
Judicious Setting of Dynamic Time Warping’s Window Width Allows More

Accurate Classification of Time Series

Hoang Anh Dau*, Diego Furtado Silva§, François Petitjean†, Germain Forestierѱ, Anthony Bagnall‡, Eamonn Keogh*
* Computer Science and Engineering Department, University of California, Riverside, USA. {hdau001, eamonn}@ucr.edu

§ Department of Computing, Federal University of São Carlos, Brazil. diego@dc.ufscar.br
† Faculty of Information Technology, Monash University, Australia. francois.petitjean@monash.edu

ѱ MIPS, University of Haute-Alsace, France. germain.forestier@uha.fr
‡ School of Computing Sciences, University of East Anglia, UK. ajb@uea.ac.uk

Abstract— While the Dynamic Time Warping (DTW) - based

Nearest-Neighbor Classification algorithm is regarded as a

strong baseline for time series classification, in recent years

there has been a plethora of algorithms that have claimed to be

able to improve upon its accuracy in the general case. Many of

these proposed ideas sacrifice the simplicity of implementation

that DTW-based classifiers offer for rather modest gains.

Nevertheless, there are clearly times when even a small

improvement could make a large difference in an important

medical or financial domain. In this work, we make an

unexpected claim; an underappreciated “low hanging fruit” in

optimizing DTW’s performance can produce improvements

that make it an even stronger baseline, closing most or all the

improvement gap of the more sophisticated methods. We show

that the method currently used to learn DTW’s only parameter,

the maximum amount of warping allowed, is likely to give the

wrong answer for small training sets. We introduce a simple

method to mitigate the small training set issue by creating

synthetic exemplars to help learn the parameter. We evaluate

our ideas on the UCR Time Series Archive and a case study in

fall classification, and demonstrate that our algorithm produces

significant improvement in classification accuracy.

Keywords-time series; Dynamic Time Warping; classification

I. INTRODUCTION

There is a growing consensus that the Dynamic Time
Warping (DTW) - based k-Nearest-Neighbor (k-NN)
Classification algorithm (NN-DTW) is a strong baseline for
time series classification. This agreement stems from the fact
that time series classification has a universally used collection
of benchmark datasets [5]. There are now many independent
comprehensive empirical studies demonstrating strong
performance of NN-DTW [2][8][15].

Beyond the distance measure used, the accuracy of time
series classification mostly depends on the size of the training
set. While we are now in the Big Data era and have an ever
growing need to classify massive datasets [3][18], the size of
training data has not increased in decades [19], and is unlikely
to do so [14]. For example, getting a million images of cats is
trivial, but obtaining just a few dozen time series of different
types of falls/trips/stumbles requires days of work [1].

Given that fact, we wish to squeeze the most out of DTW’s
performance. In this work, we make the following claim, an
underappreciated “low hanging fruit” in optimizing DTW’s
performance can produce improvements that make it a much
stronger baseline, closing most of the improvement gap of the

more sophisticated methods. This claim is somewhat
surprising, given the greatly “picked-over” status of time
series classification research [8]. We show that the method
currently used to learn DTW’s only parameter, the maximum
amount of warping allowed (denoted w), is very likely to
return a poor parameter setting for small training sets,
reflecting in suboptimal classification performance.

We can visually preview our results as follows. The
method used to learn w in [5] (and thus reflected in [7][10]) is
using the Leave-One-Out (LOO) cross-validation to test the
error-rate for all values of w, choosing the one that minimizes
the predicted error-rate and breaking ties by choosing the
smaller value. For concreteness, we call this the UCR-method.
Figure 1 shows that on many datasets, this simple method
works well. In these three examples, the UCR-method
predicted the correct optimal value of w for CinC_ECG, and
was only off slightly for CBF and 50words.

Figure 1. blue/fine: The LOO error-rate of three datasets for increasing

values of w. red/bold: The holdout error-rate. In these cases, the holdout

accuracies closely track the predicted accuracies.

Note that predicted accuracy can be a slightly optimistic
estimation of holdout error. However, that is not the issue
here. We are only concerned with whether we are minimizing
this error by picking a suitable value for w. Contrast the results
above with the examples shown in Figure 2.

In these cases, our estimation of w is worse, and this has a
detrimental effect on our holdout error. For example, on
DiatomSizeReduction, we predicted w = 0 would be an
appropriate setting, but only an oracle would have chosen w =
13 and seen a 3.27% reduction in error-rate. Likewise, we
would predict that w = 0 is the ideal setting for Gun_Point, but
a w = 2 would have reduced the misclassifications by 6%.

The importance of a better estimate of w is difficult to
overstate. In dozens of cases, it would do more than closing

0

0.18 CBF

0 10 20

0.05

0.35 CinC_ECG

0 10 200 10 20

0.22

0.38
50words

Train Error Rate

Test Error Rate

Warping Window Width

E
rr

o
r

R
a

te

mailto:diego@dc.ufscar.br

the improvement “gap” of recently proposed time series
classification algorithms [7][10][12][13]. For example, [7]
proposes a time series forest ensemble method. One of their
reported successes is in halving the error-rate on Gun_Point
to 4.7%. However, Figure 2.right shows that simply finding a
better choice of w for 1-NN-DTW could further halve their
reported error-rate to just 2.7%.

Figure 2. blue/fine: The LOO error-rate of three datasets for increasing

values of w. red/bold: The holdout error-rate. In these examples, the holdout

accuracies do not track the predicted accuracies.

Similarly, [10] introduces a new distance measure DDDTW

that combines the DTW distances calculated both on the raw
data and its derivatives (i.e., the mixture weights being learned
by cross-validation). Among the datasets that are considered
are Lightning2 and Lightning7. The authors note that they can
reduce the error-rate of Lightning2 to 13.11%, but a better
choice of w for 1-NN-DTW could significantly improve upon
this with just an 8.2% error-rate.

It is important to clarify that we are not claiming the works
mentioned above are without merit. Any improvement in
setting w might help all of them, especially [12] and [13].
However, in most cases, the community is proposing rather
complex methods for relatively modest gains in accuracy. The
results in Figure 2 suggest that similar or greater
improvements are possible with existing techniques, if we just
had a better method to discover a suitable value of w. There
are also strong reasons to prefer existing techniques, as they
are amenable to many optimizations that allow them to scale
to trillions of data points or to real-time deployment on
resource-constrained devices [18].

In this work, we show that it is possible to learn w more
accurately; this is particularly useful when the training data is
limited. Our approach is based on resampling the training
data. Resampling is normally ill-advised in small datasets,
since using only a subset of the data compounds all the
inherent problems encountered while working with the limited
data. However, we will show that we can address this issue by
replacing the non-sampled data with synthetic replacements.

II. BACKGROUND AND RELATED WORK

A. Dynamic Time Warping

While many other time series distance measures have been
proposed in recent years (see [2][8] and the references
therein), the community has come to the consensus that DTW
(including its special case of Euclidean distance) is one of the
best distance measures for most data mining problems

[6][8][10][13][17]. In [18], the authors state: “after an
exhaustive literature search of more than 800 papers, we are
not aware of any distance measure that has been shown to
outperform DTW by a statistically significant amount.”

As illustrated in Figure 3.left, DTW allows a one-to-many
mapping between data points, thus enabling a meaningful
comparison between two time series that have similar patterns
but are locally out of phase, or “warped.” We call an
alignment between them a warping path. Among all the
possible warping paths, we choose the path that minimizes the
differences between two time series.

Figure 3. left: The unconstrained warping path for time series Q and C. Such

warping paths can pass through any cell of the matrix. right: The warping

path is restricted to not pass through cells that are far from the diagonal.

A constrained DTW imposes a limit on how much the
warping path can deviate from the diagonal. This limit is
known as the warping window width (w). For example, in
Figure 3.right, the warping path cannot traverse the gray cells.

The constrained DTW helps avoid pathological mappings,
in which one point in the first time series is mapped to too
many points in the other one. For example, DTW should be
able to align American and Australian utterances of
“Minutiae” (Min-OOSH-a, and, min-OOSH-ee-AY

respectively), but it would never make sense to map an
utterance of “Minutiae” to “Galton constructed a statistical
proof of the uniqueness, by minutiae, of individual prints.”

In addition, the constraints also reduce the computation
cost by narrowing the search for qualified paths. The fastest
known techniques for indexing DTW further exploit these
constraints to produce tight lower bounds [18]. The most
commonly used constraint is the Sakoe-Chiba Band, which
expresses w as a percentage of the time series length. We
denote DTW with a constraint of w as cDTWw. This review is
unavoidably brief; we refer the interested reader to [8][20] and
the references therein for more details.

B. DTW-based 1-NN Classification Algorithm

The nearest neighbor classifier (NN) assigns an unseen
object to the class of its closest neighbor in the feature space.
The general algorithm is referred to as k-NN, in which k is the
number of nearest neighbors under consideration. In case of
1-NN, the new object is automatically assigned the class label
of its nearest neighbor, breaking ties randomly.

Most practitioners who adopt 1-NN do so for its
simplicity, i.e., requiring no parameter tuning. The research
focus has thus shifted to improving the distance measure used.

0.05

0.35
SonyAIBORobotSurface

0 10 20 0 10 20

0.02

0.16 Gun_Point

0.03

0.07

0 10 20

DiatomSizeReduction

Warping Window Width

Test Error Rate

Train Error Rate

E
rr

o
r

R
a

te

r

L

w= r/L
Q

C

DTW or cDTW100 cDTWw = cDTW25

1-NN using DTW has emerged as the new benchmark for
many time series classification tasks. This practice of using 1-
NN-DTW is supported by a recent survey in time series
classification: “When using a NN classifier with DTW on a
new problem, we would advise that it is not particularly
important to set k through cross validation, but that setting the
warping window size is worthwhile” [2].

C. Classic Learning of Warping Window Size

The most cited method for learning the maximum warping
window width for DTW is the UCR-method [5]. The best
value of w is determined by performing leave-one-out cross-
validation on the training set over all warping window
constraints possible, from 0% to 100% at 1% increments. The
window size that maximizes training accuracy is selected, as
it is deemed most likely to give the best testing accuracy. The
creators of the UCR Time Series Archive’s disclaimer states
that this may not be the best way to learn w, but it is simple,
parameter-free, and works reasonably well in practice. We
estimate that at least four hundred papers have used this
approach [3][8][12] [19], by either explicitly implementing it,
or directly comparing results to the numbers published in the
UCR Archive, which were computed this way [5].

D. Related Work

The closest work we are aware of is a recent paper in
which the authors propose a method to learn w for DTW in the
context of time series clustering [6]. At first glance, it is
tempting to apply this algorithm to our closely related problem
of time series classification. However, as the authors have
noted in this paper, the best setting of w for clustering is
generally no indicator of the best setting of w for
classification: “In retrospect it is not surprising that these
values are at best weakly related. For 1-NN classification,
only the distance between the unlabeled exemplar and its
single nearest neighbor matters. However, for clustering, the
mutual distance among small groups of objects matters.”

The more general idea of creating synthetic data to
mitigate the problems of imbalanced datasets [4] or to learn a
distance measure [11] is known. However, we are not aware
of any other research suggesting window size for improving
DTW-based classification. We suspect that the dearth of study
on this important problem is likely due to the community’s
lack of appreciation of the importance of w setting.

III. OUR APPROACH

In this section, we begin by developing the reader’s
appreciation for the factors that affect the best setting for
DTW’s warping window width. Then we give an intuitive
explanation to our approach before formalizing the algorithm.

A. Factors Affecting the Best Warping Window

To understand the effect(s) of dataset size on the most
suitable warping window width, we performed the following
experiment. We created a two-class dataset that we call Single
Plateau (SP). This dataset and all other datasets used in this
paper are available in [22]. Each item in SP is 500-points long
and consists mostly of a constant value with a small amount
of random noise added. However, as we show in Figure 4, we

add a tall “plateau” with a length randomly chosen in the range
of five to twenty to each exemplar. If the plateau’s location is
within 1 to 250, it is in class A; if it is between 300 and 500,
it is in class B.

Figure 4. Five examples of each class of Single Plateau dataset.

We classify increasingly large instances of SP. For each
size, we search over all possible w’s and record the one that
minimizes the error-rate. Figure 5 shows the optimal w curve
vs. dataset size, averaged over 100 runs.

Figure 5. Classification of increasingly large instances of SP shows the effect

of dataset size on the best w.

Consistent with observations by Ratanamahatana and
Keogh [19], small datasets tend to require much larger settings
of w compared to larger ones. Note that this size versus the
best curve for w itself varies for each dataset. Thus, we cannot
generalize the best setting for w on one subset of a dataset to
a different sized subset of the same datasets.

As shown in Figure 5, the best value for w on this dataset,
given that we have 32 objects, is 46. Let us further consider
this particular sized subset of the training set. Figure 6 displays
the effect of w on the misclassification rate of the 32-object
SP dataset. We can see that allowing too much warping is as
detrimental as too little warping. In this case, the w vs. error-
rate curve has a broad flat valley, meaning that even if we
choose a w value that is too large or small, we could still
achieve a low misclassification. However, as Figure 6 subtlety
shows, this curve can take on more complex shapes, which
makes the choice of w more critical.

Figure 6. Classification of the 32-object Single Plateau demonstrates effects

of w on the LOO error-rate.

In summary, the best value of w depends on both the data
size and the structure of the data. This fact bodes ill for any
attempt to learn a fixed one-time domain independent value
for it. For example, there is no single prototypical w vs. error-

0 100 200 300 400 500

Single Plateau Class A Single Plateau Class B

4 8 16 32 64 128 256 512

0

50

100

Dataset size
B

e
s
t
w

0 20 40 60 80 100
0

0.07

E
rr

o
r-

ra
te

Warping window width

rate curve for heartbeats or for gestures. We must learn this
curve on a case-by-case basis, which is the goal of this paper.

B. An Intuition to Our Proposed Approach

To understand the effect(s) of dataset size on the most
suitable warping window width, we begin with a simple
experiment, which acts as both a sanity check to see if what
we hope to achieve is possible and offers intuition on how to
achieve it. Consider the TwoPatterns dataset. Because it has
1000 training objects, we will denote it as TwoPatterns1000. As
shown in Figure 7.left, TwoPatterns1000 is a dataset for which
we can correctly learn the best maximum warping window
with cross-validation.

Figure 7. left: The LOO error-rate of the TwoPatterns1000 dataset for
increasing values of w. right: The LOO error-rate of the TwoPatterns20

dataset for increasing values of w (blue/fine) and the holdout error-rate

(red/bold).

Suppose the dataset had significantly fewer training
instances, and we will call this dataset TwoPatterns20. We
would expect that the holdout error-rate would increase, and
we know from [19] that we should expect the best value for w
might slightly increase. As we can see in Figure 7.right, these
both do occur. However, the most visually jarring thing we
observe is that we have lost the ability to correctly predict the
best value for w, as the training error oscillates wildly as we
vary w. In fact, Figure 7.right strongly resembles some of the
plots shown in Figure 2, and for the same reason that we do
not have enough training data.

Let us further suppose that while we are condemned to
using Two_Patterns20 to classify new instances, we have one
thousand more labeled instances at our disposal. One might
ask, if we have more labeled examples, why not use them in
the training set? Perhaps the time available at classification
time is only enough to compare to twenty instances. Clearly,
we do not want to use all one thousand labeled instances to
learn the best value for w, because, as shown in Figure 8.left,
we will learn the best value of w for TwoPatterns1000, not for
TwoPatterns20, which is our interest.

The solution suggests itself. Doing cross-validation with
TwoPatterns1000 gives us low variance, but it is biased toward
the wrong value of w. In contrast, doing cross-validation with
TwoPatterns20 is biased toward the correct value for w but has
high variance. If we resample many subsets of size twenty
from TwoPatterns1000, do cross-validation on each, and
average the resulting w vs. error-rate curves, we expect that
this average mirrors the curve for the test error-rate, and
therefore predicts a good value for w. As we can see in Figure
8.right, this is the case.

Figure 8. left: The LOO error-rate of the TwoPatterns1000 dataset is a poor

predictor of the holdout error on TwoPatterns20 right: In contrast, the

average LOO error-rate of 20 random samples of TwoPatterns20 dataset is

an excellent predictor of the holdout error on TwoPatterns20.

The observations above seem to be non-actionable. In
general, we do not have 1,000 spare objects to resample from.
Our key insight is that we can synthetically generate plausible
training exemplars. We can use these synthetic objects to
resample from, make as many new instances of the training
set as we wish, and learn the best setting for w.

Note that this task is easier than it seems. We do not need
to produce synthetic exemplars that are perfect in every way
or even visually resemble the true objects to the human eye. It
is sufficient to create synthetic objects that have the same
properties with regards to the best setting for w. In the next
section, we show our strategy for generating an arbitrary
number of such instances.

C. Our Algorithm

We are finally in a good position to explain our algorithm,

which can be tersely summarized as follows:

Make N copies of the original training set. For each copy,

replace a fraction of the data with synthetically generated

data, and use cross-validation to learn the error vs. w

curve. Use the average of all N curves to predict w.

TABLE 1. ALGORITHM FOR MAKING AUGMENTED TRAINING SET

 Input: D, the original training set with n objects

Input: M, the amount of warping to add

Input: R, the ratio of synthetic objects to create

Output: Dnew, a new version of dataset D

1

2

3

4

5

6

realObjects random_sample(D,(1-R)*n objects)

fakeObjects random_sample(D,(R*n) objects)

for i 1:1:numberOfInstances(fakeObjects)

 fakeObjectsi add_warping(fakeObjectsi,M)

end

Dnew [realObjects;fakeObjects]

This algorithm, outlined in Table 2, contains a subroutine

presented in Table 1. The essence of the method is in making
N new training data sets using the algorithm in Table 1. These
datasets will be used in lieu of the original training set to learn
w. While each of these individual datasets may produce a
noisy error vs. w curve (as in Figure 7.right), the average of
all such curves will be smoother, and it will more closely
resemble the true noisy error vs. w curve (as in Figure 8.right).

0 50 100

0

0.5

1
TwoPatterns with

20 training objects

Warping Window Width

0 10 20

0

0.05

0.1
TwoPatterns with

1000 training objects

Warping Window Width

L
O

O
 E

rr
o
r-

ra
te

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

Warping Window Width

LOO error-rate of 1000-object

TwoPatterns (blue/fine) and

holdout error-rate of 20-object

TwoPatterns (red/bold)

L
O

O
 E

rr
o
r

R
a
te

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

Warping Window Width

Average LOO error-rate of 20

random samples of 20-object

TwoPatterns (blue/fine) and

holdout error-rate of 20-object

TwoPatterns (red/bold)

TABLE 2. ALGORITHM FOR FINDING THE WARPING WINDOW WIDTH

 Input: D, the original training set

Output: w, the predicted best warping window

1

2

3

4

5

6

7

8

9

for i 1:1:numberOfIterations

 Dnew make_new_train_set(D) // See Table 1

 for j 1:1:maximumWarpingWindow

 errorRatei,j run_cross_validation(Dnew)

 end

end

meanOfAllIterations mean(errorRate)

[minValue, minIndex] min(meanOfAllIterations)

w minIndex - 1

The sub-routine of making new training set is invoked

over a number of iterations, as shown in line 2 of the main
algorithm in Table 2. For each new training set, we run cross-
validation to compute the classification error-rate at each
setting of the maximum warping width allowed, from 0%
(Euclidean distance) to 100% (unconstrained DTW), in steps
of 1%. Finally, we calculate the mean error-rate of all runs in
line 7 and obtain the index of the minimum error.

D. Add Warping to Make New Time Series

To add warping to a time series, we nonlinearly shrink it
to a smaller length by randomly removing data points and then
linearly stretching the down-sampled time series back to its
original size. Figure 9 illustrates how a time series is
transformed into its warped version. For concreteness, Table
3 contains the MATLAB code that we used.

Figure 9. Adding 20% warping to an exemplar of Trace. In the bottom panel,

the generated times series (bold/red) is a slightly warped version of the

original time series.

To eliminate the possible “endpoint effects” introduced by
the resampling process, we add “paddings” at the beginning
and end of the down-sampled time series by repeating its
endpoint/start point values ten times. These paddings are
removed from the final time series later (Figure 9. middle). It
is important, as a recent work indicates, the endpoints can
result in a misleading DTW distance [21]. Recall that DTW’s
constraints require it to match the pairs of beginning and end
points, even though they may be a poor match.

It may be possible to further improve our overall method
if we find better ways to make more “natural” synthetic

exemplars. We experimented with several methods to
generate a synthetic time series [9][16]. In brief, there are
dozens of ways to produce synthetic examples (averaging,
grafting, perturbing etc.), and many of these ideas work well.
We chose the method shown in Table 3, because it is simple
and effective.

TABLE 3. CODE TO ADD WARPING TO A TIME SERIES

1

2

3

4

5

6

7

function [warped_T] = add_warping(T,p)

 i = randperm(length(T));

 t = T(sort(i(1:end-length(T) * p)));

 t = [repmat(t(1),1,10), t, repmat(t(end),1,10)];

 warped_T = resample(t,length(T) + 20, length(t));

 warped_T = warped_T(11:end - 10);

end

IV. EMPIRICAL EVALUATION

All code and datasets used in the paper are archived in
perpetuity at [22]. We also include a technical report, which
provide more details for interested readers.

A. Datasets

We use the UCR Time Series datasets for our experiments
[5]. As of May 2017, the UCR Time Series Archive, which
has 85 datasets from various domains, has served as the
benchmark for the time series community.

As we have demonstrated in Figure 7.left, our ability to
learn w greatly depends on the amount of training data. With
enough data, the simple UCR-method is effective, and we
have little to offer [5]. The ideas proposed in this work are
most useful for smaller datasets. Some of the train/test splits
in the UCR datasets have large enough training sets that our
ideas do not offer any advantages. Rather than ignoring these
datasets, we will recast them to a smaller uniform size.

We merge the original train and test set together, then
randomly sample ten objects per class for training. The
remaining objects are used for testing. As three datasets do not
have enough ten objects per class, we excluded them from the
experiment (the excluded are: OliveOil, 50words and
Phoneme). Therefore, we are left with 82 datasets. These new
splits are published in [22] for reproducibility. Note that with
these new splits, the training sets all have equal class
distribution. This, however, may not be true for the test set.

B. Performance Evaluation

Using the algorithm in Table 2 to learn the warping
window size, we classified the holdout test data on the training
set with 1-NN. Figure 10 and Figure 11 show a visual
summary of the results. Perceptibly, our method wins more
often and by larger margins.

We call our proposed method a success if it can reduce the
error-rate, in absolute value, by at least 0.5% (i.e., we round
the error-rate to two decimal places). We call it a failure if our
method increases the error-rate by 0.5% or more compared to
the UCR-method. If the newly learned w results in test error-
rate that is less than 1% different from the test error-rate
obtained by the traditional method, we consider our method
neutral. This can happen in two ways. Our method suggests
the same value of w as the classic UCR-method, or it

0 50 100 150 200 250 300

0 50 100 150 200 250 300

0 50 100 150 200 250 300

0 50 100 150 200 250 300

The original time series exemplar O, of length 275

Down-sample O by 20%, making a new time series O’ of length 220

Add padding to O’, by repeating the endpoints’ values

Resample O’ to the original sample rate plus padding amount

Trim off padding on each end to resize to the length of O

The original time series exemplar O

The 20%-warped version of O

recommends a different value of w, which offers similar
accuracy.

Given this nomenclature, we can say that out of the 82
datasets tested, our method improves the classification
accuracy of twenty-four, with an average improvement of
3.2%, and it decreases the accuracy on just thirteen of them
with a much smaller average of 1.6%. This statement can in
turn be visualized with the linear plot in Figure 10.

Figure 10. The number of datasets that we help are nearly twice the number

of datasets that we hurt.

Another way to demonstrate how our proposed method
outperforms the traditional method is to look at the possible
room for improvement, which is the difference between the
error-rate achieved by the learned w and the error-rate by the
best w of a dataset, which was found by exhaustive search.
The smaller the difference, the better the method is. This is
illustrated in Figure 11.

Figure 11. Possible error-rate reduction of the UCR-method and our method

(how close a method’s error-rate to the optimal error-rate is).

While the results are visually compelling, we turn to
statistical tests to ensure that they are statistically significant.
Both the paired-sample t-test and the one-sided Wilcoxon
signed rank test confirm that our method is better than the
UCR-method at the 5% significance level [22].

V. CONCLUSIONS

We have demonstrated that the choice of warping window
width w is critical for an accurate DTW-based classification
of time series. In many cases, a more careful setting of the
value of w can close the performance gap gained by other
more complicated algorithms recently proposed in the
literature.

Our method is parameter-free (or equivalently, we
hardcoded all parameters). However, experimenting with
adaptive parameters may allow others to improve upon our
results. We note that the ideas we are proposing are very
simple. We hope that the reader sees this simplicity as the
strength it is intended to be, not as a weakness.

ACKNOWLEDGMENT

This material is based upon work supported by the Air Force

Office of Scientific Research, Asian Office of Aerospace

Research and Development (AOARD) under award number

FA2386-16-1-4023. We acknowledge funding from NSF IIS-

1161997 II and NSF IIS-1510741.

REFERENCES

[1] Albert, Mark V., et al. “Fall classification by machine learning using mobile

phones.” PloS one 7.5 (2012): e36556.

[2] Bagnall, Anthony, and Jason Lines. “An experimental evaluation of nearest

neighbour time series classification.” In arXiv preprint arXiv:1406.4757 (2014).

[3] Bagnall, Anthony, et al. “The great time series classification bake off: a review

and experimental evaluation of recent algorithmic advances.” Data Mining and

Knowledge Discovery (2016): 1-55.

[4] Batista, Gustavo EAPA, et al. “A study of the behavior of several methods for

balancing machine learning training data.” ACM Sigkdd Explorations

Newsletter 6.1 (2004): 20-29.

[5] Chen, Yanping, et al. The UCR Time Series Classification Archive.

www.cs.ucr.edu/~eamonn/time_series_data/, 2015.

[6] Dau, Hoang Anh, et al. “Semi-Supervision Dramatically Improves Time Series

Clustering under Dynamic Time Warping.” Proceedings of International on

Conference on Information and Knowledge Management. ACM, 2016.

[7] Deng, Houtao, et al. “A Time Series Forest for Classification and Feature

Extraction.” Information Sciences 239 (2013): 142-153.

[8] Ding, Hui, et al. “Querying and Mining of Time Series Data: Experimental

Comparison of Representations and Distance Measures.” Proceedings of the

VLDB Endowment 1, no. 2 (2008): 1542-1552.

[9] Forestier, Germain, et al. “Generating Synthetic Time Series to Augment Sparse

Datasets.” Data Mining (ICDM), 2016 IEEE 16th International Conference on.

IEEE, 2016.

[10] Górecki, Tomasz, and Maciej Łuczak. “Using Derivatives in Time Series

Classification.” Data Mining and Knowledge Discovery 26, no. 2 (2013): 310-

331.

[11] Ha, Thien M., and Horst Bunke. “Off-line Handwritten Numeral Recognition by

Perturbation Method.” IEEE Trans. on Pattern Analysis and Machine

Intelligence, 19(5), pp. 535–539, May 1997.

[12] Jeong, Young-Seon, et al. “Weighted dynamic time warping for time series

classification.” Pattern Recognition 44.9 (2011): 2231-2240.

[13] Kate, Rohit J. “Using Dynamic Time Warping Distances as Features for

Improved Time Series Classification.” Data Mining and Knowledge Discovery

(2015): 1-30.

[14] Lam, Xuan Nhat, et al. “Addressing cold-start problem in recommendation

systems.” Proceedings of the 2nd international conference on Ubiquitous

information management and communication. ACM, 2008.

[15] Lines, Jason, and Anthony Bagnall. “Time series classification with ensembles

of elastic distance measures.” Data Mining and Knowledge Discovery 29.3

(2015): 565-592.

[16] Petitjean, François, et al. “Dynamic Time Warping Averaging of Time Series

Allows Faster and More Accurate Classification.” 2014 IEEE International

Conference on Data Mining. IEEE, 2014.

[17] Plouffe, Guillaume, and Ana-Maria Cretu. “Static and dynamic hand gesture

recognition in depth data using dynamic time warping.” IEEE Transactions on

Instrumentation and Measurement 65.2 (2016): 305-316.

[18] Rakthanmanon, Thanawin, et al. “Searching and Mining Trillions of Time Series

Subsequences under Dynamic Time Warping.” Proceedings of ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. ACM,

2012.

[19] Ratanamahatana, Chotirat Ann and Eamonn Keogh. “Three Myths about

Dynamic Time Warping Data Mining.” Proceedings of the SIAM International

Conference on Data Mining, 2005.

[20] Shokoohi-Yekta, Mohammad, et al. “On the Non-Trivial Generalization of

Dynamic Time Warping to the Multi-Dimensional Case.” Proceedings of the

SIAM International Conference on Data Mining, 2015.

[21] Silva, Diego Furtado, Gustavo EAPA Batista, and Eamonn Keogh. “Prefix and

Suffix Invariant Dynamic Time Warping.” 2016 IEEE International Conference

on Data Mining. IEEE, 2016.

[22] Supporting webpage: https://sites.google.com/site/dtwclassification/

-4 -2 0 2 4 6 8 10 12 14 16

The help/hurt amount, as absolute value of error rate reduction in percentage

Above: Datasets

that we help (24)

Below: Datasets

that we hurt (13)

0 5 10

0

5

10

15

0 10 20 30 40

0

10

20

30

40

In this region

UCR-method

wins
In this region

our method wins

Possible error-rate reduction

P
o
s
s
ib

le
e
rr

o
r-

ra
te

re

d
u
c
ti
o
n

15

In this region

UCR-method

wins

In this region

our method wins

