
Leveraging Cloud Data to Mitigate User Experience
from ‘Breaking Bad’

Nicholas A. James† Arun Kejariwal‡ David S. Matteson†
†Cornell University ‡Twitter Inc.

ABSTRACT
Low latency and high availability of an app or a web service
are key, amongst other factors, to the overall user experience
(which in turn directly impacts the bottomline). Exogenic
and/or endogenic factors often give rise to breakouts in cloud
data which makes maintaining high availability and deliv-
ering high performance very challenging. Although there
exists a large body of prior research in breakout detection,
existing techniques are not suitable for detecting breakouts
in cloud data owing to being not robust in the presence of
anomalies.

To this end, we developed a novel statistical technique to
automatically detect breakouts in cloud data. In particular,
the technique employs Energy Statistics to detect breakouts
in both application as well as system metrics. Further, the
technique uses robust statistical metrics, viz., median, and
estimates the statistical significance of a breakout through a
permutation test. To the best of our knowledge, this is the
first work which addresses breakout detection in the pres-
ence of anomalies.

We demonstrate the efficacy of the proposed technique
using production data and report Precision, Recall and F-
measure measure. The proposed technique is 3.5× faster
than a state-of-the-art technique for breakout detection and
is being currently used on a daily basis at Twitter.

1. INTRODUCTION
In a recent report, Mary Meeker from KPCB mentioned
that mobile usage continues to rise reapidly (14% Y/Y) and
mobile usage now accounts for 25% of the total web usage [1].
In a similar vein, Strategy Analytics reported that mobile
data traffic is expected to to rise by 300% by 2017 to a peak
of 21 Exabytes, from 5 Exabytes in 2012 [2]. Growing traffic
and user engagement directly impacts the performance and
availability of an app/website. To this end, KISSmetrics
reported the following [3]:

z 73% of mobile internet users say that they have encoun-
tered a website that was too slow to load.

z 38% of mobile internet users say that they have encoun-
tered a website that was not available.

z A 1 second delay in page response can result in a 7%
reduction in conversions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200Z ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Mean Shift: −7.591%

Mean Shift: 6.391%

Mean Shift: 7.706%

Figure 1: Example breakouts observed in production data at
Twitter

Likewise, in [4], it was reported that performance has a di-
rect impact on business KPIs (Key Performance Indicators).
In [5], Shunra (now acquired by Hewlett-Packard) reported:
If your mobile app fails, 48% of users are less likely to ever
use the app again. 34% of users will just switch to a com-
petitors app, and 31% of users will tell friends about their
poor experience, which eliminates those friends as potential
customers.

Amongst a large multitude of factors, breakouts – charac-
terized by either a mean shift or a rampup from one steady
state to another in a given time series (exemplified in Fig-
ure 1) – in system and/or application metrics can potentially
impact performance and availability, thereby adversely im-
pacting the end user experience. A wide variety of factors,
some are enumerated below, can induce breakouts1 in sys-
tem and/or application metrics.

(a) Continuous code deployment

(b) A/B testing [6, 7, 8]

(c) Launch of new products or new product features

(d) Partial failure of a cluster: Höelzle and Barroso point
out that hardware failure in the cloud is more of a norm
than exception [9] (also see [10, 11]).

Breakouts can potentially impact latency and availability
experienced by the end user. In light of this, it is critical to
detect breakouts early (robust breakout detection would also
facilitate assessing the efficacy of an A/B test). Although
there exists a large body of prior research in breakout de-
tection, existing techniques are not suitable for detecting

1Breakout, a term commonly used in finance, is referred to
as changepoint in statistics.

ar
X

iv
:1

41
1.

79
55

v1
 [

st
at

.M
E

]
 2

8
N

ov
 2

01
4

de
ns

ity

Segment 1

de
ns

ity

Segment 2

de
ns

ity

Segment 3
de

ns
ity

Segment 4

Figure 2: Data distribution of the four segments shown in
Figure 1

breakouts in cloud data owing to not being robust in the
presence of anomalies. To this end, we developed a novel
technique to automatically detect breakouts in cloud data
(which comprises of millions of time series at Twitter [12]).
The main contributions of the paper are as follows:

r First, we propose a novel statistical technique, called
E-Divisive with Medians (EDM), to automati-
cally detect breakouts in cloud data. Unlike the ex-
isting techniques for breakout detection, EDM is ro-
bust against the presence of anomalies.2 The salient
features of EDM are the following:

z EDM employs E-statistics [14] to detect diver-
gence in mean. Note that, in general, EDM can
also be used detect change in distribution in a
given time series (discussed further in Section 3).

z EDM uses robust statistical metrics, viz., median
[15, 16] , and estimates the statistical significance
of a breakout through a permutation test.

z EDM is non-parametric. This is of paramount
importance as the cloud data does not follow the
commonly assumed normal distribution, as illus-
trated by Figure 2 or any other widely accepted
model. From the figure we note that none of the
four segments in Figure 1 follow a common dis-
tribution.

To the best of our knowledge, this is the first work
which addresses breakout detection in the presence of
anomalies.

r Second, we present a detailed evaluation of EDM us-
ing production data.

z Using production data, we demonstrate that tech-
niques such as PELT [17] do not fare well when
applied to cloud data owing to a non-normal dis-
tribution of cloud data.

2Note that the presence of anomalies in production cloud is
not uncommon [13].

z We also report Precision, Recall and F-measure
to assess the efficacy of EDM.

The proposed technique is 3.5× faster than a state-of-
the-art technique for breakout detection and is being
currently used on a daily basis at Twitter.

The remainder of the paper is organized as follows: Sec-
tion 2 presents a brief background. Section 3 details the
proposed technique for detecting breakouts in cloud data
with anomalies. Section 4 presents an evaluation of the pro-
posed technique. Lastly, conclusions and future work are
presented in Section 6.

2. BACKGROUND
In this section we present a brief background of the concepts
used by EDM for detecting breakouts.

2.1 Divergence Measure
To detect breakouts, we employ a metric based on the weighted
L2-distance between the characteristic functions of random
variables. Let X and Y be independent random variables,
X ′ be an i.i.d copy of X and Y ′ be an i.i.d. copy of Y. Let
the cumulative distribution function of X and Y be denoted
by F and G respectively.

Definition 1. The energy distance between X and Y is de-
fined as follows [14]:

E(X,Y) = 2E|X − Y | − E|X −X ′| − E|Y − Y ′| (1)

In [18], Rizzo and Székely showed that the L2-distance be-
tween F and G satisfies the following:

2

∫ ∞
−∞

(F (x)−G(x))2dx = E(X,Y) (2)

For a random variable X, its characteristic function φx(t)
is defined by φx(t) = E(exp{iXt}). Using this notation,
Székely and Rizzo [14] show that the energy distance be-
tween X and Y can also be represented in terms of their
characteristic functions:

E(X,Y) =

∫ ∞
−∞

|φx(t)− φy(t)|2

πt2
dt. (3)

Since the characteristic function, like the cumulative dis-
tribution function, uniquely defines a random variable, we
define a class of distance measures based on them. Let

D(X,Y ;α) =

∫ ∞
−∞
|φx(t)− φy(t)|2ω(t;α)dt (4)

where ω(t;α) is a weight function, parameterized by α, such
that D(X,Y ;α) <∞. The indexing parameter α is used to
scale the distance between distributions. For instance, the
metric used in Equation 3 is obtained by using ω(t;α) = 1

πt2
.

In [19], Székely and Rizzo suggested the following for ω:

ω(t;α) =

(
2π

1
2 Γ(1− α/2)

α2αΓ[(1 + α)/2]
|t|α
)−1

where Γ(·) is the complete gamma function. Using this
weight function allows us to obtain a metric that generalizes

the one in Equation 1. For α ∈ (0, 2], the generalized energy
distance between X and Y is given by:

E(X,Y ;α) = 2E|X − Y |α − E|X −X ′|α − E|Y − Y ′|α

Székely and Rizzo [18] also show that with this weight func-
tion, and α ∈ (0, 2], we have

D(X,Y ;α) = E(X,Y ;α).

For detecting divergence in mean, α is set to 2; on the other
hand, for detecting arbitrary change in distribution, 0 < α <
2 may be a better choice [19]. This property is exemplified
through the following Lemma.

Lemma 1. For any pair of independent random variables X
and Y , and for any α ∈ (0, 2), if E(|X|α + |Y |α) <∞, then
E(X,Y ;α) ∈ [0,∞), and E(X,Y ;α) = 0 if and only if X
and Y are identically distributed. Furthermore, if α = 2, we
have that E(X,Y ; 2) = 0 if and only if EX = EY .

Proof. A proof is given in [19].

The metric E allows for a simple and intuitive approximation
to D and doesn’t require any integration. Let Xn = {Xi :
i = 1, . . . , n} and Y m = {Yj : j = 1, . . . ,m} be independent
iid samples from the distribution of X,Y ∈ Rd, respectively,
such that E|X|α, E|Y |α < ∞ for some α ∈ (0, 2). We can

then approximate E by Ê as follows:

Ê(Xn,Y m;α) =
2

nm

n∑
i=1

m∑
j=1

|xi − yj |α

−

(
n

2

)−1∑
i<j

|xi − xj |α (5)

−

(
m

2

)−1∑
i<j

|yi − yj |α

The first term on the right hand side of Equation 6 corre-
spond to the between distance between Xn and Y m. The
second and third terms on the right side of Equation 6 cor-
respond to the within distance of Xn and Y m respectively
[19].

By the strong law of large numbers for U-statistics [20],

Ê → E as min(n,m)→∞. Furthermore, Székely and Rizzo
[18] show that under the null hypothesis of equal distribu-
tions, i.e., E(X,Y ;α) = 0,

nm

n+m
Ê(Xn,Y m;α)⇒ A

as min(n,m) → ∞, where A is a non-degenerate random
variable and M ⇒ N means that M converges in distri-
bution to N . However, under the alternative hypothesis,
nm
n+m
Ê → ∞ as min(m,n) → ∞. For notational simplicity,

we will use the following in the remainder of the paper:

Q̂(Xn,Y m;α) =
nm

n+m
Ê(Xn,Y m;α) (6)

2.2 Permutation Test
The convergence of the statistic presented in Equation 6
allows us to determine the statistical significance of a pro-
posed breakout. Let the observations of a time series be
given by Z1, Z2, . . . , Zn and 1 ≤ τ < κ ≤ n be constants.

We define the following sets Aτ = {Z1, Z2, . . . , Zτ} and
Bτ (κ) = {Zτ+1, . . . , Zκ}. A breakout location τ̂ is then
estimated as the value that maximizes

Q̂(Aτ , Bτ (κ);α)

for 1 ≤ τ < κ ≤ n. Along with the estimated breakout
location we also have an associated test statistic

q̂ = Q̂(Aτ̂ , Bτ̂ (κ̂);α).

Given α = 2, large values of q̂ correspond to a significant
change in mean (and a distribution in general). However,
calculating a precise critical value requires a knowledge of
the underlying distributions, which are generally unknown.
Therefore, we propose a permutation test to determine the
significance of q̂.

Under the null hypothesis that there does not exist a
breakout, we conduct a permutation test as follows. First,
the observations are permuted to construct a new time se-
ries. Then, we re-apply the estimation procedure to the
permuted observations. This process is repeated and after
the rth permutation of the observations we record the value
of the test statistic q̂(r).

This permutation test will result in an exact p-value if
we consider all possible permutations. However, this is not
computationally tractable in general. Therefore, we obtain
an approximate p-value by performing a sequence of R ran-
dom permutations. The approximate p-value is computer
as follows:

#{r : q̂(r) ≥ q̂}/(R+ 1)

The re-sampling risk, the probability of a different decision
than the one based on the theoretical p-value, can be uni-
formly bounded by an arbitrarily small constant using the
approach proposed by Gandy [21]. In our analysis we test
at the 5% significance level and use R = 199 permutations.

2.3 Metrics
In order to minimize user impact, it is imperative to detect
breakout(s) at the earliest. We qualify the timeliness of
breakout detection via EDM using the metric TTD defined
below:

Definition 2. We define TTD (Time to Detect) as the
number of time series observations between the occurrence of
a breakout and the breakout estimate reported by a breakout
detection algorithm.

Precision is the ratio of true positives (tp) over the sum of
true positives (tp) and false positives (fp). Recall is the ratio
of true positives (tp) over the sum of true positives (tp) and
false negatives (fn). F-measure is defined as follows (refer to
[22] for a detailed discussion):

F = 2× precision× recall

precision + recall
(7)

3. E-DIVISIVE WITH MEDIANS
Suppose that we are given the following time series, Z1, Z2, . . . ,
Zn consisting of independent observations. A breakout is
characterized by a value γ ∈ (0, 1) such that observations

E−Div EDM EDM−X

Figure 3: Example (using production data) highlighting the impact of presence of anomalies on breakout detection

{Z1, Z2, . . . , ZbγNc} have distribution function F , and obser-
vations {ZbγNc+1, ZbγNc+2, . . . , Zn} have distribution func-
tion G. Furthermore, it is assumed that F 6= G. In order to
determine if the observations in the provided time series are
identically distributed we perform the following hypothesis
test:

H0 : γ = 1

HA : 0 < γ < 1

If the null hypothesis of no breakout is rejected, we must
then also return an estimate for the breakout location. Prior
work in breakout detection assumes that the time series un-
der consideration is free of anomalies. However, this is not
the case in production cloud data. Figure 3 illustrates the
impact of the presence of anomalies on the location of a
breakout detected. From the figure we note that there are
multiple global anomalies, both positive and negative. The
breakout locations obtained using E-Div (of the ecp R pack-
age [23]) and the algorithms – EDM and EDM-X – pre-
sented later in this section are marked with vertical lines.
From a TTD perspective, we note that using the proposed
algorithms we obtain estimates of the location of breakouts
than other non-parametric procedures. This is due to the
fact that EDM and EDM-X are anomaly “aware”.

3.1 Robustness against anomalies
The approximation, Ê given in Equation 6 is susceptible to
anomalies since one single anomaly can greatly change its

value. This is due to the fact that Ê is based upon a linear
combination of sample means. To alleviate this issue we
instead use a robust location estimator, the median. We
thus define the robust between sample distance:

mα
XY = median {|xi − yj |α : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

and similarly define mXX and mY Y as the median of the
within sample distances. We then obtain a robust version

of Ê as follows:

Ẽ(Xn,Y m;α) = 2mα
XY −mα

XX −mα
Y Y (8)

For any two given sets Xn and Y m the time necessary to
compute Equation 8 a single time is linearly proportional
to the number of distance terms present. Therefore, if we

assume that n ≥ m, both Ê and Ẽ require O(n2) calculations
to evaluate.

However, if a single observation is added/removed from

either Xn or Y m, the value of Ê can be updated in O(n)

time, but Ẽ will require O(n2). However, if we use a tree

data structure, we can update Ẽ in O(n log(n)) time; but,

this comes at the expense of needing O(n2 log(n)) time to
calculate the initial value of our statistic. Since such updates
may be done a large number of times, we consider this trade-
off to be acceptable.

Although we can now quickly perform updates we will
have to keep track of all O(n2) distances. Even for mod-
erately sized time series this may become intractable, even
with 24GB of memory. For this reason we make use of inter-
val trees (see the Appendix for further details) in order to
obtain an approximate median. Through experimentation
we learned that even the O(n log(n)) update is too slow, and
thus we use the following approximation.

Let δ > 1. We approximate the within distance for the
set Xn as follows:

mα,δ
XX = median {|xi − xj |α : 1 ≤ i < j ≤ δ or i+ 1 = j}

We similarly define mα,δ
Y Y . The between distance is approxi-

mated by using only δ observations from each set. Figure 4
shows two possible ways of selecting the δ observations.

Head Figure 4 (A) chooses to take the δ observations that
are at head of both sets X and Y.

Tail Figure 4 (B) chooses to take the δ observations at the
tail of set X and the head of Y.

Based on our experiments using production data we learned
that using the Tail (as illustrated in Figure 4 (B)) yields
better breakout estimates and hence, we use:

mα,δ
XY = median {|xi − yj |α : n− δ + 1 ≤ i ≤ n, 1 ≤ j ≤ δ}

In light of the aforementioned approximation, Equation 6
can be written as:

Q̃(Xn,Y m;α, δ) =
nm

n+m
Ẽ(Xn,Y m;α, δ) (9)

(A) Head

(B) Tail

X

Y

Figure 4: This figure depicts two different ways of selecting
which δ observations to use for approximating the between
distance.

Typically δ is chosen such that it is much smaller than√
n. Therefore, with these approximations we can create

the statistic Ẽ(Xn,Y n;α, δ), which can be calculated in
O(n log(n)) time and updated in O(log(n)) time when using
the interval tree approximation.

3.2 Algorithm
The EDM algorithm makes use of the Ẽ(·, ·;α, δ) statistic
presented in the previous section. Let a time series be given
by Z1, Z2, . . . , Zn and 1 < δ ≤ τ and τ + δ ≤ κ ≤ n.
We define the following sets: Aτ = {Z1, Z2, . . . , Zτ} and
Bτ (κ) = {Zτ+1, Zτ+2, . . . , Zκ}. Thus, both Aτ and Bτ (κ)
have at least δ observations. Using Equation 9 we obtain
the breakout estimate, τ̂ , as follows:

(τ̂ , κ̂) = argmax
τ,κ

Q̃(Aτ , Bτ (κ);α, δ) (10)

By solving the maximization problem given in Equation 10
we not only obtain an estimate τ̂ , but also its associated
test statistic value q̂. Given this and a predetermined sig-
nificance level, we perform a permutation test (detailed in
subsection 2.2) to determine whether the reported breakout
is statistically significant.

Algorithm 1 is used to determine τ̂ and κ̂. We set D =
10 in our implementation. However, we suggest selecting
D such that 2D ≈ n. Then, the algorithm makes use of
two key procedures, ForwardUpdate and BackwardUpdate.

Parameters: Z, δ, and D
Let TA, TB , and TAB be interval trees with 2D leaf
nodes
// Initialize within distance trees

for 1 ≤ i ≤ δ do
for i+ 1 ≤ j ≤ δ do

Insert |Zi − Zj | to TA
Insert |Zi+δ − Zj+δ| to TB

end

end
// Initialize between distance tree

for 1 ≤ i ≤ δ do
for 1 ≤ j ≤ δ do

Insert |Zi − Zj+δ| to TAB
end

end
〈m1,m2,m3〉 = approx. median 〈TAB , TA, TB〉
bestStat = τ(κ−τ)

κ
(2m1−m2−m3)

bestLoc = δ
τ = δ
forwardMove = 0
// Update trees

while τ ≤ n− δ do
if forwardMove = 1 then

Perform ForwardUpdate
end
else

Perform BackwardUpdate
end
forwardMove = 1 - forwardMove

end
return bestLoc

Algorithm 1: EDM

These procedures allow us to efficiently update Q̃ by making
use of the current states of the interval trees.

• ForwardUpdate iterates κ from τ + δ + 1 to n and

updates the value of Q̃ after each iteration. Each iter-
ation corresponds to adding values to Bτ (κ).

• BackwardUpdate iterates κ from n − 1 to τ + δ + 1

and updates the value of Q̃ after each iteration. Each
iteration corresponds to removing values from Bτ (κ).

• For both procedures ForwardUpdate and BackwardUp-
date, all the parameters are passed by reference. Ad-
ditionally, both procedures obtain the an approximate
medians in O(D) (refer to the Appendix for details).
In both cases, all the interval trees are updated. Hence,
the statistic value can be computed in logarithmic time.

3.2.1 Special Case: α = 2

It should be noted that when α = 2, it is possible to obtain
a much more efficient algorithm. In this case, E(X,Y ; 2) =
2(EX − EY)2; hence, changes in mean can be detected.
As mentioned before, a robust location can be estimate by
considering the sample median instead of the sample mean.

In this case, we define Ẽ as follows:

Ẽ(Aτ , Bτ (κ); 2, δ) = 2[median(Aτ)−median(Bτ (κ))]2

Parameters: Z, δ, TA, TB , TAB , τ , bestStas, bestLoc
n = Z.size()
τ ← τ + 1
Update counts in TA, TB , and TAB resulting from new
τ value
for τ + δ ≤ κ ≤ n do

Insert —Zκ − Zκ−1| to tree TB
〈m1,m2,m3〉 = approx. median 〈TAB , TA, TB〉
stat = τ(κ−τ)

κ
(2m1−m2−m3)

if stat > bestStat then
bestStat = stat
bestLoc = τ

end

end
Procedure ForwardUpdate

Parameters: Z, δ, TA, TB , TAB , τ , bestStat, bestLoc
n = Z.size()
τ ← τ + 1
Update counts in TA, TB and TAB resulting from new τ
value
κ = n
while κ ≥ τ + δ do

Insert |Zκ − Zκ−1| to tree TB
〈m1,m2,m3〉 = approx. median of 〈TAB , TA, TB〉
stat = τ(κ−τ)

κ
(2m1−m2−m3)

if stat > bestStat then
bestStat = stat
bestLoc = τ

end
κ← κ− 1

end
Procedure BackwardUpdate

Parameters: Z and δ

max-heaps LMax and RMax
min-heaps LMin and RMin
bestStat = −∞
bestLoc = −1
for 1 ≤ i < δ do

addToHeaps(LMax, LMin, Zi)
end
for δ ≤ i ≤ n− δ do

addToHeaps(LMax, LMin, Zi)
mL = getMedian(LMax, LMin)
empty RMax and RMin
for i ≤ j < i+ δ do

addToHeaps(RMax, RMin, Zj)
end
for i+ δ ≤ j ≤ n do

addToHeaps(RMax, RMin, Zj)
mR = getMedian(RMax, RMin)

stat = i(j−i)
j

(mL−mR)2

if stat ¿ bestStat then
bestStat = stat
bestLoc = i

end

end

end
return bestLoc

Algorithm 2: EDM-X

This algorithm only considers the median of the actual ob-
servations and not the median of their distances. Unlike
the case where 0 < α < 2, only O(n) additional memory is
required and updates can be performed in O(log(n)) time.
This simplification enables the use of exact medians instead
of approximations. Because of this feature, we call this al-
gorithm E-Divisive with Exact Medians (EDM-X) –
see Algorithm 2. The algorithm is able to keep track of the
exact medians by using pairs of heaps; a max-heap stores
the n

2
smallest observations, while a min-heap stores the n

2
largest observations. If n is odd, then one of these heaps will
have an additional element. Procedure addToHeaps is used
by Algorithm 2 to maintain these properties for a given pair
of heaps. And since the heaps are passed by reference no
extra space or time is required to make copies.

4. EVALUATION
In this section we detail the evaluation methodology and
present results demonstrating the efficacy, measured in terms
of TTD (refer to subsection 2.3, of the algorithms presented
in the previous section. Our experiments show that the
presence of anomalies can significantly skew the TTD of
breakout algorithm.

4.1 Methodology
The efficacy of EDM and EDM-X was evaluated using a
wide corpus of time series data obtained from production.
The time series corresponded to both system and applica-
tion metrics. For example, but not limited to, the following
metrics were used:

r System Metrics

z CPU utilization, Heap usage, Disk writes

Parameters: M , m, and x
if m is empty then

Add x to M
end
if m isn’t empty and x ≤ m.top() then

Add x to M
end
else

Add x to m
end
if M.size() > m.size+ 1 then

Move M.top() to m
end
if m.size() > M.size() + 1 then

Move m.top() to M
end

Procedure addToHeaps

Parameters: Mand m
Output : The current median
if m.size() = M.size() + 1 then

return m.top()
end
if M.size() = m.size() + 1 then

return M.top()
end
if M.size() = m.size() then

return (M.top() +m.top())/2
end

Procedure getMedian

z Time spent in garbage collection

r Application Metrics

z Request rate

z Latency

In addition to the time series of the metrics mentioned above,
we also used minutely time series of the stock price of a pub-
licly traded company. Overall, more than 20 data sets were
used for evaluation. Given the velocity, volume, and real-
time nature of cloud infrastructure data, it is not practical
to obtain time series data with “true” breakouts labeled.
However, to determine TTD, location of a “true” breakout
is needed. To this end, for the data sets (obtained from pro-
duction) we used for evaluation, we determined the “true”
breakouts manually and then computed the TTD.

4.2 PELT and E-Divisive
Visual analysis serves as the starting point for deriving in-
sights from Big Data [24, 25, 26]. With the increase in
volume in Big Data, there has been increasing impetus be-
ing given to extreme scale visual analytics [27]. The May
2013 edition of IEEE Computer covered the challenges in
the realm of Big Data visual analytics [28, 29]. However, as
mentioned earlier, due to the velocity and volume of cloud
data, visual detection of breakouts is not practical. Further-
more, sometimes a breakout isn’t always obvious due to the
range of the observed values. This is exemplified by Fig-
ure 5. From Figure 5a we note that there is an anomaly on
the left hand side due to which even a 21% change in mean is

21% change

(a)

21% change

(b)

Figure 5: An example highlighting the limitations of visual detection of breakout(s)

cannot be detected via visual inspection. However, on zoom-
ing in (in other words, limiting the range of the y-axis), see
Figure 5b, we observe the aforementioned breakout.

To this end, we first evaluated the PELT (Pruned Exact
Linear Time) method by Killick and Haynes [30]. This is
a parametric method that can be used to detect single as
well as multiple breakout analysis. In the current context,
we focus only on its properties for estimating a single break-
out. This method is usually applied by using a log-likelihood
function to measure fit, but as shown in [17] the underlying
concepts can be extended to a number of different measure
of fit. One the major benefits of this algorithm is its speed,
which has been shown to have an expected linear running
time.

We also evaluated the E-Divisive method [31]. This is a
non-parametric breakout detection algorithm that is based
upon the statistic presented in Equation 6. Akin to PELT,
this method can also be used to estimate multiple breakouts,
but we will once again only examine its performance at iden-
tifying a single breakout. However, unlike PELT, E-Divisive
is a non-parametric algorithm and makes weak distribu-
tional assumptions. Hence, E-Divisive can be applied in
a wider range of settings, such as those where one is not cer-
tain that PELT’s assumptions necessarily hold. On the other
hand, E-Divisive has a quadratic running time, which is
much slower than that of PELT.

4.2.1 Data Without Anomalies
First, we applied the PELT procedure to the datasets men-
tioned earlier in this section. Figure 6a exemplifies a case
wherein the PELT method is efficient in detecting a breakout.
This is further supported by the TTD values in column 3 of
Table 1. However, since PELT makes distributional assump-
tions through its use of likelihood functions, PELT’s perfor-
mance suffer – large TTD value – when these assumptions
do not hold. This is illustrated by Figure 6b and column 3
of Table 1.

To address this problem, we used E-Divisive to compute
breakout location. Figure 6b and column 2 of Table 1 show

Raw Data

TTD

Rolling Median

TTD

Anomalies Removed

TTD

E-Div PELT E-Div PELT E-Div PELT

Dataset 1 0 0 0 0 71 74

Dataset 2 0 0 0 1 18 42

Dataset 3 2 1 1 1 1 1

Dataset 4 0 6 0 38 0 0

Dataset 5 0 65 1 65 0 65

Dataset 6 2 5 2 5 2 5

Dataset 7 6 7 4 7 1 7

Dataset 8 3 4 2 4 3 4

Dataset 9 9 8 6 8 8 15

Dataset 10 14113 15 14114 16 14113 15

Dataset 11 0 1 0 4 - -

Dataset 12 0 1 1 1 1 1

Dataset 13 45 2 45 2 - -

Dataset 14 0 1 1 2 0 1

Dataset 15 1 1590 0 1590 - -

Dataset 16 0 1 0 1 - -

Dataset 17 2 263 1 263 1681 1733

Dataset 18 1 0 2 0 2 0

Dataset 19 2 61 1 61 105 108

Dataset 20 4479 5607 4476 5607 4479 5607

Dataset 21 27 349 41 13 - -

Dataset 22 0 0 3 19 4 4

Dataset 23 4 1 15 15 - -

Dataset 24 32 44 17 0 1 1

Dataset 25 0 6 18 89 5 4

Table 1: TTD for the E-Divisive and PELT methods when
applied to raw and rolling median time series

that in almost all cases E-Divisive results in a smaller TTD.
Furthermore, since E-Divisive is a non-parametric method
it can be applied to a wider array of settings, especially
those where PELT’s assumptions are not guaranteed to hold.
However, although E-Divisive is significantly slower than
PELT we find this an acceptable trade off because of the
decreased TTD and greater range of applications.

PELT

(a)

E−Div PELT

(b)

E−Div PELT

(c)

Figure 6: Efficacy of PELT and E-Divisive

E−Div EDM−X

(a) E-Divisive and EDM-X

E−Div EDM

(b) E-Divisive and EDM

Figure 7: Illustration of efficacy of EDM-X and EDM

4.2.2 Data with anomalies
In the previous section we showed that when a dataset doesn’t
contain any anomalies that both PELT and E-Divisive can
be used to compute robust estimates locations of a breakout.
However, this is not the case in the presence of anomalies3,
as illustrated by Figure 6c. A common approach to mitigate
the effect of anomalies is local smoothing. The smoothers
we considered were the rolling mean and rolling median. For
these smoothers, each observation is replaced by either the
mean or median of its neighboring values. As anomalies can
still effect the smoothed values when calculating the rolling
mean, we used the rolling median. Although these meth-
ods can reduce the impact of anomalies, it can result in an
increased TTD as seen from columns 4 and 5 of Table 1. An-
other drawback to this approach is that one must choose the
size of the neighborhood to use to calculate the smoothed
values. A neighborhood that is too small will limit the mit-
igation of the effect of an anomaly; on the other hand, a
neighborhood one that is too big can potentially smooth
the mean changes (a breakout) in a time series.

Another approach is to remove anomalies before perform-
ing breakout analysis. To this end, we used the S-H-ESD
algorithm [13] to automatically detect anomalies. Subse-
quently, the anomalies were removed and breakout was de-
tected using both PELT and E-Divisive – see columns 6 and
7 of Table 1. However, we do not consider this an ideal ap-
proach as anomaly and breakout detection are tightly in-
tertwined. This stems from the fact that breakouts can
cause normal observations to appear as anomalies, whereas
anomalies can cause the data to appear to have a differ-
ent mean. Unlike the local smoothing approach preemptive
anomaly removal effects both E-Divisive and PELT. Both
algorithms become less able to identify a change, as is ex-
pected because of the relationship between breakout and
anomaly detection.

4.3 EDM
We next evaluated the efficacy of EDM. The TTD values
for E-Divisive, EDM-X and EDM are reported in Ta-

3Note that the presence of anomalies in production cloud is
not uncommon [13].

ble 2. Recall that EDM is designed to detect breakouts in
an anomaly “aware” fashion. From the table we note that in
most cases that TTD values are in the same ballpark as in
the case of E-Divisive. In a couple of cases – Datasets 10
and 20 – both EDM-X and EDM outperform E-Divisive

significantly, see Figures 7a and 7b. From Figure 7a we
note that, unlike E-Divisive, EDM-X was able to detect
the true location of the change in mean. This is due to fact
that EDM-X was not susceptible to the anomalies at the
left hand side of the time series. Likewise, from Figure 7b
we note that EDM is robust against the anomalies on the
right hand side of the true location of mean change; hence,
EDM returned a very accurate estimate of the breakout.

Amongst EDM-Head and EDM-Tail, the latter seem
to perform better in most cases. This is desirable from a
recency perspective. Only in the case of Dataset 13 EDM-
Tail performs significantly worse than E-Divisive.

The Precision, Recall and F-measure for both EDM-X
and EDM is reported in Table 3. From the table we note
EDM-X has a higher F-measure than EDM-Head and
EDM-Tail for the data sets we used. The approximate
p-values obtained using the permutation test (detailed in
subsection 2.2) for each run are tabulated in Table 4. From
the table we see that in some cases the p-value is higher than
our threshold of 5%.

Based on our experimental results, we argue for the use of
EDM when it is suspected that anomalies might be present
in a given time series. In addition, the run time of EDM-
X and EDM is much smaller to that of E-Divisive, see

0

2

4

6

0 5 10 15 20
Datasets

S
pe

ed
 U

p

NAMES

EDM−Head EDM−Tail EDM−X

Figure 8: Speedup of EDM and EDM-X relative to
E-Divisive

E-Div EDM-X EDM-Head EDM-Tail

Dataset 1 0 0 4 6

Dataset 2 0 64 84 0

Dataset 3 2 12 2 0

Dataset 4 0 0 3 2

Dataset 5 0 0 5 1

Dataset 6 2 1 0 0

Dataset 7 6 6 26 6

Dataset 8 3 1 69 11

Dataset 9 9 3 8 0

Dataset 10 14113 8 1489 43

Dataset 11 0 66 5 1

Dataset 12 0 0 47 2

Dataset 13 45 215 246 1332

Dataset 14 0 78 5 0

Dataset 15 1 3 9 4

Dataset 16 0 268 89 95

Dataset 17 2 1 122 1

Dataset 18 1 26 0 0

Dataset 19 2 27 4 1

Dataset 20 4479 183 55 3

Dataset 21 27 70 204 78

Dataset 22 0 0 34 4

Dataset 23 4 19 0 4

Dataset 24 32 143 47 3

Dataset 25 0 11 6 2

Table 2: TTD for various nonparametric breakout proce-
dures. EDM-Head and EDM-Tail refer to the EDM al-
gorithm when the δ between distance observations is chosen
according to the Figures 4(a) and 4(b) respectively

Figure 8. In our analysis, when performing the permuta-
tion test for EDM and EDM-X, the maximum number of
permutations were always performed. However, the imple-
mentation of E-Divisive in the ecp package allows for early
termination of the permutation test. Inspite of this, Figure
8 shows that EDM and EDM-X are at least 2× as fast as
E-Divisive in almost all cases, and sometimes 6× faster.

Even though the EDM and EDM-X algorithms have
been shown to be competitive with E-Divisive in the ab-
sence of anomalies, and better in the presence of anomalies,
these methods do have their own limitations. For instance,
see Figure 9. From the figure we note that EDM reports an
inaccurate breakout estimate. This is attributed to the large
number of anomalies as well as the fact that the anomalies
are closely intertwined with the normal observations.

Another limitation of EDM and EDM-X is that they are
both only able to detect a single breakout. Thus, if more
than one breakout exists, it is unclear which (if any) will
be found by EDM-X and EDM. Furthermore, depending
on the size and nature of the breakouts, it is possible for
performance to degrade, i.e., TTD may increase. This re-

EDM-X EDM-Head EDM-Tail

Precision 0.8400 0.9048 0.9048

Recall 1 0.8261 0.8261

F-Measure 0.9130 0.8636 0.8636

Table 3: Precision, recall, and F-Measure for EDM-X and
EDM

EDM-X EDM-Head EDM-Tail

Dataset 1 0.005 0.130 0.115

Dataset 2 0.005 0.005 0.005

Dataset 3 0.005 0.005 0.005

Dataset 4 0.005 0.005 0.005

Dataset 5 0.005 0.100 0.050

Dataset 6 0.005 0.005 0.005

Dataset 7 0.005 0.005 0.005

Dataset 8 0.005 0.035 0.120

Dataset 9 0.005 0.005 0.015

Dataset 10 0.005 0.005 0.005

Dataset 11 0.005 0.005 0.005

Dataset 12 0.005 0.015 0.010

Dataset 13 0.005 0.010 0.010

Dataset 14 0.005 0.005 0.005

Dataset 15 0.005 0.005 0.005

Dataset 16 0.005 0.005 0.005

Dataset 17 0.005 0.005 0.005

Dataset 18 0.005 0.005 0.005

Dataset 19 0.005 0.085 0.020

Dataset 20 0.005 0.005 0.005

Dataset 21 0.005 0.925 0.990

Dataset 22 0.005 0.020 0.985

Dataset 23 0.005 0.005 0.005

Dataset 24 0.005 0.025 0.030

Dataset 25 0.005 0.005 0.005

Table 4: Approximate p-values obtained from permutation
test (detailed in subsection 2.2)

sults from the fact that both EDM and EDM-X attempt
to partition the time series into two homogeneous segments.

EDM

Figure 9: An example illustrating limitations of EDM

5. RELATED WORK
Breakout detection has been research in a wide variety of
fields owing to the different applications. In this section we
present a brief overview of prior work in breakout detection
in statistics, finance, medicine and signal processing.
As mentioned earlier, breakout is referred to as a changepoint
in statistics. Changepoint detection has been researched in
statistics for over five decades [32, 33, 34, 35]. These come
in two flavors: parametric and non-parametric. Many of the
existing parametric methods assume that the underlying dis-
tribution belongs to the exponential family [35]. There has

been recent research in detecting changes with heavy tailed
distributions [36]. Many of these approaches make use of
limiting distributions obtained from Extreme Value Theory
[37]. In cases where it is difficult or impossible to prove that
the data adheres to parametric assumptions non-parametric
approaches provide an alternative solution. These meth-
ods place less restrictive assumptions on the data and can
thus be used more widely in general; however, due to the
weaker assumptions, these methods are less powerful than
their parametric counterparts [38]. Although most of the
prior researched centered around detecting changes in mean,
detecting changes in variance (with known/unknown mean
value) has garnered some attention [39, 40, 41].

Tsay [42] presents an approach to detect changes in mean
of an ARMA model in the presence of anomalies. Unlike
EDM, the approach employs a two staged process that first
removes the anomalies and then carry out breakout analy-
sis. Another approach to handle anomalies during breakout
detection is to assume that the data follows a heavy tailed
distribution [43] and thus large values become less uncom-
mon [44].

5.0.1 Parametric Analysis
The parametric algorithms used to perform breakout analy-
sis assume that the observed distributions belong to a family
of distributions FΘ = {Fθ : θ ∈ Θ}, such that each mem-
ber of the family can be uniquely identified by its param-
eter value. Once the class of distributions has been speci-
fied, parametric methods attempt to detect changes in the
parameter value. Specifically, these approaches usually at-
tempt to maximize a likelihood. For example, Carlin et al.,
[45], Lavielle and Teyssière [46] employ this approach. These
papers however, assume a Gaussian distribution. An exten-
sion of this to select methods of the exponential family [47]
is supported in the changepoint R package [30].

5.0.2 Non-parametric Analysis
A very common approach is to perform density estimation
[48]. Although density estimation seems like a natural ap-
proach, other ideas have been shown to yield satisfactory re-
sults. For example, Lung-Yut-Fong et al. [49] perform anal-
ysis by working with rank statistics; Matteson and James
[31] present an approach based upon Euclidean distances.

5.1 Finance
One of the more popular application areas of breakout detec-
tion is finance [50, 51, 52]. In this regard, models are regu-
larly used to analyze return and stock price data. It is often
assumed that the model parameters remain constant over
the observed period. However, if the parameters are mostly
time varying, the obtained results are likely to become out-
of-date and consequently may not be robust [51]. Explicit
examples of trading strategies that make use of breakout de-
tection can be found in [51] which rely on historical analysis,
charts and familiarity with the market.

The ARCH model of Engle [53] and its various generaliza-
tions are very often used to model the returns for a number
of financial instruments. Franses and Ghijsels [54] present
a method for fitting GARCH models to financial data that
may have additive outliers. In a similar vein, in [55], Mat-
teson and James presented an approach that only requires
a few mild statistical conditions to hold and doesn’t rely on
any back testing. Regardless of the strategy, both works

show that acknowledging the existence of breakouts can in-
crease profits, or better yet, change would be losses into
gains.

5.2 Medical Applications
Breakout detection also has applications in medicine. For
example, Grigg et al. describe the use of the cumulative
sum (CUSUM) chart, RSPRT (resetting sequential proba-
bility ratio test), and FIR (fast initial response) CUSUM to
detect improvements in a process as well as detecting deteri-
oration in a medical setting. In genetics, array comparative
genomic hybridization is used to record DNA copy numbers.
Changes in the DNA copy number can indicate a portion of
a gene that may be effected by cancer or some other ab-
normal feature. Thus, detecting breakout in this setting
[56, 57] can provide insights about future medical research.
Breakout analysis also finds application in segmentation of
electroencephalogram (EEG). An EEG is a measure of the
brain’s electrical activity which is recoded by electrodes on
the subject’s scalp. EEGs can be used in the process of di-
agnosing disorders such as epilepsy and insomnia, since such
disorders cause clear changes in the EEG readings. Break-
out procedures have been suggested as a way to remove the
human bias in the analysis of such data [58, 59]. Other ap-
plication areas include studying breast cancer survival rates
[60], analysis of fMRI data [61], and many more [35].

5.3 Signal Processing
Breakouts detection has been researched in the field of signal
processing (and others such as, but not limited to, computer
vision, image processing) but is usually referred to edge de-
tection or jump detection [62, 63, 64, 65]. In [66], Basseville
presented a survey of techniques to detect changes in sig-
nals and systems; Ziou and Tabbone present an overview of
edge detection techniques in [67]. In the context of dynamic
systems, Tugnait presented techniques to detect changes in
[68].

In [69], Jackson et al. presented an algorithm for optimal
partitioning of data on an interval. The algorithm was sub-
sequently enhanced by Killick et al. [17] to detect breakouts
with an expected linear running time.

6. CONCLUSIONS
In this paper, we proposed a novel statistical technique,
called E-Divisive with Medians (EDM), to automati-
cally detect breakouts in cloud data. Unlike the existing
techniques for breakout detection, EDM is robust against
the presence of anomalies. EDM employs E-statistics [14]
to detect divergence in mean. Note that, in general, EDM
can also be used detect change in distribution in a given
time series. Further, EDM uses robust statistical metrics,
viz., median, and estimates the statistical significance of a
breakout through a permutation test. We used production
data and to evaluate the efficacy of EDM and reported
Precision, Recall and F-measure to demonstrate the same.
EDM is 3.5× faster than the state-of-the-art technique for
breakout detection and is being currently used on a daily
basis at Twitter.

As future work, we intend to extend EDM to support
breakout detection in the presence of seasonality. Further,
we plan to explore data transformation techniques to ad-
dress the limitations mentioned in Section 4.

7. REFERENCES
[1] M. Meeker. Internet Trends 2014 - Code Conference.

http://www.kpcb.com/file/kpcb-internet-trends-2014, May 2014.

[2] Handset Data Traffic (2001-2017).
http://www.strategyanalytics.com/default.aspx?mod=reportabstractviewer&a0=8623.

[3] How Loading Time Affects Your Bottom Line.
http://blog.kissmetrics.com/loading-time/.

[4] Impact of web latency on conversion rates.
http://www.slideshare.net/bitcurrent/impact-of-web-latency-on-conversion-rates.

[5] Mobile Application Performance Testing: Aluminum foil, elevators and
other mobile testing myths debunked.
http://media.shunra.com/whitepapers/MobilePerfTesting_27913.pdf.

[6] B. Chatham, B. D. Temkin, and M. Amato. A primer on a/b testing. In
Forrester Research, 2004.

[7] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne. Controlled
experiments on the web: survey and practical guide. Data Mining and
Knowledge Discovery, 18(1):140–181, 2009.
http://link.springer.com/content/pdf/10.1007%2Fs10618-008-0114-1.pdf.

[8] Dan Siroker and Pete Koomen. A/B Testing: The Most Powerful Way to Turn
Clicks Into Customers. Wiley Publishing, 2013.

[9] U. Höelzle and L. A. Barroso. The Datacenter as a Computer: An Introduction to
the Design of Warehouse-Scale Machines. Morgan and Claypool Publishers,
2009.

[10] Y. S. Dai, B. Yang, J. Dongarra, and G. Zhang. Cloud service reliability:
Modeling and analysis.
http://www.netlib.org/utk/people/JackDongarra/PAPERS/Cloud-Shaun-Jack.pdf.

[11] K. V. Vishwanath and N. Nagappan. Characterizing cloud computing
hardware reliability. In Proceedings of 1st ACM Symposium on Cloud computing,
pages 193–204, 2010.

[12] B. Lorica. How twitter monitors millions of time-series. http:
//strata.oreilly.com/2013/09/how-twitter-monitors-millions-of-time-series.html,
2013.

[13] Owen Vallis, Jordan Hochenbaum, and Arun Kejariwal. A novel technique
for long-term anomaly detection in the cloud. In 6th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud 14), June 2014.

[14] Gábor J Székely and Maria L Rizzo. Energy statistics: A class of statistics
based on distances. Journal of Statistical Planning and Inference,
143(8):1249–1272, 2013.

[15] Peter J Huber and Elvezio Ronchetti. Robust statistics. Wiley, Hoboken,
N.J., 1981.

[16] Frank R Hampel, Elvezio Ronchetti, Peter J. Rousseeuw, and Werner A.
Stahel. Robust statistics: the approach based on influence functions. Wiley, New
York, 1986.

[17] Rebecca Killick, Paul Fearnhead, and IA Eckley. Optimal detection of
changepoints with a linear computational cost. Journal of the American
Statistical Association, 107(500):1590–1598, 2012.

[18] M. L. Rizzo and G. J. Székely. DISCO analysis: A nonparametric extension
of analysis of variance. The Annals of Applied Statistics, 4(2):1034–1055, 2010.

[19] G. J.Székely and M. L. Rizzo. Hierarchical clustering via joint
between-within distances: Extending ward’s minimum variance method.
Journal of classification, 22(2):151–183, 2005.

[20] Wassily Hoeffding. The strong law of large numbers for u-statistics.
Institute of Statistics mimeo series, 302, 1961.

[21] A. Gandy. Sequential implementation of monte carlo tests with uniformly
bounded resampling risk. Journal of the American Statistical Association,
488(104):1504–1511, 2009.

[22] Tan Pang-Ning, Michael Steinbach, Vipin Kumar, et al. Introduction to
data mining. In Library of Congress, 2006.

[23] Nicholas A. James and David S. Matteson. ecp: An R package for
nonparametric multiple change point analysis of multivariate data.
Technical report, Cornell University, 2013.

[24] D. Keim, G. Andrienkoa, J.-D. Fekete, C. Görg, J. Kohlhammer, and
G. Melancon. Visual analytics: Definition, process, and challenges. In
A. Kerren, J. T. Stasko, J.-D. Fekete, and C. North, editors, Information
Visualization, pages 154–175. Springer-Verlag, 2008.

[25] Pak Chung Wong and Jim Thomas. Visual analytics. IEEE Computer
Graphics and Applications, 24(5):20–21, 2004.

[26] J. Pitt, A. Bourazeri, A. Nowak, M. Roszczynska-Kurasinska,
A. Rychwalska, I. R. Santiago, M. L. Sanchez, M. Florea, and
M. Sanduleac. Transforming big data into collective awareness. IEEE
Computer, 46(6):40–45, 2013.

[27] Pak Chung Wong, Han-Wei Shen, and Valerio Pascucci. Extreme-scale
visual analytics. IEEE Computer Graphics and Applications, 32(4):23–25, 2012.

[28] H. Childs, B. Geveci, W. Schroeder, J. Meredith, K. Moreland, C. Sewell,
T. Kuhlen, and E. W.Bethel. Research challenges for visualization
software. Computer, 46(5):34–42, 2013.

[29] R. Kosara and J. Mackinlay. Storytelling: The next step for visualization.
Computer, 46(5):44–50, 2013.

[30] Rebecca Killick and Kaylea Haynes. changepoint: An R package for changepoint
analysis, 2014. R package version 1.1.2.

[31] David S. Matteson and Nicholas A. James. A nonparametric approach for
multiple change point analysis of multivariate data. Journal of the American
Statistical Association, 109(505):334–345, 2013.

[32] ES Page. A test for a change in a parameter occurring at an unknown
point. Biometrika, 42(3-4):523–527, 1955.

[33] E Brodsky and Boris S Darkhovsky. Nonparametric methods in change point
problems. Number 243. Springer, 1993.

[34] Miklós Csörgö and Lajos Horváth. Limit theorems in change-point analysis.
Wiley New York, 1997.

[35] Jie Chen and Arjun K Gupta. Parametric Statistical Change Point Analysis:
With Applications to Genetics, Medicine, and Finance. Springer, 2011.

[36] Marc Raimondo and Nader Tajvidi. A peaks over threshold model for
change-point detection by wavelets. Statistica Sinica, 14(2):395–412, 2004.

[37] Emil Julius Gumbel. Statistics of Extremes. Courier Dover Publications, 2012.

[38] Changliang Zou, Guosheng Yin, Long Feng, Zhaojun Wang, et al.
Nonparametric maximum likelihood approach to multiple change-point
problems. The Annals of Statistics, 42(3):970–1002, 2014.

[39] Jie Chen and AK Gupta. Testing and locating variance changepoints with
application to stock prices. Journal of the American Statistical Association,
92(438):739–747, 1997.

[40] O Sola Adegboye and AK Gupta. On testing against restricted
alternatives for the variances of gaussian models. Australian Journal of
Statistics, 31(3):409–415, 1989.

[41] Brandon Whitcher, Simon D Byers, Peter Guttorp, and Donald B Percival.
Testing for homogeneity of variance in time series: Long memory,
wavelets, and the nile river. Water Resources Research, 38(5):12–1, 2002.

[42] Ruey S Tsay. Outliers, level shifts, and variancechanges in time series.
Journal of Forecasting, 7(1):1–20, 1988.

[43] Mico Loretan and Peter CB Phillips. Testing the covariance stationarity of
heavy-tailed time series: An overview of the theory with applications to
several financial datasets. Journal of empirical finance, 1(2):211–248, 1994.

[44] Paul Embrechts, Sidney I Resnick, and Gennady Samorodnitsky. Extreme
value theory as a risk management tool. North American Actuarial Journal,

3(2):30 – 41, 1999.

[45] Bradley P Carlin, Alan E Gelfand, and Adrian FM Smith. Hierarchical
bayesian analysis of changepoint problems. Applied statistics, pages 389–405,
1992.

[46] Marc Lavielle and Gilles Teyssiere. Detection of multiple change-points in
multivariate time series. Lithuanian Mathematical Journal, 46(3):287–306,
2006.

[47] Erling Bernhard Andersen. Sufficiency and exponential families for
discrete sample spaces. Journal of the American Statistical Association,
65(331):1248–1255, 1970.

[48] Yoshinobu Kawahara and Masashi Sugiyama. Sequential change-point
detection based on direct density-ratio estimation. Statistical Analysis and
Data Mining, 5(2):114–127, 2012.

[49] Alexandre Lung-Yut-Fong, Céline Lévy-Leduc, and Olivier Cappé.
Homogeneity and change-point detection rests for multivariate data using
rank statistics. arXiv preprint arXiv:1107.1971, 2011.

[50] Charles D Kirkpatrick II and Julie Dahlquist. Technical analysis: the complete
resource for financial market technicians. FT press, 2010.

[51] Adam Grimes. The Art & Science of Technical Analysis: Market Structure, Price
Action & Trading Strategies, volume 548. John Wiley & Sons, 2012.

[52] Robert D Edwards, John Magee, and WHC Bassetti. Technical analysis of
stock trends. CRC Press, 2012.

[53] Robert F Engle. Autoregressive conditional heteroscedasticity with
estimates of the variance of united kingdom inflation. Econometrica: Journal
of the Econometric Society, pages 987–1007, 1982.

[54] Philip Hans Franses and Hendrik Ghijsels. Additive outliers, GARCH and
forecasting volatility. International Journal of Forecasting, 15(1):1–9, 1999.

[55] David S Matteson, Nicholas A James, William B Nicholson, and Louis C
Segalini. Locally stationary vector processes and adaptive multivariate
modeling. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE
International Conference on, pages 8722–8726. IEEE, 2013.

[56] Adam B Olshen, ES Venkatraman, Robert Lucito, and Michael Wigler.
Circular binary segmentation for the analysis of array-based dna copy
number data. Biostatistics, 5(4):557–572, 2004.

[57] Kevin Bleakley and Jean-Philippe Vert. The group fused lasso for multiple
change-point detection. arXiv preprint arXiv:1106.4199, 2011.

[58] JS Barlow, OD Creutzfeldt, D Michael, J Houchin, and H Epelbaum.
Automatic adaptive segmentation of clinical eegs. Electroencephalography and
Clinical Neurophysiology, 51(5):512–525, 1981.

[59] A.Ya. Kaplan and S.L. Shishkin. Application of the change-point analysis
to the investigation of the brains electrical activity. In Non-Parametric
Statistical Diagnosis, volume 509 of Mathematics and Its Applications, pages
333–388. Springer Netherlands, 2000.

[60] Cćile Contal and John O’Quigley. An application of changepoint methods
in studying the effect of age on survival in breast cancer. Computational
Statistics & Data Analysis, 30(3):253 – 270, 1999.

[61] Lucy F. Robinson, Tor D. Wager, and Martin A. Lindquist. Change point
estimation in multi-subject fmri studies. NeuroImage, 49(2):1581 – 1592,
2010.

[62] A.S. Willsky and H.L. Jones. A generalized likelihood ratio approach to
the detection and estimation of jumps in linear systems. Automatic Control,
IEEE Transactions on, 21(1):108–112, Feb 1976.

[63] J. Segen and A.C. Sanderson. Detecting change in a time-series.
Information Theory, IEEE Transactions on, 26(2):249–254, Mar 1980.

[64] M. Basseville, B. Espiau, and J. Gasnier. Edge detection using sequential
methods for change in level–part i: A sequential edge detection algorithm.
Acoustics, Speech and Signal Processing, IEEE Transactions on, 29(1):24–31, Feb
1981.

[65] Albert Benveniste, Michle Basseville, and George Moustakides. The
asymptotic local approach to change detection and model validation.
Research Report 564, September 1986.

[66] Michèle Basseville. Detecting changes in signals and systemsa survey.
Automatica, 24(3):309–326, 1988.

[67] Djemel Ziou, Salvatore Tabbone, et al. Edge detection techniques-an
overview. Pattern Recognition And Image Analysis C/C Of Raspoznavaniye Obrazov
I Analiz Izobrazhenii, 8:537–559, 1998.

[68] Jitendra K Tugnait. Detection and estimation for abruptly changing
systems. Automatica, 18(5):607–615, 1982.

[69] Brad Jackson, Jeffrey D Scargle, David Barnes, Sundararajan Arabhi,
Alina Alt, Peter Gioumousis, Elyus Gwin, Paungkaew Sangtrakulcharoen,
Linda Tan, and Tun Tao Tsai. An algorithm for optimal partitioning of
data on an interval. Signal Processing Letters, IEEE, 12(2):105–108, 2005.

8. APPENDIX
In this appendix we present an in-depth description of the
details necessary to implement both EDM and EDM-X,
as well as the interval tree used to calculate approximate
medians. All of these algorithms assume that our time series
values lie within the interval [0, 1]. Thus if M = max{Zi :
1 ≤ i ≤ n} an m = min{Zi : 1 ≤ i ≤ n} we transform our
observations according to the following linear function

f(x) =
x−m
M −m.

It should be noted that this transformation only scales the
value of our approximate (or true) median by a value of

1
M−m .

8.1 Interval Trees
In this subsection we detail how interval trees are used by
EDM and EDM-X. Our interval tree is a complete binary
tree with 2D leaf nodes, where D is the user specified depth.
The ith leaf node represents the interval

[
i−1
2D , i

2D

)
, except

for the 2Dth interval which is a closed interval, instead of

http://www.kpcb.com/file/kpcb-internet-trends-2014
http://www.strategyanalytics.com/default.aspx?mod=reportabstractviewer&a0=8623
http://blog.kissmetrics.com/loading-time/
http://www.slideshare.net/bitcurrent/impact-of-web-latency-on-conversion-rates
http://media.shunra.com/whitepapers/MobilePerfTesting_27913.pdf
http://link.springer.com/content/pdf/10.1007%2Fs10618-008-0114-1.pdf
http://www.netlib.org/utk/people/JackDongarra/PAPERS/Cloud-Shaun-Jack.pdf
http://strata.oreilly.com/2013/09/how-twitter-monitors-millions-of-time-series.html
http://strata.oreilly.com/2013/09/how-twitter-monitors-millions-of-time-series.html

Figure 10: Illustration of the use of interval trees to determine approximate median

a half-open interval. Each internal node corresponds to the
union of the intervals of its children. Thus, the root rep-
resents the interval [0, 1]. In this data structure each node
will contain a count of the number of observations that lie
within its interval.

Owing to the nature of the tree, one can find an approx-
imate median in O(D) time. One can find a value m, such
that K = dn

2
e of our observations are less that or equal to m

in the following manner: Starting at the root node compare
the value of its left child with K. If its value is larger than
K, move to that node. On the other hand, if K is larger,
subtract the value of the left node from K and move to the
right child. This procedure is continued until a leaf node
is reached; then, the midpoint of the leaf’s corresponding
interval is returned. However, if at some point an internal
node is reached who’s value is equal to K, the following is
carried out: Let a and b be the values of the left and right
children respectively, and x, y the midpoints of their corre-
sponding intervals. The following is returned:

1

a+ b
(a× x+ b× y)

The major benefit of using an interval tree to obtain an
approximate median instead of finding the true median is
that the data structure can be updated efficiently and does
not require sorting. Furthermore, from our experiments we
have found that the relative difference between the true me-
dian and the approximation to be below 10%. Figure 10
illustrates how to update the tree as well as how to an ap-
proximate median.

	1 Introduction
	2 Background
	2.1 Divergence Measure
	2.2 Permutation Test
	2.3 Metrics

	3 E-Divisive with Medians
	3.1 Robustness against anomalies
	3.2 Algorithm
	3.2.1 Special Case: =2

	4 Evaluation
	4.1 Methodology
	4.2 PELT and E-Divisive
	4.2.1 Data Without Anomalies
	4.2.2 Data with anomalies

	4.3 EDM

	5 Related Work
	5.0.1 Parametric Analysis
	5.0.2 Non-parametric Analysis

	5.1 Finance
	5.2 Medical Applications
	5.3 Signal Processing

	6 Conclusions
	7 REFERENCES 1pt
	8 Appendix
	8.1 Interval Trees

