table,
ε : Threshold

Ensure: Updated C and T
Cset← φ
for all v ∈ c do
Cset← Cset ∪ T [v]

end for
merged← False
for all c′ ∈ Cset do

if c′.size ≤ c.size and c′ ⊆ε c then
u← c′ ∪ c
C − c′, C − c
C ← C ∪ c
merged← True
Return

end if
end for
if merged = False then
C = C ∪ c
for all v ∈ c do
T [v]← T [v] ∪ c

end for
end if

Figure 6. Pseudo Code of Optimized Merge Algorithm with Community
Mapping Tables

In the first for-all loop, this function extracts possible
communities to compare. Keys of the mapping table T are
vertex IDs and values are sets of community ID which the
vertex belongs to (T [v] means the community ID sets with
vertex v). At the end of this for-all loop, the community set
Cset stores the all possible community IDs which might be
merged to the given community c.

These communities are compared in the second for-all
loop one after another. The inside of this loop is the exactly
same as the comparison procedure of Merge function in
original DEMON algorithm. If a community should be
merged is found, merge these communities and finish this
optimized Merge function. If there are no communities to be
merged, register the given community c as the new global
community and update this mapping table.

In fact, our optimized method has extra cost for construc-
tions and references the mapping table. However, the number
of comparison and merge process were reduced by referring
this table. While original Merge function compared all-to-
all small communities even most communities are never
overlapped, our optimized Merge function compares only
overlapping communities, then it eliminates unnecessary

merging repetition.
Furthermore, we can reduce the community comparison

processes in the incremental DEMON algorithm. In order
to find communities we should actually compare quickly,
we defined two types of tables. The first table represents
mapping between vertex ID and community IDs the vertex
belongs, and the second one represents the number of
vertices and overlapping communities for each community.
These tables will be updated when vertices or edges are
incrementally added to or deleted from communities.

We will show an example of the way with how incremen-
tal Merge processing with updates of these tables when an
edge is added (Figure 7).

1) Suppose an edge between v4 and v6 is added, and
v4 is about to join community C2 by the result of
incremental Label Propagation function.

2) Update these tables describe member vertices and
overlaps according to updated vertices and commu-
nities where they belongs.

3) Apply Merge function only to communities which of
statuses are updated.

4) If they are actually merged, update these mapping
tables again.

B. Complexity

Suppose the number of degrees of the updated (added or
removed) vertex v is kv and the average degree of graph is
k. n and m is the number of total vertices and edges of a
given graph. We also define |C| as the number of generated
communities.

1) Ego Minus Ego Network Extraction: The Ego Minus
Ego function extracts Ego Minus Ego networks from neigh-
bor vertices of the update vertex, and then add or remove
the neighbor vertices. From the discussion, the computation
complexity for an Ego Minus Ego function is O(kv × k).

Considering that Ego Minus Ego networks must be stored
for all vertices, the space complexity is O(n + m) × k.
That means it needs large heap memory space to store the
number of average degree of a graph, and it is impossible to
manage billion-scale networks in this method. We will need
a scalable method such as data optimization and leveraging
distributed-memory environments for our future work to
handle larger-scale data.

2) Label Propagation: The Label Propagation function
puts or updates a label to the newly added vertex. The
computation complexity is O(kv) because it only updates
the added vertex label from neighbor vertices.

The space complexity is only O(n × k2), because the
function stores the member of communities for each Ego
Minus Ego network. The required heap memory space might
be much larger than Ego Minus Ego network extraction.

3) Merge Function: In the original DEMON, the compu-
tation and space complexity in the Merge function is |C| and
|C| × n. On the other hand, our optimized Merge function,

v3

v5

v4

v6

v1

v2

C1
C2

Size Overlaps

C1 4 C2 1

C2 3 C1 1

V C

1 1

2 1

3 1,	2

4 1

5 2

6 2

v3

v5

v4

v6

v1

v2

C1 C2

V C

1 1

2 1

3 1,	2

4 1,	2

5 2

6 2

Size Overlaps

C1 4 C2 2

C2 4 C1 2

Update
Tables

v3

v5

v4

v6

v1

v2

C1

V C

1 1

2 1

3 1

4 1

5 1

6 1

Size Overlaps

C1 6

Merge
added
edge

Figure 7. An Example of Incremental Merge Processing with Optimized Data Structures.

the computation and space complexity is up to |kv| and
|kv|×n because we have only to compare near communities
from neighbor vertices.

V. IMPLEMENTATION AND EVALUATION

A. Implementation
We implemented original and incremental DEMON algo-

rithms in C++ on top of our own graph database called IBM
System G [10]. The original DEMON algorithm has been
implemented as a Python script and can be downloaded from
DEMON homepage [11], and we ported this script to C++
code.

B. Experimental Data Set
In order to compare our proposed incremental method

and the original one, we obtained the same data sets as the
experiment of the authors of [1] did as follows.

Congress
The network of legislative collaborations between
US representatives of the House and the Senate
during the 111st US congress. It is a relatively
dense network, with 536 vertices and 14,198 edges,
and average degree is 53.98.

IMDB
We also used the part of the data set of actors
who star in at least two movies during the years
from 2001 to 2010, filtering out television shows,
video games, and other performances. The number
of vertices and edges are 56,542 and 185,247. The
average degree is 6.55.

Amazon
As a larger real network, we used Amazon pur-
chases data. It has frequent co-purchases of prod-
ucts are recorded for the day of May 5th 2003.

The number of vertices and edges are 410,236 and
2,439,437, and the average degree is 11.89.

Input files for the experiments have edge list in the CSV
format where each line is comprised of one edge from a
source vertex to a destination vertex. In order to simulate
time-evolving dynamic graph, we have 2 different files -
one for baseline graph data and another file for dynamically
added edge list. Base graph data to be added will be read at
once and additional edge data to be added incrementally.

C. Experimental Environment
In the original DEMON algorithm, we executed the whole

algorithm for dynamic networks. We generated each network
input file by newly added edge data one by one, then start
DEMON program and measure execution time and obtain
communities. On the other hand, our incremental DEMON
algorithm loads a baseline graph data and calculate the
initial community only once. We evaluated performance by
executing the original and incremental DEMON algorithm
on IBM System G process. The execution environment is
64bit Red Hat Linux, with single core Intel(R) Xeon(R) CPU
E5-2660 @ 2.20GHz and 378GB random access memory.

D. Performance Results
The execution times for community detections with addi-

tional 100 edges with Congress, IMDb and Amazon data sets
are shown in Figure 8, Figure 9 and Figure 10 respectively.
These figures describe the elapsed time for the first step (the
lower part of each bar) to generate and analyze baseline
graph objects and the changed graph with additional new
100 edges to update and analyze them (the upper part of
each bar).

With Congress data set, the original DEMON algorithm
took about 1.3 seconds in the first step and constantly more

ε=0.25 ε=0.50 ε=0.75 ε=0.25 ε=0.50 ε=0.75
Original Incremental

Speedup 1.00 1.00 1.00 98.40 100.88 100.98

Total 131.756 132.159 131.876 1.339 1.310 1.306

AddEdges 130.426 130.839 130.548 0.049 0.017 0.020

Initial 1.330 1.320 1.328 1.290 1.293 1.286

0

20

40

60

80

100

120

140

Ex
ec
ut
io
n	
Ti
m
e	
(s
)

Congress	Data	(Add	100	Edges)

Figure 8. Elapsed time using Congress graph data when new 100 edges
are added

than one seconds in each step. The total execution time was
about 130.4 seconds with the parameter ε used in Merge
function was 0.25. In our incremental DEMON algorithm, it
took about 1.29 seconds in the first step, almost same as the
original algorithm. However, it took only 0.049 seconds for
incremental steps to add 100 edges, resulted 1.34 seconds in
total and 98.4 times faster than that of the original method.

In IMDb data set, the original algorithm took more time,
about 4.79 seconds per each step, and the total execution
time was more than 6 minutes. In our incremental DEMON
algorithm, the first step took 4.868 seconds, but the incre-
mental phase took only 0.96 seconds in the first step. The
total execution time was only 5.828 seconds which achieved
about 83.0 times faster with the parameter ε was 0.25. When
ε was 0.5 or 0.75, our incremental method was around 101.5
times faster than that of the original method.

In Amazon data set, the effect of our incremental method
was still remarkable. The original DEMON algorithm almost
constantly took 36.6 seconds for each step, and total execu-
tion time was more than one hour. On the other hand, our
incremental DEMON algorithm took about 44.1 seconds for
the first step, but the incremental steps for additional 100
edges was only about 10.1 seconds. The total time was 54.2
seconds, 69.2 times faster than the original method.

The main reason why the incremental method took more
time in the first step with Amazon data set than with
Congress and IMDb data was that the number of vertices
and edges were much larger, and the overheads for inner re-
arranging intermediate data structures such as C++ standard

ε=0.25 ε=0.50 ε=0.75 ε=0.25 ε=0.50 ε=0.75
Original Incremental

Speedup 1.00 1.00 1.00 82.98 101.48 101.55

Total 484.458 507.211 499.706 5.838 4.998 4.921

AddEdges 479.480 502.298 494.659 0.938 0.030 0.031

Initial 4.978 4.913 5.047 4.900 4.968 4.890

0

100

200

300

400

500

600

Ex
ec
ut
io
n	
Ti
m
e	
(s
)

IMDb	Data	(Add	100	Edges)

Figure 9. Elapsed time using IMDb graph data with additional 100 edges

ε=0.25 ε=0.50 ε=0.75 ε=0.25 ε=0.50 ε=0.75
Original Incremental

Speedup 1.00 1.00 1.00 69.20 107.70 88.91

Total 3701.910 3937.710 3768.120 53.494 36.563 42.380

AddEdges 3666.411 3900.434 3731.249 9.437 0.196 0.205

Initial 35.499 37.276 36.871 44.057 36.367 42.175

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Ex
ec
ut
io
n	
Ti
m
e	
(s
)

Amazon	Data	(Add	100	Edges)

Figure 10. Elapsed time using Amazon graph data with additional 100
edges.

map structures became visible.
Even if the threshold parameter ε for the Merge function

was changed, the total time for DEMON algorithm was
not drastically changed. Generally, if ε is large, small com-
munities would be frequently merged and the communities
for comparison would drastically decrease. On the other
hand, when ε is small, the number of merge processes will
decrease, but many communities overlapped but not merged
must be compared for every iterations. These comparison
procedures could be reduced if we introduce additional data
structure for comparison tables like in Figure 7. It will be
our future work.

VI. CONCLUSION AND FUTURE WORK

We proposed an incremental community detection algo-
rithm based DEMON algorithm for real-world network anal-
yses. We also showed our algorithm reduced the execution
time of community detection to less than single second
for incrementally updated networks, and makes around 100
times faster than original method in 100 steps iterations.

Besides the speed-up of community detections for in-
crementally growing networks, it took much more time to
generate Ego Minus Ego networks and set labels for all
these networks in the first step. Moreover, it consumed much
larger heap memory space than these original three functions
we mentioned and it was not realistic to apply it for much
larger networks with a standalone commodity machine with
limited memory size.

As a future work, we will optimize Ego Minus Ego
network extractions and storing functions, and improve this
method on parallel and distributed-memory machines with
running incremental community detections. We will only
show the result on a single node, but as our next work,
we will implement a distributed version of our proposed
method.

In this research, we implemented and evaluated incremen-
tal method only for adding edges. We will also propose
additional incremental procedures for deleting edges and
vertices as another future work.

We will also need more precise evaluations about out-
puts like distributions of generated community sizes and
precision. Original DEMON mentioned that the distribution
was better than that of other popular community detection
methods. Because our method especially Label Propagation
is supposed approximation to set labels, the final result may
be different from original one.

ACKNOWLEDGMENT

This research was supported by JST, CREST (Research
Area: Advanced Core Technologies for Big Data Integra-
tion).

REFERENCES

[1] M. Coscia, G. Rossetti, F. Giannotti, and D. Pedreschi, “De-
mon: a local-first discovery method for overlapping communi-
ties,” in Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM,
2012, pp. 615–623.

[2] Z. Wu and M. Zou, “An incremental community detection
method for social tagging systems using locality-sensitive
hashing,” Neural Networks, vol. 58, pp. 14–28, 2014.

[3] S. Pang, C. Chen, and T. Wei, “A realtime community
detection algorithm: incremental label propagation,” in Future
Information Networks, 2009. ICFIN 2009. First International
Conference on. IEEE, 2009, pp. 313–317.

[4] J. Li, L. Huang, T. Bai, Z. Wang, and H. Chen, “Cdbia: a
dynamic community detection method based on incremental
analysis,” in Systems and Informatics (ICSAI), 2012 Interna-
tional Conference on. IEEE, 2012, pp. 2224–2228.

[5] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear
time algorithm to detect community structures in large-scale
networks,” Physical review E, vol. 76, no. 3, p. 036106, 2007.

[6] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, “Link communities
reveal multiscale complexity in networks,” Nature, vol. 466,
no. 7307, pp. 761–764, 2010.

[7] M. Rosvall and C. T. Bergstrom, “Maps of random walks on
complex networks reveal community structure,” Proceedings
of the National Academy of Sciences, vol. 105, no. 4, pp.
1118–1123, 2008.

[8] A. Clauset, M. E. Newman, and C. Moore, “Finding com-
munity structure in very large networks,” Physical review E,
vol. 70, no. 6, p. 066111, 2004.

[9] P. Pons and M. Latapy, “Computing communities in large
networks using random walks,” in Computer and Information
Sciences-ISCIS 2005. Springer, 2005, pp. 284–293.

[10] IBM System G Team. (2016) IBM System G. [Online].
Available: http://systemg.research.ibm.com/

[11] Michele Coscia. (2012) Michele Coscia — DEMON.
[Online]. Available: http://www.michelecoscia.com/?page
id=42

http://systemg.research.ibm.com/
http://www.michelecoscia.com/?page_id=42
http://www.michelecoscia.com/?page_id=42

	I Introduction
	II Related Work
	III Background - Overlapping Community Detection
	III-A DEMON Overview
	III-B Algorithm Details
	III-B1 Extracting Ego Minus Ego Networks
	III-B2 Label Propagation
	III-B3 Merge

	III-C Performance Characteristics of DEMON algorithm

	IV Proposed Method - Incremental Community Detection
	IV-A Incremental Functions Description
	IV-A1 Incremental Ego Minus Ego Function
	IV-A2 Incremental Label Propagation Function
	IV-A3 Merge Function

	IV-B Complexity
	IV-B1 Ego Minus Ego Network Extraction
	IV-B2 Label Propagation
	IV-B3 Merge Function

	V Implementation and Evaluation
	V-A Implementation
	V-B Experimental Data Set
	V-C Experimental Environment
	V-D Performance Results

	VI Conclusion and Future Work
	References

