
Error-Robust Multi-View Clustering

Mehrnaz Najafi
Department of Computer Science
University of Illinois at Chicago

Chicago, IL, USA
mnajaf2@uic.edu

Lifang He
Weill Cornell Medicine College

Cornell University
New York, NY, USA

lifanghescut@gmail.com

Philip S. Yu
Department of Computer Science
University of Illinois at Chicago

Chicago, IL, USA
psyu@uic.edu

Abstract—In the era of big data, data may come from mul-
tiple sources, known as multi-view data. Multi-view clustering
aims at generating better clusters by exploiting complementary
and consistent information from multiple views rather than
relying on the individual view. Due to inevitable system errors
caused by data-captured sensors or others, the data in each
view may be erroneous. Various types of errors behave dif-
ferently and inconsistently in each view. More precisely, error
could exhibit as noise and corruptions in reality. Unfortunately,
none of the existing multi-view clustering approaches handle
all of these error types. Consequently, their clustering perfor-
mance is dramatically degraded. In this paper, we propose
a novel Markov chain method for Error-Robust Multi-View
Clustering (EMVC). By decomposing each view into a shared
transition probability matrix and error matrix and imposing
structured sparsity-inducing norms on error matrices, we
characterize and handle typical types of errors explicitly.
To solve the challenging optimization problem, we propose
a new efficient algorithm based on Augmented Lagrangian
Multipliers and prove its convergence rigorously. Experimental
results on various synthetic and real-world datasets show the
superiority of the proposed EMVC method over the baseline
methods and its robustness against different types of errors.

Keywords-Multi-view learning; Robust; Clustering; Noise;
Corruptions

I. INTRODUCTION

In the era of big data, data may have different views
(i.e., variety), where observations are represented by multiple
sources, known as multi-view data. For instance, specific
news may be available on different broadcasting websites
such as BBC and CNN so that each website represents a
view of the same news. As another example, in Wikipedia,
concept of dog may have multiple representations in the
form of image and text. Fig. 1 shows the mentioned exam-
ples of multi-view data.

Figure 1: Multi-View data

Multi-view data commonly have the following properties:

• Each view may be represented by an arbitrary type
and number of features. It may be also collected from
diverse domains (variety of big data). Different views
often contain complementary and compatible informa-
tion to each other [1]. For instance, in Wikipedia, one
view (image) consists of vision features, while another
view (text) has textual features.

• Due to inevitable system errors caused by data extrac-
tors, each view may be erroneous (veracity of big data).
Generally, error refers to the deviation between model
assumption and data. It could exhibit as noise and
corruptions in reality [2]. Fig. 2 illustrates three types
of errors. Noise refers to slight perturbation of random
subset of entries in data. Random corruptions indicate
that a fraction of random entries are grossly perturbed,
while sample-specific corruptions (or outliers) represent
the phenomena that a fraction of the samples (or
data points) in each view are far away from the real
values. Real-world multi-view data can encounter any
or combination of these error types.

(a) (b) (c)

Figure 2: Three types of errors (what we show is a per-
turbed data matrix whose rows are samples and columns
are features). (a) Noise (b) Random Corruptions (c) Sample-
Specific Corruptions (or Outliers)

Due to ever increasing need of learning from multi-view
data and lack of label information in many applications, clus-
tering on multiple views has received considerable attention
recently [3], [4], [1]. The problem is referred to as multi-
view clustering aiming at finding compatible clusters of data
points across all views. One of the most common algorithms
used for multi-view clustering is spectral clustering [5].

Spectral clustering models the data which is in the form
of a graph where nodes are data points and edges represent
similarities between data points [5]. First, it projects all the

ar
X

iv
:1

80
1.

00
38

4v
1

 [
cs

.L
G

]
 1

 J
an

 2
01

8

data points to a new low-dimensional space where they are
easily separable. The new space is built with the eigen-
decomposition of the Laplacian matrix of the graph. Then,
it finds the clusters by applying another clustering algorithm
like k-means. It is shown that spectral clustering can find the
normalized min-cut of the graph [5]. Also, there is a hidden
relation between spectral clustering and Markov chains [6].
In single-view clustering, Laplacian of the graph can be
obtained by real relaxation of the combinatorial normalized
cut [7]. Then, it is converted to a transition probability matrix
which generates a Markov chain on the graph [7]. In the
context of multi-view clustering, the transition probability
matrix would need to get built across all views.

A challenging problem may arise when the views are
erroneous, which makes the corresponding transition prob-
ability matrices being perturbed. It could then result in
portion of data points being assigned to wrong clusters. To
address multi-view clustering with noisy views, Xia et al
proposed a method, named as RMSC [7]. This approach
decomposes a transition probability matrix of each view into
two parts: a shared transition probability matrix across all
views and an error matrix which encodes the noise in the
transition probability matrix in each view. The error matrix
of each view captures the difference between the transition
probabilities of that view and their correspondings in the
shared transition probability matrix. RMSC assumes sparse
representation error matrix via `1 norm.

One of the shortcomings of RMSC is that it only handles
noise in data. Specifically, since it only imposes `1 norm
on the error matrices, it cannot deal with sample-specific
corruptions well. This is because error matrix with sample-
specific corruptions has sparse row supports. Also, RMSC
treats each error matrix independently. However, data may
come from various sources, which could result in error
matrices with inconsistent magnitude values, and thus degra-
dation of clustering performance, when error matrices are
treated independently [2].

To handle typical types of errors in multi-view data,
we propose a novel Error-Robust Multi-View Clustering
(EMVC) method based on Markov chains. Different from
RMSC [7], EMVC is based on integration of low-rank de-
composition and group `1 [8] and `2,1 regularization terms,
aiming to learn a shared transition probability matrix where
the transition probability matrices of different views will be
co-regularized to a common consensus, while improving the
robustness of clustering.

In some cases, features of a certain view are more or less
discriminative for clusters. As a result, error in more dis-
criminative features could substantially decrease clustering
performance. To improve robustness of clustering on this
error, we impose group `1 norm on error matrix. In this
way, in contrast to `1 norm, group `1 norm learns group-
wise features importance of one view on each cluster and
thus improves robustness of clustering against erroneous dis-

criminative features. By various experiments, we also claim
that by using group `1 rather than `1 norm, the proposed
EMVC method achieves better clustering performance both
on non-erroneous and erroneous datasets.

To deal with sample-specific corruptions, EMVC imposes
`2,1 norm on error matrix because similar to [2], error matrix
with this error type has sparse row supports. Furthermore,
since data may come from multiple heterogeneous sources,
error matrices could have inconsistent magnitude values. In
contrast to RMSC, as suggested in [2], with the aim of
increasing clustering performance, we enforce the column
of each error matrix with respect to each view to have
jointly consistent magnitude values by vertical concatenation
of error matrices of all views.

The `2,1 and group `1 norms are two non-smooth struc-
tured sparsity-inducing norms, which make the correspond-
ing objective function of EMVC challenging to optimize.
We present a reformulation of the objective function and
propose a new efficient optimization algorithm based on the
Augmented Lagrangian Multiplier [9] to optimize it. We also
present a rigorous proof of convergence for the optimization
technique. Our contributions can be summarized as follows:

1) To the best of our knowledge, EMVC is the first
work that can address any or combination of the
typical types of errors in multi-view clustering via
combination of `2,1 and group `1 norms. Since it is
generally hard to know which type of error incurred in
each view, it is important to have an all-encompassing
approach that can handle any or combination of the
typical error types.

2) EMVC is the first Markov chains method that does
not treat error matrices independently. Independent
treatment of error matrices could decrease clustering
performance [2]. The proposed EMVC method en-
forces the error matrices in each view to have jointly
consistent magnitude values.

3) We propose a new efficient optimization algorithm to
solve the EMVC optimization problem, along with
rigorous proof of convergence.

4) Through extensive experiments on synthetic and real-
world datasets, we show that EMVC is superior to
several state-of-the-art methods in the multi-view clus-
tering and robust against typical error types.

II. PRELIMINARIES

In this section, we introduce some related concepts and
notations. The mathematical notations used in the rest of the
paper are summarized in Table I.

A. Transition Probability Matrix

Given a graph G with N nodes, a square matrix called
transition probability matrix is defined over G that con-
tains the transitions of a Markov chain. It is denoted as
P ∈ RN×N . Each element of P denotes a probability (i.e.,

Table I: List of basic symbols

Symbol Definition and description
x each lowercase letter represents a scale
x each boldface lowercase letter represents a vector
X each boldface uppercase letter represents a matrix
〈·, ·〉 denotes inner product

rank(·) denotes the rank of the matrix
Tr(·) denotes the trace of the matrix

pi,j >= 0), and all outgoing transitions from a specific
state have to sum to one (i.e.,

∑
j=1 pi,j = 1). Each row

in P is a distribution probability over the transitions of the
corresponding state.

B. Spectral Clustering via Markov chains

Spectral clustering seeks clusters of data points in a
weighted graph G where vertices are data points and edges
represent similarity between two connecting data points.
There is a relationship between spectral clustering and
transition probability matrix [6]. Spectral clustering on graph
G is equivalent to finding clusters on G such that the Markov
random walk remains long within the same cluster and jumps
infrequently between clusters [7].

In the context of clustering, a natural way to construct
a transition probability matrix is to first build a similarity
matrix S between pairs of data points and then calculate
the corresponding transition probability matrix P by P =
(D−1S), where D denotes the degree matrix of graph G.
One way to build a similarity matrix S is to use Gaussian
kernels [7]. Let si,j denotes the similarity on a pair of data
points xi and xj . It can be calculated as follows:

si,j = exp(−||xi − xj ||22/σ2) (1)

where ||.||2 denotes the l2-norm and σ2 indicates the stan-
dard deviation (e.g., it could be set to median of Euclidean
distance over all pairs of data points). Algorithm 1 summa-
rizes the overall scheme for computing transition probability
matrix.

Algorithm 1 Transition Probability Matrix Construction

Input: Data matrix X ∈ RN×D
Output: Transition probability matrix P ∈ RN×N

1: for i = 1, ..., N do
2: for j = 1, ..., N do
3: si,j = exp(−||xi − xj ||22/σ2)
4: end for
5: end for
6: for i = 1, ..., N do
7: di,i =

∑N
j=1 si,j

8: end for
9: P = D−1S

The steps of spectral clustering via Markov chains is
described in Algorithm 2 [10]. To perform clustering using

Markov chains, a crucial step is to build the transition
probability matrix P over graph G in Line 1. A stationary
distribution of P is obtained in Line 2. Two matrices L and
D̂ are computed in Lines 3 and 4. Finally, k-means must be
performed on eigenvectors of the generalized eigenproblem
Lu = λD̂u (Lines 5 and 6).

Algorithm 2 Spectral Clustering via Markov Chains

Input: Graph G
Output: Clustering results

1: Define a random walk over G with a transition proba-
bility matrix P constructed by Algorithm 1

2: Compute stationary distribution π satisfying π = Pπ
3: Build diagonal matrix D̂ with the i-th diagonal element

as d̂i,i, such that d̂i,i = π(i)
4: L = D̂− ((D̂P+PT D̂)/2)
5: Calculate R smallest generalized eigenvectors u1, ...,ur

of the generalized eigenproblem Lu = λD̂u
6: Cluster U by k-means to obtain clustering results, where

U is the matrix consisting of the vectors u1, ...,ur.

III. ERROR-ROBUST MULTI-VIEW CLUSTERING

In this section, we will first systematically propose a novel
error-robust multi-view algorithm for clustering, followed by
a new efficient iterative algorithm to solve the formulated
non-smooth objective function.

Problem. In the setting of clustering, given N distinct
data points or samples with K related views, their views
are denoted as X(1),X(2), ...,X(K). The goal is to derive
a clustering solution across all views. We assume that the
features in each individual view are sufficient for obtaining
most of the clustering information and each individual view
might be erroneous.

A. Transition Probability Matrix Construction

Transition probability matrices have been used to model
multiple views [7], [11]. There are several ways to build a
transition probability matrix with respect to each view. We
use Algorithm 1 to construct transition probability matrices
with respect to each individual view.

B. Problem Formulation

Assuming that each individual view might be erroneous
so that it causes wrong assignment of data points to clusters,
each transition probability matrix P(k) can be decomposed
into two terms: a shared transition probability matrix P̂ and
the error matrix E(k) that indicates the error in the transition
probabilities in view k.

∀k,P(k) = P̂+E(k) (2)

We use P̂ as the input transition probability matrix to the
Markov chains method (i.e., Algorithm 2) to obtain clus-
tering solution. Using the transition probability construction

method described in Algorithm 1, we get initial transition
probability matrices with respect to each individual view.

In order to approximate the shared transition probability
matrix while reducing its complexity, we minimize rank(P̂)
(i.e., low rankness criterion). Since data may come from
different sources, error matrices could have inconsistent
magnitude values, which adversarially affects clustering per-
formance [2]. To enforce the column of E(k) in each view
to have jointly consistent magnitude values, we vertically
concatenate error matrices of views along their columns (i.e.,
E = [E(1);E(2); ...;E(K)]).

In some cases, error may appear in features of a specific
view which are more or less discriminative for clustering.
Compared to error in less discriminative features, error in
more discriminative features degrade clustering performance
significantly. For example, color features substantially af-
fects the detection of traffic light and trees whereas they are
irrelevant for finding cars in the context of image clustering.
Thus, error in color features would substantially decrease
clustering performance. To improve robustness of clustering
against error in these features, we add group `1 norm [8] on
E. The group `1 norm can be defined as follows:

||E||G1 =

N∑
i=1

K∑
j=1

||eji ||2 s.t. E = [E(1);E(2); ...;E(K)]

(3)

where eji denotes E((j − 1) × N + 1 : j × N, i) (i.e., the
segment ((j−1)×N+1 : j×N) of i-th column of E). This
norm uses `2 norm within each view and `1 norm between
views. Thus, it enforces the sparsity between different views,
i.e., if features of one view are not discriminative for
clustering, Eq. (3) will assigns zero to them.

In sample-specific corruptions, E has sparse row supports
[2]. Thus, to handle error in specific samples, we add `2,1
penalty [12] on E. The `2,1 norm is defined as follows:

||E||2,1 =

K×N∑
i=1

||ei||2 (4)

where ei denotes E(i, :) (i.e., the i-th row of E).
Based on the above consideration, the objective function

for obtaining a shared transition probability matrix is for-
mulated as follows:

min
P̂,E

rank(P̂) + β||E||2,1 + λ||E||G1 (5)

s.t. E = [E(1);E(2); ...;E(K)],

P(i) = P̂+E(i), P̂ ≤ 0, P̂1 = 1

where rank(P̂) is the rank of P̂. 1 denotes the vector with
all ones, β and λ are non-negative trade-off parameters.
E is obtained by concatenation of error matrices of views
vertically. To enforce P̂ to be a transition probability matrix,
two constraints P̂ ≥ 0 and P̂1 = 1 have been considered.

Figure 3: Overview of the proposed EMVC method

Since rank(P̂) is non-convex, the objective function in
Eq. (5) is an instance of NP-hard problem. One natural
way is to replace rank(P̂) with the trace norm ||P̂||∗. The
resulted objective function is as follows:

min
P̂,E
||P̂||∗ + β||E||2,1 + λ||E||G1 (6)

s.t. E = [E(1);E(2); ...;E(K)],

P(i) = P̂+E(i), P̂ ≤ 0, P̂1 = 1

The trace norm is the convex envelope of the rank. There-
fore, minimizing the trace norm of a matrix often applies
the low-rank structure on that [13], [14]. Fig. 3 visualizes
the proposed EMVC method. We first build initial transition
probability matrices that might be erroneous. Then, we use
decomposition via low-rankness and regularization to obtain
a shared transition probability matrix.

C. Optimization Procedure
The objective function in Eq. (6) imposes a probabilistic

simplex constraint on each of rows of P̂. We use an
Augmented Lagrangian Multiplier scheme [9] to solve the
optimization problem. By introducing an auxiliary variable
Q, the objective function in Eq. (6) can be stated equiva-
lently as follows:

min
P̂,E,Q

||Q||∗ + β||E||2,1 + λ||E||G1 (7)

s.t. P(i) = P̂+E(i), i = 1, ...,K.

P̂ ≤ 0, P̂1 = 1, P̂ = Q

where Q ∈ RN×N . The corresponding augmented La-
grangian function of Eq. (7) is:

L(P̂,E,Q) = ||Q||∗ + β||E||2,1 + λ||E||G1

+(µ/2)||P̂−Q||2F + 〈Z, P̂−Q〉

+(µ/2)

K∑
i=1

||P̂+E(i) −P(i)||2F

+

K∑
i=1

〈Y(i), P̂+E(i) −P(i)〉 (8)

where Z ∈ RN×N and Y(i) ∈ RN×N are the Lagrange
multipliers. µ is an adaptive penalty parameter which can
be adjusted efficiently according to [15].

Algorithm 3 Error Robust Multi-View Clustering (EMVC)

Input: λ, β, P(i) ∈ RN×N (i = 1, 2, ...,K)
Output: Clustering results

P̂ = 0, Q = 0, Z = 0, Y(i) = 0, E(i) = rand,
µ = 10−6, ρ = 1.9, maxµ = 1010, ε = 10−8

1: while not converge do
2: C = (1/(K + 1))(Q − Z/µ +

∑K
i=1(P

(i) − E(i) −
Y(i)/µ))

3: for i = 1, ..., N do
4: Run Algorithm 4 using ci as input to update p̂i

Where ci/p̂i is the i-th row of C/P̂, respectively.
5: end for
6: for l = 1, ..., N do
7: Update el by Eq. (15)
8: end for
9: Update Q by Eq. (11)

10: Update Z by Eq. (21)
11: for i = 1,..., K do
12: Update Y(i) by Eq. (22)
13: end for
14: µ← min(ρµ,maxµ)
15: end while
16: Apply Algorithm 2 on P̂ to get clustering results

The iterative algorithm for solving Eq. (8) is shown in
Algorithm 3. We detail each step as follows.

Solving Q. When other variables are fixed, the objective
function w.r.t. Q can be stated as:

min
Q
||Q||∗ + (µ/2)||P̂−Q||2F + 〈Z, P̂−Q〉 (9)

The optimization problem in Eq. (9) is equivalent to the
following objective function:

min
Q
||Q||∗ + (µ/2)||P̂−Q+ Z/µ||2F (10)

To solve Eq. (10), we use the Singular Value Threshold
(SVD) method [16]. Let U

∑
VT denote the SVD form of

(P̂ + Z/µ), then Q can be obtained using the following
equation:

Q = US1/µ(
∑

)VT (11)

where Sσ = max(X−σ, 0)+min(X+σ, 0) is the shrinkage
operator [9].

Solving E. When other variables are fixed, the objective
function w.r.t. E can be stated as:

min
E
β||E||2,1 + λ||E||G1 + (µ/2)

K∑
i=1

||P̂+E(i) −P(i)||2F

+

K∑
i=1

〈Y(i), P̂+E(i) −P(i)〉 (12)

The optimization problem in Eq. (12) can be stated equiva-
lently as follows:

min
E

(β/µ)||E||2,1 + (λ/µ)||E||G1 + (1/2)||E−B||2F
(13)

where B is constructed by vertically concatenating the
matrices P(i)−P̂−(1/µ)Y(i) together along column. Taking
the derivative of Eq. (13) w.r.t. E and setting it to zero, we
have the following result for 1 ≤ l ≤ N :

(β/µ)D̂el + (λ/µ)Dlel + (el − p
(i)
l + p̂l − (1/µ)y

(i)
l) = 0

(14)

where el denotes E(:, l) (i.e., l-th column of E). Likewise,
p
(i)
l , p̂l and y

(i)
l indicate l-th column of p(i), p̂ and y(i),

respectively. Dl is a block diagonal matrix with the j-th
diagonal block as (1/(2||ejl ||2))× I, I is an identity matrix
with size of N , ejl is the j-th segment of el and includes the
representation errors in j-th view. D̂ is a diagonal matrix
with the i-th diagonal element as 1/(2||ei||2) where ei

represents i-th row of E. el can be obtained by:

el = ((β/µ)D̂+ (λ/µ)Dl + I)−1(P(i) − P̂+ (1/µ)Y(i))
(15)

Solving P̂. Fixing other variables, we need to solve the
following objective function to obtain P̂:

min
P̂

K∑
i=1

〈Y(i), P̂+E(i) −P(i)〉 (16)

+(µ/2)

K∑
i=1

||P̂+E(i) −P(i)||2F

+〈Z, P̂−Q〉+ (µ/2)||P̂−Q||2F s.t. P̂ ≥ 0, P̂1 = 1

The objective function in Eq. (16) can be converted to the
following equivalent form:

min
P̂

(µ/2)

K∑
i=1

||P̂+E(i) −P(i) +Y(i)/µ||2F (17)

+(µ/2)||P̂−Q+ Z/µ||2F s.t. P̂ ≥ 0, P̂1 = 1

For ease of presentation, we define a new variable C as
follows:

C = (1/(K + 1))(Q− Z/µ+

K∑
i=1

(P(i) −E(i) −Y(i)/µ))

(18)
Then the objective function in Eq. (17) can be converted
into the following equivalent form:

min
P̂

(1/2)||P̂−C||2F s.t. P̂ ≥ 0, P̂1 = 1 (19)

Algorithm 4 Proximal Operator with Simplex Constraint

Input: ci ∈ RN
Output: p̂i ∈ RN

1: u = Sort(ci,′ descend′)
2: ĵ = max{j : 1−

∑j
r=1(ur − uj) ≥ 0}

3: σ = (1/ĵ)(
∑ĵ
i=1 ui − 1)

4: for j = 1, ..., N do
5: p̂i,j = max(ci,j − σ, 0)
6: end for

Eq. (19) can be further rewritten as:

min
p̂1,...,p̂N

(1/2)

N∑
i=1

||p̂i − ci||2F s.t.
K∑
i=1

p̂i,j = 1, p̂i,j ≥ 0

(20)

where ci indicates the i-th row of matrix C and p̂i denotes
the i-th row of matrix P̂, respectively. The optimization
problem in Eq. (20) has N independent subproblems. Each
problem is a proximal operator problem with a probabilistic
simplex constraint that can be efficiently solved by the pro-
jection algorithm [17]. The algorithm for this optimization
procedure is shown in Algorithm 4.

Solving Z. The Lagrangian multiplier Z can be obtained
using the following update:

Z← Z+ µ(P̂−Q) (21)

Solving Y(i). The Lagrangian multiplier Y(i) can be
obtained using the following update:

Y(i) ← Y(i) + µ(P̂+E(i) −P(i)) (22)

D. Computational and Convergence analysis

In Algorithm 3, Lines 2-5 update P̂ with quadratic com-
plexity. Lines 6-8 update matrix E. Instead of computing
the matrix inverse with cubic complexity, we can solve a
system of linear equations which have quadratic complexity
in order to obtain el. If sufficient computational resources
are available, each el (1 ≤ l ≤ N) can be computed
in parallel with efficiency. Updating Q in line 9 requires
solving an SVD problem. This part can be computed with
cubic complexity. Lagrangian Multipliers can be updated
with quadratic complexity. Line 16 applies spectral clus-
tering via Markov chains (i.e., Algorithm 2) on the shared
transition probability matrix. This step can be done with
cubic complexity. When sufficient computational resources
are available and parallel computing is implemented, both
SVD and linear equations can be solved efficiently.

For convergence analysis, the following theorem guaran-
tees the convergence of Algorithm 3.

Theorem. Algorithm 3 decreases the objective value of
Eq. (6) in each iteration.

Proof. To obtain P̂t+1 (i.e., P̂ in (t + 1)-th iteration),
according to Algorithm 3, we know that

P̂t+1 = min
P̂
||P̂||∗ + λ

N∑
i=1

Di
t+1||(Et)i||22

+βTr(ETt D̂t+1Et) (23)

where Et represents E at t-th iteration and (Et)i indicates i-
th column of Et. According to Algorithm 3, to obtain Et+1,
the following problem must be solved:

Êt+1 = min
E
||P̂t+1||∗ + λ

N∑
i=1

Di
t+1||(Et)i||22

+βTr(ET D̂t+1E) (24)

Considering Eq. (23) and Eq. (24), we have the following:

||P̂t+1||∗ + λ

N∑
i=1

Di
t+1||(Et)i||22 + βTr(ETt+1D̂t+1Et+1)

≤ ||P̂t||∗ + λ

N∑
i=1

Di
t+1||(Et)i||22 + βTr(ETt D̂t+1Et)

(25)

Substituting D and D̂ by their definitions results in the
following:

||P̂t||∗ + λ

N∑
i=1

K∑
j=1

||(Et)ji ||
2
2/(2||((Et)

j
i ||2) (26)

+β

N×K∑
i=1

||(Et)i||22/(2||(Et)i||2)

where (Et)
j
i denotes the segment ((j − 1) ∗N + 1 : j ∗N)

of ith row of Et and (Et)
i indicates ith row of Et. We can

derive the following because if we define f(x) = x−x2/2α,
then f(x) ≤ f(α):

K∑
j=1

||(Et+1)
j
i ||2 −

K∑
j=1

||(Et+1)
j
i ||

2
2/(2||(Et)

j
i ||2)

≤
K∑
j=1

||(Et)ji ||2 −
K∑
j=1

||(Et)ji ||
2
2/(2||(Et)

j
i ||2) (27)

and
K×N∑
i=1

||(Et+1)
i||2 −

K×N∑
i=1

||(Et+1)
i||22/(2||(Et)

i||2)

≤
K×N∑
i=1

||(Et)
i||2 −

K×N∑
i=1

||(Et)
i||22/(2||(Et)

i||2) (28)

If we add all Eq. (25-28) on both sides, we obtain the
inequality that objective value at iteration t+ 1 is less than
objective value at iteration t. Therefore, we can conclude that
the objective value decreases in each iteration and Algorithm
3 converges.

IV. EXPERIMENTAL EVALUATION

To empirically evaluate performance of the proposed
EMVC method, we conduct extensive experiments on syn-
thetic and publicly available real-world multi-view datasets
and compare with six state-of-the-art methods: (1) Best
Single View (BSV) performs standard k-means on the
most informative view. (2) Feature Concatenation (Feat.
Concat.) concatenates features of all views and then runs
standard k-means clustering on the concatenated feature
representations. (3) Kernel Addition constructs kernel ma-
trix for each individual view and then obtains the aver-
age of these matrices to get a single kernel matrix for
spectral clustering. (4) Co-regularized Spectral Cluster-
ing (Co-Reg) performs centroid based and pairwise co-
regularized spectral clustering via Gaussian kernel [18].
The co-regularization parameter λ is tuned by searching a
range of {0.01, 0.02, 0.03, 0.04, 0.05} as suggested by the
authors. (5) Robust Multi-View Spectral Clustering via
Low-Rank and Sparse Decomposition (RMSC) uses low-
rank decomposition and `1 norm [7]. The regularization
parameter λ is tuned by searching the range {10−3, 10−2,
..., 102, 103} as suggested by the authors (we keep λ the
same for all views). The parameter σ2 is set to the median of
all Euclidean distances over all pairs of data points for each
individual view as suggested by the authors. (6) Parameter-
Free Auto-Weighted Multiple Graph Learning (AMGL)
finds cluster indicator matrix over all views by applying
normalized cut algorithms on the graphs of views [19].

We implement four versions of the proposed EMVC
method to investigate the effectiveness of its compo-
nent terms in multi-view learning: EMVC by only us-
ing the first term in Eq. (6) “EMVC(*)”, EMVC by us-
ing trace norm and only imposing the group `1 norm
“EMVC(g1)”, EMVC by using trace norm and only im-
posing `2,1 norm “EMVC(`2,1)” and the full version of
EMVC based on Eq. (6). We apply grid search to identify
optimal values for each regularization hyperparameter from
{10−9, 10−8, ..., 108, 109}. The standard deviation is set to
the median of all Euclidean distances over all pairs of data
points for each individual view.

We use different evaluation metrics including F-Score,
Precision, Recall, Normalized Mutual Information
(NMI), Entropy, Accuracy, Adjusted Rand-Index (AR)
for the purpose of comprehensive evaluation [18], [20]. All
of these measure except for Entropy are positive measures,
which indicates that larger values stand for better perfor-
mance. For Entropy, smaller values indicate better perfor-
mance. Different measurements reveal different properties.
Thus, we can obtain comprehensive view from the results.

Each experiment is repeated for five times, and the mean
and standard deviation of each metric in each dataset are
reported. We then use k-means to obtain final clustering
solution. Since k-means is sensitive to initial seed selection,

we run k-means 20 times on each dataset.
A. Experiments on Real-World Datasets

We conduct experiments on the following publicly avail-
able real-world datasets. Statistics of the real-world datasets
are summarized in Table II (Max # features indicates max-
imum number of features over all views of the dataset).

Table II: Statistics of the real-world multi-view datasets

Dataset # data points Max # features # views # clusters
webKB 1051 3000 2 2

FOX 1523 2711 2 4
CNN 2107 3695 2 7

Citeseer 3312 6654 2 6
CCV 9317 5000 3 20

WebKB1: This dataset contains webpages collected from
Texas, Cornell, Washington and Wisconsin universities. Each
webpage is described by the content view and link view.

FOX2: The dataset is crawled from FOX web news. Each
instance is represented in two views: the text view and the
image view. Titles, abstracts, and text body contents are
extracted as the text view data, and the image included in
the article is stored as the image view data.

CNN3: This dataset is crawled from CNN web news.
For this dataset, titles, abstracts, and text body contents are
extracted as the text view data. Also, the image included in
the article is stored as the image view data.

Citeseer4: It contains a selection of the Citeseer dataset.
The papers were selected in a way that in the final corpus
every paper cites or is cited by at least one other paper. The
text view consists of title and abstract of a paper; the link
view contains inbound and outbound references.

CCV5: This high rank dataset contains 9317 videos over
20 semantic categories. Two views contains visual features,
while the third view consists of audio features.

Tables III and IV report the performance comparison
on the real-world datasets. From these tables, we have
several observations. First, EMVC is always better than the
baselines by a large margin. Specifically, compared with
RMSC, even EMVC(g1) can do a lot better in some of the
datasets like FOX, CNN and Citeseer. This observation is
consistent with our analysis in that group `1 achieves better
performance than `1. Second, the full version of EMVC is
superior to all its three degenerative versions. This validates
the correctness of our objective function and demonstrates
the importance of having an all-encompassing approach.

B. Experiments on Synthetic Noisy Dataset

Using similar settings in [18], the synthetic dataset con-
sists of two views and the data in each view is partitioned

1http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/
2https://sites.google.com/site/qianmingjie/home/datasets/
3https://sites.google.com/site/qianmingjie/home/datasets/
4http://linqs.cs.umd.edu/projects//projects/lbc/index.html
5http://www.ee.columbia.edu/ln/dvmm/CCV/

http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/
https://sites.google.com/site/qianmingjie/home/datasets/
https://sites.google.com/site/qianmingjie/home/datasets/
http://linqs.cs.umd.edu/projects//projects/lbc/index.html
http://www.ee.columbia.edu/ln/dvmm/CCV/

Table III: Comparison results on the real-world datasets - part 1(mean (standard deviation))

Dataset Method F-Score ↑ Precision ↑ Recall ↑ NMI ↑ Entropy ↓ Accuracy ↑ AR ↑
WebKB BSV 0.889(0.000) 0.889(0.000) 0.889(0.000) 0.532(0.000) 0.406(0.000) 0.913(0.000) 0.618(0.000)

Feat. Concat. 0.947(0.000) 0.947(0.000) 0.947(0.000) 0.717(0.000) 0.214(0.000) 0.963(0.000) 0.845(0.000)
Kernel Addition 0.946(0.000) 0.946(0.000) 0.946(0.000 0.717(0.000) 0.214(0.000) 0.963(0.000) 0.845(0.000)

Co-Reg 0.949(0.000) 0.949(0.000) 0.949(0.000) 0.733(0.000) 0.195(0.000) 0.965(0.000) 0.853(0.000)
AMGL 0.794(0.000) 0.794(0.000) 0.794(0.000) 0.015(0.000) 0.752(0.000) 0.783(0.000) 0.013(0.000)
RMSC 0.956(0.000) 0.956(0.000) 0.956(0.000) 0.758(0.000) 0.189(0.000) 0.970(0.000) 0.871(0.000)

EMVC (*) 0.568(0.000) 0.568(0.000) 0.568(0.000) 0.000(0.000) 0.757(0.000) 0.511(0.000) 0.000(0.000)
EMVC (g1) 0.949(0.000) 0.949(0.000) 0.949(0.000) 0.731(0.000) 0.199(0.000) 0.965(0.000) 0.853(0.000)

EMVC (`2,1) 0.954(0.000) 0.954(0.000) 0.954(0.000) 0.759(0.000) 0.175(0.000) 0.969(0.000) 0.870(0.000)
EMVC 0.959(0.000) 0.959(0.000) 0.959(0.000) 0.776(0.000) 0.164(0.000) 0.972(0.000) 0.883(0.000)

FOX BSV 0.718(0.000) 0.718(0.000) 0.718(0.000) 0.672(0.000) 0.626(0.000) 0.758(0.000) 0.599(0.000)
Feat. Concat. 0.314(0.000) 0.314(0.000) 0.314(0.000) 0.041(0.000) 1.787(0.000) 0.356(0.000) 0.050(0.000)

Kernel Addition 0.358(0.000) 0.358(0.000) 0.358(0.000) 0.103(0.000) 1.669(0.000) 0.460(0.000) 0.113(0.000)
Co-Reg 0.477(0.006) 0.477(0.006) 0.477(0.006) 0.242(0.002) 1.410(0.002) 0.547(0.000) 0.262(0.000)
AMGL 0.456(0.000) 0.456(0.000) 0.456(0.000) 0.010(0.000) 1.857(0.000) 0.419(0.000) 0.001(0.000)
RMSC 0.364(0.005) 0.364(0.005) 0.364(0.005) 0.141(0.000) 1.593(0.001) 0.401(0.001) 0.127(0.000)

EMVC (*) 0.270(0.009) 0.270(0.009) 0.270(0.009) 0.002(0.002) 1.862(0.002) 0.267(0.003) 0.000(0.000)
EMVC (g1) 0.761(0.005) 0.761(0.005) 0.761(0.005) 0.691(0.003) 0.565(0.002) 0.818(0.004) 0.664(0.002)

EMVC (`2,1) 0.761(0.004) 0.761(0.004) 0.761(0.004) 0.691(0.007) 0.565(0.004) 0.818(0.003) 0.664(0.005)
EMVC 0.761(0.010) 0.761(0.010) 0.761(0.010) 0.691(0.004) 0.565(0.003) 0.818(0.003) 0.664(0.002)

CNN BSV 0.388(0.001) 0.388(0.001) 0.388(0.001) 0.405(0.008) 1.736(0.012) 0.486(0.007) 0.228(0.008)
Feat. Concat. 0.171(0.000) 0.171(0.000) 0.171(0.000) 0.037(0.000) 2.621(0.001) 0.219(0.001) 0.023(0.000)

Kernel Addition 0.175(0.000) 0.175(0.000) 0.175(0.000) 0.046(0.000) 2.597(0.002) 0.233(0.000) 0.026(0.000)
Co-Reg 0.200(0.005) 0.200(0.005) 0.200(0.005) 0.076(0.002) 2.513(0.003) 0.276(0.002) 0.056(0.004)
AMGL 0.250(0.002) 0.250(0.002) 0.250(0.002) 0.031(0.001) 2.667(0.003) 0.239(0.004) 0.000(0.001)
RMSC 0.219(0.010) 0.219(0.010) 0.219(0.010) 0.122(0.000) 2.388(0.001) 0.300(0.000) 0.078(0.000)

EMVC (*) 0.149(0.003) 0.149(0.003) 0.149(0.003) 0.003(0.004) 2.716(0.004) 0.165(0.002) 0.000(0.000)
EMVC (g1) 0.557(0.004) 0.557(0.004) 0.557(0.004) 0.536(0.002) 1.279(0.005) 0.655(0.005) 0.472(0.000)

EMVC (`2,1) 0.558(0.004) 0.558(0.004) 0.558(0.004) 0.536(0.003) 1.281(0.004) 0.656(0.001) 0.472(0.001)
EMVC 0.560(0.013) 0.560(0.013) 0.560(0.013) 0.542(0.005) 1.264(0.003) 0.657(0.002) 0.474(0.002)

into two clusters. Eq. (29) shows cluster means and covari-
ances for each view. In each view, the two clusters overlap,
which is the source of noise in the transition probabilities
of each view. First, we choose the cluster that each sample
belongs to, and then produce the views from a mixture
of two bivariate Gaussian distributions. For each view, we
sample 500 data points from each of the clusters.

µ
(1)
1 = (1, 1), µ

(1)
2 = (2, 2), µ

(2)
1 = (2, 2), µ

(2)
2 = (1, 1)∑

∗
=

(
1 0.5

0.5 1.5

)
,
∑
∗∗

=

(
0.3 0
0 0.6

)
(29)

where µ(i)
j denotes cluster means for cluster j in view i.

∑
∗

is covariance for first and second clusters in first and second
views, respectively.

∑
∗∗ indicates covariance for second and

first clusters in first and second views, respectively. Table V
presents the comparison results on this dataset. With this
type of noise, the proposed EMVC method shows superior
clustering performance over all the baselines.

C. Experiments on Erroneous Real-World Datasets

To evaluate robustness of the proposed EMVC method
on noise and random corruptions, we add white Gaussian
noise with different signal-to-noise ratio {0.01, 0.1, 1, 10,
100} on FOX (denoted as NRC-FOX) and CNN (denoted

as NRC-CNN). Fig. 4 shows clustering performance of the
methods with various signal-to-noise ratio on the contami-
nated datasets. We can see that EMVC consistently achieves
superior performance over the baselines (we only show the
results for full version of EMVC, which is superior to its
degenerative versions). This observation demonstrates that
EMVC is robust against random noise and corruptions.

We investigate robustness of the proposed EMVC method
against sample-specific corruptions on FOX (denoted as
SSC-FOX) and CNN (denoted as SSC-CNN). For this
experiment, we randomly select a small portion of samples
(2%, 6% and 10%) and replace their feature values in all
views by random values. This setting is similar to generation
of attribute outliers in [21]. Fig. 4 shows clustering perfor-
mance of the methods on sample-specific corruptions. The
proposed EMVC method outperforms the baselines against
this type of error (we only show the results for full version of
EMVC, which is superior to its degenerative versions). This
is mainly because of `2,1 norm in our objective function,
which has sparse row supports.

D. Hyperparameter Analysis

To explore the effects of the hyperparameters on the
performance, we run experiments on real-world datasets
with different values for λ ∈ {10−9, 10−8, ..., 108, 109}
and β ∈ {10−9, 10−8, ..., 108, 109} and report the average
accuracy in Fig. 5. In this Figure, each grid with different

Table IV: Comparison results on the real-world datasets - part 2(mean (standard deviation))

Dataset Method F-Score ↑ Precision ↑ Recall ↑ NMI ↑ Entropy ↓ Accuracy ↑ AR ↑
Citeseer BSV 0.322(0.000) 0.322(0.000) 0.322(0.000) 0.199(0.000) 2.013(0.000) 0.443(0.000) 0.180(0.000)

Feat. Concat. 0.326(0.001) 0.326(0.001) 0.326(0.001) 0.204(0.002) 2.001(0.001) 0.452(0.001) 0.185(0.000)
Kernel Addition 0.346(0.002) 0.346(0.002) 0.346(0.002) 0.232(0.003) 1.943(0.002) 0.456(0.001) 0.200(0.001)

Co-Reg 0.356(0.009) 0.356(0.009) 0.356(0.009) 0.174(0.010) 2.088(0.005) 0.378(0.003) 0.123(0.003)
AMGL 0.303(0.010) 0.303(0.010) 0.303(0.010) 0.005(0.009) 2.517(0.007) 0.213(0.002) 0.000(0.001)
RMSC 0.271(0.011) 0.271(0.011) 0.271(0.011) 0.154(0.005) 2.139(0.009) 0.365(0.002) 0.105(0.001)

EMVC (*) 0.172(0.020) 0.172(0.020) 0.172(0.020) 0.001(0.011) 2.519(0.009) 0.183(0.003) 0.000(0.002)
EMVC (g1) 0.386(0.006) 0.386(0.006) 0.386(0.006) 0.283(0.007) 1.800(0.005) 0.532(0.004) 0.251(0.002)

EMVC (`2,1) 0.388(0.007) 0.388(0.007) 0.388(0.007) 0.284(0.008) 1.802(0.004) 0.535(0.003) 0.254(0.002)
EMVC 0.390(0.007) 0.390(0.007) 0.390(0.007) 0.286(0.011) 1.803(0.002) 0.537(0.004) 0.256(0.002)

CCV BSV 0.119(0.001) 0.119(0.001) 0.119(0.001) 0.177(0.001) 3.466(0.003) 0.181(0.006) 0.069(0.002)
Feat. Concat. 0.096(0.001) 0.096(0.001) 0.096(0.001) 0.119(0.001) 3.739(0.010) 0.170(0.002) 0.023(0.001)

Kernel Addition 0.124(0.002) 0.124(0.002) 0.124(0.002) 0.171(0.001) 3.496(0.005) 0.189(0.009) 0.072(0.002)
Co-Reg 0.119(0.009) 0.119(0.009) 0.119(0.009) 0.176(0.001) 3.473(0.075) 0.180(0.010) 0.068(0.040)
AMGL 0.080(0.010) 0.080(0.010) 0.080(0.010) 0.089(0.001) 3.901(0.009) 0.165(0.006) 0.019(0.002)
RMSC 0.130(0.005) 0.130(0.005) 0.130(0.005) 0.203(0.002) 3.225(0.020) 0.196(0.005) 0.082(0.005)

EMVC (*) 0.070(0.005) 0.070(0.005) 0.070(0.005) 0.085(0.006) 4.001(0.004) 0.152(0.009) 0.012(0.000)
EMVC (g1) 0.131(0.004) 0.131(0.004) 0.131(0.004) 0.210(0.007) 3.100(0.003) 0.198(0.004) 0.090(0.004)

EMVC (`2,1) 0.131(0.004) 0.131(0.004) 0.131(0.004) 0.211(0.006) 3.090(0.004) 0.198(0.005) 0.090(0.002)
EMVC 0.141(0.009) 0.141(0.009) 0.141(0.009) 0.300(0.009) 2.987(0.002) 0.203(0.008) 0.091(0.004)

Table V: Comparison results on the synthetic dataset (mean (standard deviation))

Method F-Score ↑ Precision ↑ Recall ↑ NMI ↑ Entropy ↓ Accuracy ↑ AR ↑
BSV 0.655(0.000) 0.655(0.000) 0.655(0.000) 0.246(0.000) 0.758(0.000) 0.771(0.000) 0.293(0.000)

Feat. Concat. 0.748(0.000) 0.748(0.000) 0.748(0.000) 0.424(0.000) 0.581(0.000) 0.849(0.000) 0.486(0.000)
Kernel Addition 0.760(0.000) 0.760(0.000) 0.760(0.000) 0.439(0.000) 0.564(0.000) 0.859(0.000) 0.515(0.00)0

Co-Reg 0.750(0.000) 0.750(0.000) 0.750(0.000) 0.437(0.000) 0.569(0.000) 0.850(0.000) 0.489(0.000)
AMGL 0.579(0.000) 0.579(0.000) 0.579(0.000) 0.116(0.003) 0.883(0.003) 0.696(0.002) 0.153(0.004)
RMSC 0.736(0.000) 0.736(0.000) 0.736(0.000) 0.375(0.000) 0.624(0.000) 0.844(0.000) 0.472(0.000)

EMVC (*) 0.499(0.000) 0.499(0.000) 0.499(0.000) 0.000(0.000) 1.000(0.000) 0.501(0.000) 0.000(0.000)
EMVC (g1) 0.730(0.000) 0.730(0.000) 0.730(0.000) 0.366(0.000) 0.634(0.000) 0.840(0.000) 0.461(0.000)

EMVC (`2,1) 0.730(0.000) 0.730(0.000) 0.730(0.000) 0.366(0.000) 0.634(0.000) 0.840(0.000) 0.461(0.000)
EMVC 0.762(0.000) 0.762(0.000) 0.762(0.000) 0.449(0.000) 0.555(0.000) 0.860(0.000) 0.517(0.000)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

log(Signal-to-Noise Ratio)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
M

I

BSV
Feat. Conc.
Kernel Addition
Co-Reg
AMGL
RMSC
EMVC

(a) NRC-FOX

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

log(Signal-to-Noise Ratio)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
M

I

BSV

Feat. Conc.

Kernel Addition

Co-Reg

AMGL

RMSC

EMVC

(b) NRC-CNN

2 3 4 5 6 7 8 9 10

Ratio of Sample Specific Corruption (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
M

I

BSV

Feat. Conc.

Kernel Addition

Co-Reg

AMGL

RMSC

EMVC

(c) SSC-FOX

2 3 4 5 6 7 8 9 10

Ratio of Sample Specific Corruption (%)

0.0

0.1

0.2

0.3

0.4

0.5

N
M

I
BSV

Feat. Conc.

Kernel Addition

Co-Reg

AMGL

RMSC

EMVC

(d) SSC-CNN

Figure 4: Clustering performance of erroneous real-world datasets

shades of colors reflects the clustering quality, where yellow
means excellent quality. We can see that the performance is
fairly stable. EMVC enjoys more promising results when
λ > 10−3 and β > 10−3, while it is almost insensitive to
the hyperparameters in that range.

V. RELATED WORK

Existing methods for multi-view clustering can be clas-
sified into two categories: 1) centralized approaches; 2)
distributed approaches [22]. The centralized approaches con-
structs a new shared representation (i.e., common consensus)
across all views [3], [11], [18], [7], [19]. For example, Bickel

and Scheffer presented an algorithm that interchanges the
cluster information among different views [3]. Xia et al.
proposed a multi-view clustering method, named as RMSC,
that recovers shared transition probability matrix, in favor
of low-rank and `1 regularization [7]. The proposed EMVC
method belongs to this category. Different from RMSC,
EMVC builds a shared transition probability matrix by
integrating decomposition and group `1 and `2,1 norms.
EMVC also handles typical error types well.

The distributed approaches often build separate learners
for each individual view and use the information in each

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

Log(λ)

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

L
og

(β
)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

(a) WebKB

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

Log(λ)

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

L
og

(β
)

0.30

0.36

0.42

0.48

0.54

0.60

0.66

0.72

0.78

(b) FOX

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

Log(λ)

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

L
og

(β
)

0.18

0.24

0.30

0.36

0.42

0.48

0.54

0.60

(c) CNN

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

Log(λ)

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

L
og

(β
)

0.20

0.24

0.28

0.32

0.36

0.40

0.44

0.48

0.52

(d) Citeseer

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

Log(λ)

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

L
og

(β
)

0.150

0.156

0.162

0.168

0.174

0.180

0.186

0.192

0.198

(e) CCV

Figure 5: Sensitivity analysis of regularization hyperparameters (Accuracy)

learner to apply constraints on other views [18]. Kumar
et al., proposed an approach to combine graphs of each
individual view by pairwise co-regularization to achieve
better clustering solution [18]. EMVC differs from this
category of approaches in a way that it does not construct
separate learners. Instead, it recovers a shared transition
probability matrix across all views.

VI. CONCLUSION

In this paper, we developed a Markov chains method
named EMVC for multi-view clustering via a low rank
decomposition and two regularization terms. EMVC has
several advantages over existing multi-view clustering meth-
ods. First, it handles typical types of error well. Second,
an iterative optimization framework is proposed for EMVC
which is proved to converge. Compared to the existing state-
of-the-art multi-view clustering approaches, EMVC showed
better performance on five real-world datasets.

REFERENCES

[1] J. Zhao, X. Xie, X. Xu, and S. Sun, “Multi-view learning
overview: Recent progress and new challenges,” Information
Fusion, vol. 38, pp. 43–54, 2017.

[2] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust
recovery of subspace structures by low-rank representation,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 35, no. 1, pp. 171–184, Jan 2013.

[3] S. Bickel and T. Scheffer, “Multi-view clustering.” in ICDM,
vol. 4, 2004, pp. 19–26.

[4] V. R. De Sa, “Spectral clustering with two views,” in ICML
workshop on learning with multiple views, 2005, pp. 20–27.

[5] A. Y. Ng, M. I. Jordan, Y. Weiss et al., “On spectral
clustering: Analysis and an algorithm,” in NIPS, vol. 14, no. 2,
2001, pp. 849–856.

[6] J. Shi and J. Malik, “Normalized cuts and image segmen-
tation,” IEEE Transactions on pattern analysis and machine
intelligence, vol. 22, no. 8, pp. 888–905, 2000.

[7] R. Xia, Y. Pan, L. Du, and J. Yin, “Robust multi-view spectral
clustering via low-rank and sparse decomposition.” in AAAI,
2014, pp. 2149–2155.

[8] J. Huang and T. Zhang, “The benefits of group sparsity,” arXiv
preprint arXiv:0901.2962, 2009.

[9] Z. Lin, M. Chen, and Y. Ma, “The augmented lagrange
multiplier method for exact recovery of corrupted low-rank
matrices,” arXiv preprint arXiv:1009.5055, 2010.

[10] D. Zhou, J. Huang, and B. Schölkopf, “Learning from labeled
and unlabeled data on a directed graph,” in ICML. ACM,
2005, pp. 1036–1043.

[11] D. Zhou and C. J. Burges, “Spectral clustering and transduc-
tive learning with multiple views,” in ICML. ACM, 2007,
pp. 1159–1166.

[12] F. Nie, H. Huang, X. Cai, and C. H. Ding, “Efficient and
robust feature selection via joint `2,1-norms minimization,”
in NIPS, 2010, pp. 1813–1821.

[13] M. Fazel, H. Hindi, and S. P. Boyd, “A rank minimization
heuristic with application to minimum order system approxi-
mation,” in American Control Conference, 2001. Proceedings
of the 2001, vol. 6. IEEE, 2001, pp. 4734–4739.

[14] N. Srebro, J. D. Rennie, and T. S. Jaakkola, “Maximum-
margin matrix factorization,” in NIPS, vol. 17, 2004, pp.
1329–1336.

[15] Z. Lin, R. Liu, and Z. Su, “Linearized alternating direction
method with adaptive penalty for low-rank representation,” in
NIPS, 2011, pp. 612–620.

[16] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value
thresholding algorithm for matrix completion,” SIAM Journal
on Optimization, vol. 20, no. 4, pp. 1956–1982, 2010.

[17] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra,
“Efficient projections onto the l 1-ball for learning in high
dimensions,” in ICML. ACM, 2008, pp. 272–279.

[18] A. Kumar, P. Rai, and H. Daume, “Co-regularized multi-view
spectral clustering,” in NIPS, 2011, pp. 1413–1421.

[19] F. Nie, J. Li, X. Li et al., “Parameter-free auto-weighted mul-
tiple graph learning: A framework for multiview clustering
and semi-supervised classification.” IJCAI, 2016.

[20] X. Cao, C. Zhang, H. Fu, S. Liu, and H. Zhang, “Diversity-
induced multi-view subspace clustering,” in Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, 2015, pp. 586–594.

[21] H. Zhao and Y. Fu, “Dual-regularized multi-view outlier
detection.” in IJCAI, 2015, pp. 4077–4083.

[22] B. Long, P. S. Yu, and Z. Zhang, “A general model for
multiple view unsupervised learning,” in SIAM international

conference on data mining. SIAM, 2008, pp. 822–833.

	I Introduction
	II Preliminaries
	II-A Transition Probability Matrix
	II-B Spectral Clustering via Markov chains

	III Error-Robust Multi-View Clustering
	III-A Transition Probability Matrix Construction
	III-B Problem Formulation
	III-C Optimization Procedure
	III-D Computational and Convergence analysis

	IV Experimental Evaluation
	IV-A Experiments on Real-World Datasets
	IV-B Experiments on Synthetic Noisy Dataset
	IV-C Experiments on Erroneous Real-World Datasets
	IV-D Hyperparameter Analysis

	V Related Work
	VI Conclusion
	References

