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Abstract—Deep Learning refers to a set of machine learning
techniques that utilize neural networks with many hidden lay-
ers for tasks, such as image classification, speech recognition,
language understanding. Deep learning has been proven to be
very effective in these domains and is pervasively used by
many Internet services. In this paper, we describe different
automotive uses cases for deep learning in particular in the
domain of computer vision. We surveys the current state-of-the-
art in libraries, tools and infrastructures (e.g. GPUs and clouds)
for implementing, training and deploying deep neural networks.
We particularly focus on convolutional neural networks and
computer vision use cases, such as the visual inspection process
in manufacturing plants and the analysis of social media data. To
train neural networks, curated and labeled datasets are essential.
In particular, both the availability and scope of such datasets is
typically very limited. A main contribution of this paper is the
creation of an automotive dataset, that allows us to learn and
automatically recognize different vehicle properties. We describe
an end-to-end deep learning application utilizing a mobile app for
data collection and process support, and an Amazon-based cloud
backend for storage and training. For training we evaluate the
use of cloud and on-premises infrastructures (including multiple
GPUs) in conjunction with different neural network architectures
and frameworks. We assess both the training times as well
as the accuracy of the classifier. Finally, we demonstrate the
effectiveness of the trained classifier in a real world setting during
manufacturing process.

Index Terms—Deep Learning, Cloud Computing, Automotive,
Manufacturing

I. INTRODUCTION

Machine learning and deep learning has many potential
applications in the automotive domain both inside the vehi-
cle, e.g. advanced driving assistance systems (ADAS), au-
tonomous driving, and outside the vehicle, e. g. during devel-
opment, manufacturing and sales & aftersales processes. Ma-
chine learning is an essential component for use cases, such as
predictive maintenance of vehicles, personalized infotainment
and location-based services, business process automation, sup-
ply chain and price optimization. A common challenge of
these applications is the need for storage and processing of
large volumes of data as well as the necessity to deal with
unstructured data (videos, images, text), e.g. from camera-
based sensors on the vehicle or machines in the manufacturing
process. To effectively utilize this kind of data, new methods,
such as deep learning, are required. Deep learning [1], [2]
refers to a set of machine learning algorithms that utilize
large neural networks with many hidden layers (also referred
to as Deep Neural Networks (DNNs) for feature generation,
learning, classification and prediction.

Deep learning is extensively used by many online and
mobile services, such as the voice recognition and dialog
systems of Siri, the Google Assistant, Amazon’s Alexa and
Microsoft Cortana, as well as the image classification systems
in Google Photo and Facebook. We believe that deep learning
has many applications within the automotive industry, such
as computer vision for autonomous driving and robotics,
optimizations in the manufacturing process (e.g. monitoring
for quality issues), and connected vehicle and infotainment
services (e.g. voice recognition systems).

The landscape of infrastructure and tools for training and
deploying deep neural networks is evolving rapidly. In our
previous work, we focused on scalable Hadoop infrastructures
for automotive applications supporting workloads, such as
ETL, SQL and machine learning algorithms for regression
and clustering analysis (e.g. KMeans, SVM and logistic
regression) [3]]. While deep learning applications are similar to
traditional big data systems, training and scaling of DNNs is
challenging due to the large data and model sizes involved. In
contrast to simpler models, deep learning involves millions,
instead of hundreds, of parameters and larger datasets, e.g.
video, image or text data, for training. Training these models
requires scalable storage (e.g. HDFS), distributed process-
ing, compute capabilities (e.g. Spark), and accelerators (e. g.
GPUs, FPGAs). Also, the deployment of these models is a
challenging task — for deployment on mobile devices the num-
ber of parameters and thus, the required amount of new input
data needs to be as small as possible. Modern convolutional
neural networks often require billions of operations for a single
inference.

This paper makes the following contributions: (i) It provides
an understanding of automotive deep learning applications
and their requirements, (ii) it surveys existing frameworks,
tools and infrastructure for training DNNs and provides a
conceptual framework for understanding these, (iii) it provides
an understanding of the various trade-offs involved when
designing, training and deploying deep learning systems in
different environments. In this paper, we demonstrate the usage
of deep learning in two use cases implemented on cloud and
on-premise infrastructure, using different frameworks (Tensor-
flow, Caffe, and Torch) and network architectures (AlexNet,
GoogLeNet and Inception). We show how to overcome various
integration challenges to provide an end-to-end deep learning
enabled application: from data collection and labeling, network
training and model deployment in a mobile application. We
demonstrate the effectiveness of the classifier by analyzing the
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classification performance of the mobile application during an
extended test period.

This paper is structured as follows: in section [l we give
an overview of automotive use cases. We evaluate the current
tools available for deep learning in section We evaluate
different deep learning use cases and models in conjunction
with different public and proprietary datasets in section [[V]

II. AUTOMOTIVE USE CASES

Deep Learning techniques can be applied to many use cases
in the automotive industry. For example, computer vision is an
area in which deep learning systems have recently dramatically
improved. Ng etal. [4] utilized convolutional neural networks
for vehicle and lane detection enabling the replacement of
expensive sensors (e.g. LIDAR) with cameras. Pomerleau [5]]
used neural networks to automatically train a vehicle to drive
by observing the input from a camera, a laser rangefinder and
a real driver. In this section we describe a set of automotive
use cases for deep learning.

Visual Inspection in Manufacturing: The increased deploy-
ment of mobile devices and IoT sensors, has led to a deluge of
image and video data that is often manually maintained using
spreadsheets and folders. Deep learning can help to organize
this data and improve the data collection process.

Social Media Analytics: Applications of computer vision
can extend to social media analytics. Consumer-produced
image data of vehicles made publicly available through social
media can provide valuable information. Deep learning can
assist and improve data collection and analysis.

Autonomous Driving: Different aspects of autonomous driv-
ing require machine learning technologies, e. g the processing
of the immense amounts of sensor data (camera-based sen-
sors, Lidar) and the learning of driving situations and driver
behavior.

Robots and Smart Machines: Robotics requires sophisti-
cated computer vision sub-systems. Deep learning performs
well for recognizing features in camera images and other
kinds of sensors needed to control the machine. While object
detection using DNN is well understood, a more challenging
task in this domain is object tracking. Further, deep learning
enables self-learning robots that become more intelligent over
their lifetime.

Conversational User Interfaces: Our connected vehicle al-
ready is the platform for a large number of services. Voice
dialog systems will become more natural and interactive
with deep learning allowing a hands-free interaction with the
vehicle.

In the following, we focus on the visual inspection appli-
cation as an example to understand the trade-offs between
different datasets, model architectures, training and scoring
performance. Further, we analyze a use case in marketing
analytics to discuss performance in a real-world scenario.

III. BACKGROUND, TOOLS AND INFRASTRUCTURE
In this section, we provide some background on deep
learning and survey the landscape of tools for training neural
networks.
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Fig. 1: Deep Learning Software and Hardware

A. Background

Neural networks are modeled after the human brain using
multiple layers of neurons — each taking multiple inputs and
generating an output — to fit the input to the output. The use of
multiple layers of neurons allow the model to learn complex,
non-linear functions. These Deep Neural Networks (DNNs)
are particularly advantageous for unstructured data (which the
majority of data is) and complex, non-linear separable feature
spaces. Schmidhuber [6] provides an extensive survey of deep
neural networks.

DNNs have shown superior results when compared to exist-
ing techniques for image classifications [7], language under-
standing, translation, speech recognition [§]], and autonomous
robots. Specialized neural networks have emerged for different
use cases, e.g. convolutional neural networks (CNN), which
pre-process and tile image regions for improved image recog-
nition. Conversely, recurrent neural networks add a hidden
layer that is connected with itself for better speech recognition.
Promising advances have been made in automatically learning
features (also referred to as representation learning), through
auto-encoders, sparse coders and other techniques (see [9],
[LO]). This is particularly important as labeled data is difficult
to obtain and the costs for feature engineering are high.

There have been great advances in deep learning observable
in the rapid improvements of image classification accuracy
in the ImageNet competition [11]. The ImageNet competition
comprises a classification of a 1,000 category dataset of ~1.2
mio images. In 2015, the top 5 error rate achieved by a con-
volutional neural networks (3.57 % for Microsoft’s Residual
Nets approach [12]) was better than that of a human (5.1 %).
Another example is the recent success of AlphaGo [13] in
mastering the Go Game. Go is particularly challenging as the
search tree that needs to be mastered by the machine is very
large: there are about 200 possibilities per move and a game
consists of 150 moves leading to a search tree with a size of
about 200°°, AlphaGo uses an ensemble of techniques, such
a Monte-Carlo Tree search combined with a set of deep neural
networks.

B. Deep Learning Libraries

Neural networks — in particular deep networks with many
hidden layers — are challenging to scale. Also, the applica-
tion/scoring against the model is more compute intensive than
other models. Figure [T] illustrates the different layers of a



deep learning system. GPUs have been proven to scale neural
networks particularly well, but have their limitations for larger
image sizes. Several libraries rely on GPUs for optimizing the
training of neural networks [14]. Both NVIDIA’s cuDNN [[15]]
and Intel’s MKL [16] optimize critical deep learning op-
erations, e.g., convolutions. On top of these several high-
level frameworks emerged - some of which provide integrated
support for distributed training, while others rely on other
distributed runtime engines for this purpose.

Several higher-level deep learning libraries for
different languages emerged: Python/scikit-learn [17],
Python/Pylearn2/Theano (L8]], Python/Dato (9],

Java/DL4]J [20]], R/neuralnet [21], Caffe [22]], Tensorflow [23],
Microsoft CNTK [24], Amazon DSSTNE [25], MXNet [26],
Lua/Torch [27] and Baidu’s PaddlePaddle [28]. The ability to
customize training and model parameters differs; while some
tools (e.g., DIGITS [29], Pylearn) focus on a high-level,
easy-to-use abstractions for deep learning, frameworks such
as Theano and Tensorflow customizable low-level primitives.
Further, several high-level frameworks emerged: Keras [30]
provides a unified abstraction for specifying deep learning
networks agnostic of the backend. Currently, two backends:
Theano and Tensorflow are supported. Lasagne [31] is another
example for a Theano-based library.

C. Distributed Deep Learning

The ability to scale neural networks — i. e. to utilize networks
with many hidden layers and the ability to it train large datasets
— is critical in order to train networks on large datasets in short
amounts of time (important to ensure fast research cycles).
Neural networks utilizing millions of parameters are generally
more compute-intensive than other learning techniques. The
deeper the network, the higher the number of parameters
and thus, the larger the size of the model. In distributed
approaches this model needs to be synchronized across all
nodes. To scale neural networks, the usage of GPUs [15],
FPGAs [32], multicore machines and distributed clusters (e. g.
DistBelief [33l], Baidu [34]]) have been proposed. In the
following, we particularly focus on approaches for supporting
distributed GPU clusters.

Training large datasets on large deep learning models re-
quires distributed training, i.e. the usage of a cluster com-
prising of multiple compute nodes n. Distributed machine
learning requires the careful management of computation and
communication phases as well as distributed coordination. In
general, there are two types of parallelism to exploit: (i) data
parallelism and (ii) model parallelism (see Xing et al. [35]] for
a overview). Data parallelism is generally well-understood and
easier to implement ; model parallelism requires the careful
consideration of dependencies between the model parameters.

Most distributed deep learning libraries provide a distributed
implementation of gradient descent optimized for parallel
learning. Implementing data parallelism for gradient descent
is well-understood: the data is partitioned among all workers,
which each computes parameter updates for its partition. After
each iteration parameters are globally aggregated and the

CaffeOn- SparkNet Tensor- CNTK
Spark flow
Base Frame- | Caffe Caffe Tensorflow | CNTK
work
Model Distri- | replicated central central replicated/
bution (spark (parameter | partitioned
master) server)
Model synchronous | synchronous/| synchronous | synchronous/
Update asyn- asyn-
chronous chronous (1
Bit SGD)
Communi- MPI Spark gRPC MPI
cation

TABLE I: Distributed Deep Learning

model is updated. Systems typically differ in the way the
model is stored and updated, and on how coordination between
the workers is carried out. Some systems store the model cen-
trally using a central master node, a set of nodes or dedicated
parameter servers node(s), while others replicate/partition the
model across the worker nodes. Model updates can be done
synchronously or asynchronously (Hogwild [36]).

Hadoop [37]] and Spark [38]] emerged as de-facto-standard
for data-parallel applications [3]. However, support for deep
neural networks is still in its infancy. Spark provides a
good platform for data pre-processing, hyper-parameter tuning,
and for distributed communication and coordination. There
is ongoing work to implement artificial neural networks in
Spark [39] as part of its MLIib machine learning library [40].
In addition, various approaches for integrating Spark with
frameworks, such as Caffe and Tensorflow emerged (see
table [I).

CaffeOnSpark [41] provides several integration points with
Spark: it provides Hadoop InputFormats for existing Caffe
formats, e.g. LMDB datasets, and allows the integration of
Caffe learning/training stages into Spark-based data pipelines.
CaffeOnSpark implements a distributed gradient descent. Gra-
dient updates are exchanged using a MPI AllReduce across all
machines.

SparkNet [42] utilizes mini-batch parallelization to compute
the gradient on RDD-local data on worker-level. In each
iteration, the Spark master collects all computed gradients,
averages them and broadcasts the new model parameters to
all workers. Similarly, TensorSpark [43] utilizes a parameter
server approach to implement a “DownpourSGD” (see Dist-
Belief [33]).

Both Tensorflow [23] and CNTK [12] provide different
distributed optimizer implementations. Tensorflow offers a
relatively low-level API to implement data- and model paral-
lelism using a parameter server with synchronous respectively
asynchronous model updates. Communication is implemented
using gRPC. CNTK offers several parallel SGD implementa-
tions, which can be configured for training a network. The
1-bit SGD [44]] reduces the amount of data for model updates
significantly by quantizing the gradients to 1-bit. Communi-
cation in CTNK is carried out using MPI.

In addition to the frameworks described above, several other
systems exist: FireCaffe [45] is another framework built on
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top of Caffe; [46] and [47] provide alternative distributed
Tensorflow implementations.

D. Cloud Services

Cloud computing becomes increasingly a viable platform
for implementing end-to-end deep learning application pro-
viding comprehensive services for data storage, processing as
well as backend services for applications. In the following
we focus on data-related cloud services. Figure [2] categorizes
services into three layers: data storage, Platform-as-a-Services
(PaaS) for Data and higher-level Software-as-a-Service (SaaS).

An increasing number of infrastructure-as-a-service (laaS)
offerings with GPU support exists: Amazon Web Services
(AWS) provide the hardware necessary for deep training
and exploration while removing the necessity of obtaining a
physical system for computation. All services such as GPU
computing and data storage utilize the cloud and can therefore
be managed accordingly. Amazon Web Services Elastic Com-
pute Cloud (EC2) is a service that provides cloud computing
with resizable compute capabilities including up to four K520
Grid GPUs [48]]. Similar capabilities have been announced by
Microsoft. While Google does not provide GPU as part of its
Google Compute Engine Service, it provides a managed PaaS
environment for Tensorflow, which offers GPU support [49].

Every cloud provider provides a managed Hadoop/Spark en-
vironment. There are minor differences in the feature: Amazon
Elastic MapReduce [50] relies on his own Hadoop distribution
and also supports Presto and Mapr, Microsoft’s HDInsight [51]]
is based on Hortonworks, Google’s Dataproc [52]] also utilizes
his own distribution. Typically, these Hadoop environments
can read data from Blob storage and provide a HDFS cluster.
They provide core nodes, which offer important services a
such as the Namenode and YARN, and worker nodes, which
can be scaled with demand.

Further, there are various cloud products related to search
and streaming data. Azure provides a native search engine:
Azure Search that can easily index Azure storage. Both
Amazon and Microsoft provide a managed ElasticSearch envi-
ronment. Increasingly, there is the need to react on incoming
data streaming using various streaming tools and platforms.
Topically, streaming systems consists of a broker engine (e. g.
Kafka) and processing tools on various levels (e. g., Storm and
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Analytics Machine (incl. Jupyter | Learning
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Data Storage | S3, Redshift Azure Cloud Big Table
Storage, SQL
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Compute EC2 (with | Azure Google Compute
Nodes GPU) Compute (GPU | Engine (no GPU)
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TABLE II: Cloud Services for Data Analytics

Spark Streaming). Azure offers support for Streaming via the
Azure Event Hub and Storm at the moment.

In addition several higher-level machine learning emerged.
Google’s Prediction API [53] was one of the first services
offering machine learning classifications and predictions in
the cloud. Microsoft’s Azure ML [54] and Amazon Machine
Learning [S5] offer similar services. These services allow sim-
ple and fast access to machine learning capabilities. Models are
easily deployed and published for further usage. In particular,
Google and Amazon often provide black-box models with
limited abilities for calibration of the model. Microsoft allows
the creation of more general data pipelines supporting custom
R and Python code.

A lot of shrink-wrapped solutions that offer deep learning
capabilities behind a high-level cloud API (Platform as a
Service), e. g. for advanced machine learning tasks, such as fa-
cial recognition, computer vision and machine translation, are
often based on deep learning. Examples are Microsoft’s Project
Oxford [56], Google’s Vision API [57]] and Natural Language
API [58]], and IBM’s Watson developer cloud (AlchemyVision
API) [59]. The core of these services relies on deep learning
technologies. However, these services are constrained by the
number of categories they support — Project Oxford’s Image
API supports only 86 categories. Also, training on custom
categories and data, via transfer learning, is often not possible.

IV. IMPLEMENTATION AND EVALUATION

In this section, we evaluate different convolutional neural
networks for object detection on two different datasets (i)
images collected at a manufacturing facility and (ii) a hand-
curated social media datasets. Further, we evaluate different
deep learning frameworks to understand training and inference
performance.

A. Experiments and Evaluation

In the following, we evaluate different frameworks for
training the deep neural networks. For experiments, we use a



Categories | Number Images Size
Visual 100 82,011 9GB (LMDB) Frontend Backend
Inspection
Cars [64] 196 16,185 1.87 GB (LMDB) Amazon
ImageNet 1000 1,281,167 130 GB (LMDB) v —
lodel Training
2012 [L1] . Data Storage Data Processing (AWS EC2 GPU
Traffic 13 1,200 54 MB (LMDB) iPad (S3) A Compute)
Signs [61]
Places [62] 205 2.5 mio 38.2 GB (LMDB) I:H:] I:]
. . iPad
TABLE III: Object Detection Datasets Reporting Metadata DI:] I:]
(Beanstalk) (RDS)
OO0
machine with 2 CPUs, a total of 8 cores, 128 GB memory and
a TITAN X GPU. Further, we utilize Amazon Web Services [
. . iPad Internal Data Lake
GPU nodes (g2.8xlarge), which provides 32 cores, 60 GB
memory and 4 K520 GPUs [48]]. For training the Caffe and ‘ Jupyter H DIGITS ‘

Torch models, we use DIGITS [29] and the models provided
with it. For Tensorflow, we adapted the provided AlexNet
implementation [60].

B. Datasets

We identified a set of datasets relevant for the automotive
industry (see Table [IT). ImageNet is one of the largest pub-
licly available datasets. The usage of ImageNet and transfer
learning is particularly suited for social media analytics and
other forms of web data analysis. For enterprise use cases it is
required to curate custom datasets. In particular for advanced
applications, such as autonomous driving, it is essential to
create suitable datasets, as datasets like Traffic Signs [61],
Places [62] and Kitti [63], are designed for benchmarking
primarily. Real-world applications require more data.

Further, we created a new dataset using data created during
the visual inspection process. This dataset contains images
from 4 vehicle types and 25 camera perspectives, i. e. a total of
100 categories, that were captured using the mobile application
described below. It currently consists of 82,011 images.

C. Visual Inspection for Manufacturing

To support the visual inspection process during manufac-
turing and to aid data collection, we built an iPad application.
The application is used by associates to document a subset
of produced vehicles using approximately 20 walk-around
pictures. Figure 8] shows the architecture of the application and
the deep learning backend. The iPad automatically uploads
taken images to Amazon S3; The metadata is stored in a
relational database backend. Both data movement and storage
are encrypted. For data-processing, we utilize a combination
of Hadoop/Spark and GPU-based deep learning frameworks
deployed both on-premise and in the cloud. For data pre-
processing and structured queries, we rely on Hadoop and
Spark [65]]; for deep learning we rely on some GPU nodes.

The trained network is integrated into the iPad application to
validate new images taken by the associate. For this purpose,
we compiled Caffe for iOS and used the trained model files.

1) Models Training: We investigate different convolutional
network architectures. Table [[V] gives an overview of the
different model architectures investigated. In the following,
we compare the AlexNet and GooglLeNet architectures imple-
mented on top of Tensorflow, Caffe and Torch.

Data Storage and Processing (Hadoop/Spark)

LSO I S
L O I S
I

D Data
Infrastructure

Fig. 3: Visual Inspection Application Architecture

Figure [] illustrates the training times observed for 30
epochs of the data with different frameworks. There is an
improvement in the training times between Caffe 2 and 3 as
well as TensorFlow 0.6 and 0.7.1. This can be attributed to
the usage of newer versions of cuDNN (v4). We achieved
the best training time with Tensorflow 0.7.1. TensorFlow
0.9.0 is also evaluated as the breaking edge version of the
software. In our experiment, the training time is slightly slower
than with previous Tensorflow, which can be attributed to a
single factor; inconsistent training times per iteration. With
TensorFlow 0.7.1, each iteration has a standard deviation over
all 30 epochs less than 2 seconds. Conversely, TensorFlow
0.9.0, while mostly consistent, has a few iterations which cause
the standard deviation to be much larger. This can be seen
in figure [ as the error bar for TensorFlow 0.7.1 is small
in comparison to its counterpart for TensorFlow 0.9.0. This
inconsistency with some iteration times results in a longer
overall training time.

We also compare performance using TensorFlow 0.9.0 on
a local machine versus a machine utilizing cloud services.
Figure [] illustrates a performance comparison of the EC2 web
service and a local machine containing a TitanX GPU. The
local system utilizing TensorFlow provides a quicker training
time for the dataset provided, however, AWS EC2 would be
a great option if a physical machine with dedicated hardward
is unavailable as the training time is 1.5x longer than that
of the local machine with the TitanX. The GPU used in
AWS EC2 provides the same amount of compute cores as the
TitanX, however, the clock speed is slower, allowing faster
computation to occur on the TitanX. Also, the K520 GPU



Network Number Parameters Number Layers ImageNet Top 5 Error
AlexNet (2012) [7] 60 mio. 8 (5 convolutional, 3 | 153 %
fully connected)
GoogLeNet (2014) [66], | 5 mio. 22 6.7%
[67]
VGG (2014) ~140 mio. 19 (16 convolutional, 3 | 7.3%
fully connected)
Inception v3 (2015) 25 mio. 42 3.58%
Deep Residual Learning | ~60 mio. 152 3.57 %
(2015) [12]

TABLE IV: Convolutional Neural Network Models
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Fig. 4: Visual Inspection Training Times for AlexNet on
Caffe, Tensorflow (TF), and Torch: With the maturation
of the different frameworks and the underlying system-level
libraries (such as cuDNN), performance improves significantly
with newer framework versions. The GPU hardware is another
important consideration as seen is the performance on Amazon
EC2 (AWS), which only provide older GPUs.

provides 8 GB of device memory, while the TitanX provides
12 GB allowing for larger models or larger batch sizes to be
used for computation.

Further, a software comparison is made between cuDNN v4
and v5.1 on the TitanX. The update in software directly leads
to decreased training time on the same hardware from 9,750
seconds to 7,380 (a decrease of 25 %). For larger datasets
and larger networks, this update greatly improves training time
allowing for faster production of models.

Figure B] compares the training times for AlexNet and
GoogLeNet using Caffe. Training GoogLeNet is 70 % slower
than AlexNet mainly due to the higher complexity of the
networks (more deep layers). Inception overshadows both
AlexNet and GoogleNet due to the complexity and deep
nature of the network.

Our investigation also included a comparison of the peak
accuracies achieved from training our models on different
frameworks as well as the time in epochs it took to reach them.
Figure [6] shows this comparison for the AlexNet model. There
are no changes in peak accuracy performance between versions
of Caffe or Tensorflow. This is expected behavior since only
the underlying implementation of the frameworks, and not the
algorithm of the model, have been changed between versions.
The best peak accuracy we recorded was 94 % with all versions

50000 A

40000 4
30000+
20000+
, I

.
AlexNet

Time (in sec)

GoodIeNet Incebtion

Fig. 5: Visual Inspection Dataset Training Times for
AlexNet, Googl.eNet and Inception: With the increased
complexity of these networks the training times increase.
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Fig. 6: Visual Inspection Accuracies and Convergence for
AlexNet on Caffe, Tensorflow (TF), and Torch

of Tensorflow.

Lastly, we compared the number of epochs required by
each framework to achieve its peak accuracy: TF shows the
quickest convergences with 17 epochs in average, followed by
Torch with 23 epochs and Caffe with 28 epochs. Fewer epochs
directly translate to a shorter training time.

2) Multiple GPU Training: The ability to train CNNs
on large datasets of images for recognition and detection is
critical. In the following we analyze the training time for
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Fig. 7: ImageNet and Visual Inspection Training Times
for GooglLeNet/AlexNet on Multiple GPUs (Log Scale):
Multiple GPUs are particular for large datasets advantages.
For ImageNet we were able to observe a speedup of 1.8
with 4 GPUs corresponding to an efficiency of 0.45. For
the smaller Visual inspection dataset the efficiency is slightly
worse with 0.4. GoogLeNet’s training time is longer than
AlexNet; efficiency is better for GoogLeNet.

the Visual Inspection and ImageNet datasets in conjunction
with multiple GPUs. We utilize the ImageNet 2012 dataset
consisting of 1,281,167 images and 1,000 classes, which is
significantly larger than the Visual Inspection datasets with
82,011 images. For training, we use the Caffe framework with
GoogLeNet and AlexNet for the Visual Inspection dataset.

We are able to achieve similar accuracies for multiple
GPUs training as for single GPU, e.g., for ImageNet a top-
5 accuracy of 87 % was obtained. Figure [7] illustrates the
execution time, speedup, and efficiency for up to 4 GPUs. As
expected the training time decreases with the number of GPUs.
The efficiency, however, decreases nonlinearly pointing out
that even though the execution time is decreasing, the addition
of GPUs is causing an inefficiency. The speedup of using 2
GPUs is 1.5 which corresponds to an efficiency of 0.8, while
training using 4 GPUs shows a speedup of 1.8, corresponding
to an efficiency of 0.45. For the significantly smaller Visual
Inspection dataset a maximum speedup of 1.6 corresponding
to an efficiency of 0.4 was observed with 4 GPUs. This shows
that the use of more GPUs is not always advantageous as the
efficiency drops quickly if the GPUs are not utilized fully.
Another interesting observation is the behaviour of GoogLeNet
vs. AlexNet: while the training time for GoogLeNet is slightly
higher, the scaling efficiency of GoogLeNet is slightly better
than for AlexNet.
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Fig. 8: AlexNet Classification Runtime on Different De-
vices: Mobile Devices like current iOS devices deliver an
acceptable performance. GPUs deliver the best performance.

3) Model Deployment: For deployment of deep learning
models in particular in mobile and embedded environments,
the performance is essential. The more complex the network,
the more compute-intensive the scoring process. There are two
options for deploying the model: (i) on the mobile device and
(i) in the backend system. An important concern in particular
for mobile deployment is the model size, which depends on the
number of parameters in the model. The trained GoogLeNet
model is about 43 MB in size, while the AlexNet model is
230 MB.

In Figure[§] we compare the inference time on different plat-
forms. Not surprisingly, the best performance is achieved on
GPUs (TitanX). The performance penalty on mobile devices
is acceptable. The inference time on a iPad Air 2 with an A8X
custom chips is on average only 22 % slower than on a server
side CPU. The performance of Apple’s newest mobile CPU
(A9) is only 3.7 % worse than the server side performance. In
particular, the mobile deployment performance of GoogLeNet
is slightly better than that of AlexNet.

As the performance on the mobile platform is acceptable
and the object recognition tasks has a static nature, we
integrated the model into the iPad application to give the user
the opportunity to quickly verify the taken image. In the future,
we explore approaches for further optimizing networks for
mobile and embedded deployments, e.g., using compressing
techniques [70].

The application was successfully deployed in production.
Figure ] shows the average classification performance com-
puted using a sample of 204,883 classifications collected
over a period of multiple weeks. As previously described the
classification is done within the mobile application after the
image has been taken, i.e. the CNN has not seen the data
before. In contrast to the training set, the data was not carefully
prepared and pre-processed. The application utilizes a reduced
set of 21 categories. As shown in the figure, the accuracy varies
between 44 % in category 6 to 98 % in category 1. In average
we were able to achieve an accuracy of 81 % on data scored
in real-time within the mobile application. In the future, we
will utilize the new data to improve the accuracy in the low-
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Fig. 9: Mobile Classification Accuracy in Real-World De-
ployment: Accuracy varies depending on category between
44 9% and 97 %. In average 81 % accuracy was achieved.

performing categories.

D. Social Media Analytics

In the following with utilize a CNN for recognition of
vehicle models in social media data collected from Twitter.
A Python application was developed to display the currently
streaming image with its top five classifications predicted
by the neural network. Further experiments were conducted
using focus regions within the image to improve classification
accuracy. More details are discussed in the following sections.

The Cars dataset released by the Stanford AI Lab
consists of 16,185 images grouped into 196 categories of the
form: Make, Model, Year. We decreased the granularity of
the classes into 49 separate car brands as we were primarily
concerned with detecting different brands. We used a pre-
trained ImageNet GoogLeNet model from the Berkeley Vision
and Learning Center (BVLC) [[72]]. We then applied transfer
learning techniques to further train our model on a car models
dataset.

To process social media data, we implemented a two ver-
sion: (i) the standard version processes the image is processed
in its original form, (ii) the region-search version adds an
additional pre-processing step: First, we conduct a selective
search [73] on the image to isolate object regions within the
image. Next, these regions are passed to an ILSVRC13 detec-
tion network provided by BVLC in order to extract object
regions containing cars. Then, these extracted car regions are
passed to our model for inferencing. Finally, the top 5 most
confident class predictions over all car regions are selected for
classification of the input image.

We used a sample of 106 images from the Twitter feed to
measure our model’s performance in five categories: classi-
fication accuracy, precision, recall, F1 score, and processing
speed per image. Figures [I0] and [[T] show a comparison of the
performance metrics between our the standard (i) and region-
search version (ii).

Figure [T0] compare both models in terms of their classi-
fication performance for the top-5 predicted classes. For the
standard workflow, we observed a top-5 accuracy of 81.1 %
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Fig. 10: Social Media Analytics: Top-5 Performance using the
standard and search-search versions.
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Fig. 11: Social Media Analytics Inference Times for standard
and region-search version

and F1 score of 85.9 %. With the region-search version (ii), the
top-5 accuracy improved to 82.1 % and the F1 score to 87.2 %.
This is only a very modest, statically insignificant increase of
~1% . However, we also measured our region-based workflow
against only images which our standard version failed to
predict correctly, which lead to an improvement in the top-
5 accuracy of 53.1 %.

Figure [[T] compares both models in terms of processing
speed in seconds per image. We found that our standard
workflow processed each image on average 0.002 seconds. The
standard version significantly outperforms the region-search
version, which took an average of 0.13 seconds/image. This
outcome is expected due to the extra image preprocessing steps
involved in the region-search version.

Overall, we found that both workflows performed the same
over the sampled images. However, the region-based workflow
showed significant improvement in images where the standard
workflow failed, specifically in images where the car being
analyzed did not encompass the bulk of the image. Our region-
based approach was able to better identify a focus region in
the image to pass to our classifier, resulting in more accurate
predictions on such images.

V. CONCLUSION AND ON-GOING RESEARCH

Deep learning enables computers to learn objects and repre-
sentations, it is however, associated with several challenges: it



requires massive amounts of data, new tools and infrastructures
for computation and data. We showed that existing model
architectures and transfer learning can be applied to solve
computer vision problems in the automotive domain. In this
paper, we showed the successful deployment of deep learning
for visual inspection and social media analytics. We success-
fully showed the trade-offs when training and deploying deep
neural networks on a diverse set of environments (on-premise,
cloud). We showed the effectiveness of the training classifier
achieving an accuracy of 85 % during real-world use.

Several challenges for a broader deployment of deep learn-
ing remain: The availability of labeled data is critical for
development and refinement of deep learning systems. Unfor-
tunately, the datasets publicly available (other than ImageNet)
are not sufficient for advanced systems, e. g. for autonomous
driving. Curating training data beyond existing public datasets
is a tedious task and requires significant effort. To improve
the speed of innovation, the training time needs to be further
improved.

In the future, we will: (i) investigate distributed deep
learning systems to improve training times for more complex
networks and larger data sets, (ii) assess and curate available
datasets for computer vision use cases in the domain of
autonomous driving and (iii) evaluate natural understanding
deep learning models (e. g., sequence-to-sequence learning).
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