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Abstract— While the Dynamic Time Warping (DTW) - based 

Nearest-Neighbor Classification algorithm is regarded as a 

strong baseline for time series classification, in recent years 

there has been a plethora of algorithms that have claimed to be 

able to improve upon its accuracy in the general case. Many of 

these proposed ideas sacrifice the simplicity of implementation 

that DTW-based classifiers offer for rather modest gains. 

Nevertheless, there are clearly times when even a small 

improvement could make a large difference in an important 

medical or financial domain. In this work, we make an 

unexpected claim; an underappreciated “low hanging fruit” in 

optimizing DTW’s performance can produce improvements 

that make it an even stronger baseline, closing most or all the 

improvement gap of the more sophisticated methods. We show 

that the method currently used to learn DTW’s only parameter, 

the maximum amount of warping allowed, is likely to give the 

wrong answer for small training sets. We introduce a simple 

method to mitigate the small training set issue by creating 

synthetic exemplars to help learn the parameter. We evaluate 

our ideas on the UCR Time Series Archive and a case study in 

fall classification, and demonstrate that our algorithm produces 

significant improvement in classification accuracy.   
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I.  INTRODUCTION  

There is a growing consensus that the Dynamic Time 
Warping (DTW) - based k-Nearest-Neighbor (k-NN) 
Classification algorithm (NN-DTW) is a strong baseline for 
time series classification. This agreement stems from the fact 
that time series classification has a universally used collection 
of benchmark datasets [5]. There are now many independent 
comprehensive empirical studies demonstrating strong 
performance of NN-DTW [2][8][15]. 

Beyond the distance measure used, the accuracy of time 
series classification mostly depends on the size of the training 
set. While we are now in the Big Data era and have an ever 
growing need to classify massive datasets [3][18], the size of 
training data has not increased in decades [19], and is unlikely 
to do so [14].  For example, getting a million images of cats is 
trivial, but obtaining just a few dozen time series of different 
types of falls/trips/stumbles requires days of work [1]. 

Given that fact, we wish to squeeze the most out of DTW’s 
performance.  In this work, we make the following claim, an 
underappreciated “low hanging fruit” in optimizing DTW’s 
performance can produce improvements that make it a much 
stronger baseline, closing most of the improvement gap of the 

more sophisticated methods. This claim is somewhat 
surprising, given the greatly “picked-over” status of time 
series classification research [8]. We show that the method 
currently used to learn DTW’s only parameter, the maximum 
amount of warping allowed (denoted w), is very likely to 
return a poor parameter setting for small training sets, 
reflecting in suboptimal classification performance. 

We can visually preview our results as follows. The 
method used to learn w in [5] (and thus reflected in [7][10]) is 
using the Leave-One-Out (LOO) cross-validation to test the 
error-rate for all values of w, choosing the one that minimizes 
the predicted error-rate and breaking ties by choosing the 
smaller value. For concreteness, we call this the UCR-method. 
Figure 1 shows that on many datasets, this simple method 
works well. In these three examples, the UCR-method 
predicted the correct optimal value of w for CinC_ECG, and 
was only off slightly for CBF and 50words. 

 

Figure 1. blue/fine: The LOO error-rate of three datasets for increasing 

values of w. red/bold: The holdout error-rate. In these cases, the holdout 

accuracies closely track the predicted accuracies. 

Note that predicted accuracy can be a slightly optimistic 
estimation of holdout error. However, that is not the issue 
here. We are only concerned with whether we are minimizing 
this error by picking a suitable value for w. Contrast the results 
above with the examples shown in Figure 2. 

In these cases, our estimation of w is worse, and this has a 
detrimental effect on our holdout error. For example, on 
DiatomSizeReduction, we predicted w = 0 would be an 
appropriate setting, but only an oracle would have chosen w = 
13 and seen a 3.27% reduction in error-rate. Likewise, we 
would predict that w = 0 is the ideal setting for Gun_Point, but 
a w = 2 would have reduced the misclassifications by 6%. 

The importance of a better estimate of w is difficult to 
overstate. In dozens of cases, it would do more than closing 
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the improvement “gap” of recently proposed time series 
classification algorithms [7][10][12][13]. For example, [7] 
proposes a time series forest ensemble method. One of their 
reported successes is in halving the error-rate on Gun_Point 
to 4.7%. However, Figure 2.right shows that simply finding a 
better choice of w for 1-NN-DTW could further halve their 
reported error-rate to just 2.7%. 

 

Figure 2. blue/fine: The LOO error-rate of three datasets for increasing 

values of w. red/bold: The holdout error-rate. In these examples, the holdout 

accuracies do not track the predicted accuracies. 

Similarly, [10] introduces a new distance measure DDDTW 

that combines the DTW distances calculated both on the raw 
data and its derivatives (i.e., the mixture weights being learned 
by cross-validation). Among the datasets that are considered 
are Lightning2 and Lightning7. The authors note that they can 
reduce the error-rate of Lightning2 to 13.11%, but a better 
choice of w for 1-NN-DTW could significantly improve upon 
this with just an 8.2% error-rate.  

It is important to clarify that we are not claiming the works 
mentioned above are without merit. Any improvement in 
setting w might help all of them, especially [12] and [13]. 
However, in most cases, the community is proposing rather 
complex methods for relatively modest gains in accuracy. The 
results in Figure 2 suggest that similar or greater 
improvements are possible with existing techniques, if we just 
had a better method to discover a suitable value of w. There 
are also strong reasons to prefer existing techniques, as they 
are amenable to many optimizations that allow them to scale 
to trillions of data points or to real-time deployment on 
resource-constrained devices [18]. 

In this work, we show that it is possible to learn w more 
accurately; this is particularly useful when the training data is 
limited. Our approach is based on resampling the training 
data.  Resampling is normally ill-advised in small datasets, 
since using only a subset of the data compounds all the 
inherent problems encountered while working with the limited 
data. However, we will show that we can address this issue by 
replacing the non-sampled data with synthetic replacements. 

II. BACKGROUND AND RELATED WORK 

A. Dynamic Time Warping 

While many other time series distance measures have been 
proposed in recent years (see [2][8] and the references 
therein), the community has come to the consensus that DTW 
(including its special case of Euclidean distance) is one of the 
best distance measures for most data mining problems 

[6][8][10][13][17]. In [18], the authors state: “after an 
exhaustive literature search of more than 800 papers, we are 
not aware of any distance measure that has been shown to 
outperform DTW by a statistically significant amount.” 

As illustrated in Figure 3.left, DTW allows a one-to-many 
mapping between data points, thus enabling a meaningful 
comparison between two time series that have similar patterns 
but are locally out of phase, or “warped.” We call an 
alignment between them a warping path. Among all the 
possible warping paths, we choose the path that minimizes the 
differences between two time series.  

 
Figure 3. left: The unconstrained warping path for time series Q and C. Such 

warping paths can pass through any cell of the matrix.  right: The warping 

path is restricted to not pass through cells that are far from the diagonal. 

A constrained DTW imposes a limit on how much the 
warping path can deviate from the diagonal. This limit is 
known as the warping window width (w). For example, in 
Figure 3.right, the warping path cannot traverse the gray cells. 

The constrained DTW helps avoid pathological mappings, 
in which one point in the first time series is mapped to too 
many points in the other one. For example, DTW should be 
able to align American and Australian utterances of 
“Minutiae” (Min-OOSH-a, and, min-OOSH-ee-AY 

respectively), but it would never make sense to map an 
utterance of “Minutiae” to “Galton constructed a statistical 
proof of the uniqueness, by minutiae, of individual prints.” 

In addition, the constraints also reduce the computation 
cost by narrowing the search for qualified paths. The fastest 
known techniques for indexing DTW further exploit these 
constraints to produce tight lower bounds [18]. The most 
commonly used constraint is the Sakoe-Chiba Band, which 
expresses w as a percentage of the time series length. We 
denote DTW with a constraint of w as cDTWw. This review is 
unavoidably brief; we refer the interested reader to [8][20] and 
the references therein for more details. 

B. DTW-based 1-NN Classification Algorithm 

The nearest neighbor classifier (NN) assigns an unseen 
object to the class of its closest neighbor in the feature space. 
The general algorithm is referred to as k-NN, in which k is the 
number of nearest neighbors under consideration. In case of 
1-NN, the new object is automatically assigned the class label 
of its nearest neighbor, breaking ties randomly.  

Most practitioners who adopt 1-NN do so for its 
simplicity, i.e., requiring no parameter tuning. The research 
focus has thus shifted to improving the distance measure used. 
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1-NN using DTW has emerged as the new benchmark for 
many time series classification tasks. This practice of using 1-
NN-DTW is supported by a recent survey in time series 
classification: “When using a NN classifier with DTW on a 
new problem, we would advise that it is not particularly 
important to set k through cross validation, but that setting the 
warping window size is worthwhile” [2]. 

C. Classic Learning of Warping Window Size  

The most cited method for learning the maximum warping 
window width for DTW is the UCR-method [5]. The best 
value of w is determined by performing leave-one-out cross-
validation on the training set over all warping window 
constraints possible, from 0% to 100% at 1% increments. The 
window size that maximizes training accuracy is selected, as 
it is deemed most likely to give the best testing accuracy. The 
creators of the UCR Time Series Archive’s disclaimer states 
that this may not be the best way to learn w, but it is simple, 
parameter-free, and works reasonably well in practice. We 
estimate that at least four hundred papers have used this 
approach [3][8][12] [19], by either explicitly implementing it, 
or directly comparing results to the numbers published in the 
UCR Archive, which were computed this way [5]. 

D. Related Work 

The closest work we are aware of is a recent paper in 
which the authors propose a method to learn w for DTW in the 
context of time series clustering [6]. At first glance, it is 
tempting to apply this algorithm to our closely related problem 
of time series classification. However, as the authors have 
noted in this paper, the best setting of w for clustering is 
generally no indicator of the best setting of w for 
classification: “In retrospect it is not surprising that these 
values are at best weakly related. For 1-NN classification, 
only the distance between the unlabeled exemplar and its 
single nearest neighbor matters. However, for clustering, the 
mutual distance among small groups of objects matters.” 

The more general idea of creating synthetic data to 
mitigate the problems of imbalanced datasets [4] or to learn a 
distance measure [11] is known. However, we are not aware 
of any other research suggesting window size for improving 
DTW-based classification. We suspect that the dearth of study 
on this important problem is likely due to the community’s 
lack of appreciation of the importance of w setting. 

III. OUR APPROACH 

In this section, we begin by developing the reader’s 
appreciation for the factors that affect the best setting for 
DTW’s warping window width. Then we give an intuitive 
explanation to our approach before formalizing the algorithm. 

A. Factors Affecting the Best Warping Window 

To understand the effect(s) of dataset size on the most 
suitable warping window width, we performed the following 
experiment. We created a two-class dataset that we call Single 
Plateau (SP). This dataset and all other datasets used in this 
paper are available in [22]. Each item in SP is 500-points long 
and consists mostly of a constant value with a small amount 
of random noise added. However, as we show in Figure 4, we 

add a tall “plateau” with a length randomly chosen in the range 
of five to twenty to each exemplar. If the plateau’s location is 
within 1 to 250, it is in class A; if it is between 300 and 500, 
it is in class B. 

 
Figure 4. Five examples of each class of Single Plateau dataset. 

We classify increasingly large instances of SP. For each 
size, we search over all possible w’s and record the one that 
minimizes the error-rate. Figure 5 shows the optimal w curve 
vs. dataset size, averaged over 100 runs. 

 
Figure 5. Classification of increasingly large instances of SP shows the effect 

of dataset size on the best w. 

Consistent with observations by Ratanamahatana and 
Keogh [19], small datasets tend to require much larger settings 
of w compared to larger ones. Note that this size versus the 
best curve for w itself varies for each dataset. Thus, we cannot 
generalize the best setting for w on one subset of a dataset to 
a different sized subset of the same datasets. 

As shown in Figure 5, the best value for w on this dataset, 
given that we have 32 objects, is 46. Let us further consider 
this particular sized subset of the training set. Figure 6 displays 
the effect of w on the misclassification rate of the 32-object 
SP dataset. We can see that allowing too much warping is as 
detrimental as too little warping. In this case, the w vs. error-
rate curve has a broad flat valley, meaning that even if we 
choose a w value that is too large or small, we could still 
achieve a low misclassification. However, as Figure 6 subtlety 
shows, this curve can take on more complex shapes, which 
makes the choice of w more critical. 

 
Figure 6. Classification of the 32-object Single Plateau demonstrates effects 

of w on the LOO error-rate. 

In summary, the best value of w depends on both the data 
size and the structure of the data. This fact bodes ill for any 
attempt to learn a fixed one-time domain independent value 
for it. For example, there is no single prototypical w vs. error-
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rate curve for heartbeats or for gestures. We must learn this 
curve on a case-by-case basis, which is the goal of this paper. 

B. An Intuition to Our Proposed Approach 

To understand the effect(s) of dataset size on the most 
suitable warping window width, we begin with a simple 
experiment, which acts as both a sanity check to see if what 
we hope to achieve is possible and offers intuition on how to 
achieve it. Consider the TwoPatterns dataset. Because it has 
1000 training objects, we will denote it as TwoPatterns1000. As 
shown in Figure 7.left, TwoPatterns1000 is a dataset for which 
we can correctly learn the best maximum warping window 
with cross-validation. 

 
Figure 7. left: The LOO error-rate of the TwoPatterns1000 dataset for 
increasing values of w. right: The LOO error-rate of the TwoPatterns20 

dataset for increasing values of w (blue/fine) and the holdout error-rate 

(red/bold). 

Suppose the dataset had significantly fewer training 
instances, and we will call this dataset TwoPatterns20. We 
would expect that the holdout error-rate would increase, and 
we know from [19] that we should expect the best value for w 
might slightly increase. As we can see in Figure 7.right, these 
both do occur. However, the most visually jarring thing we 
observe is that we have lost the ability to correctly predict the 
best value for w, as the training error oscillates wildly as we 
vary w. In fact, Figure 7.right strongly resembles some of the 
plots shown in Figure 2, and for the same reason that we do 
not have enough training data. 

Let us further suppose that while we are condemned to 
using Two_Patterns20 to classify new instances, we have one 
thousand more labeled instances at our disposal. One might 
ask, if we have more labeled examples, why not use them in 
the training set? Perhaps the time available at classification 
time is only enough to compare to twenty instances. Clearly, 
we do not want to use all one thousand labeled instances to 
learn the best value for w, because, as shown in Figure 8.left, 
we will learn the best value of w for TwoPatterns1000, not for 
TwoPatterns20, which is our interest. 

The solution suggests itself. Doing cross-validation with 
TwoPatterns1000 gives us low variance, but it is biased toward 
the wrong value of w. In contrast, doing cross-validation with 
TwoPatterns20 is biased toward the correct value for w but has 
high variance. If we resample many subsets of size twenty 
from TwoPatterns1000, do cross-validation on each, and 
average the resulting w vs. error-rate curves, we expect that 
this average mirrors the curve for the test error-rate, and 
therefore predicts a good value for w. As we can see in Figure 
8.right, this is the case. 

 

 
Figure 8. left: The LOO error-rate of the TwoPatterns1000 dataset is a poor 

predictor of the holdout error on TwoPatterns20 right: In contrast, the 

average LOO error-rate of 20 random samples of TwoPatterns20 dataset is 

an excellent predictor of the holdout error on TwoPatterns20. 

The observations above seem to be non-actionable. In 
general, we do not have 1,000 spare objects to resample from. 
Our key insight is that we can synthetically generate plausible 
training exemplars. We can use these synthetic objects to 
resample from, make as many new instances of the training 
set as we wish, and learn the best setting for w. 

Note that this task is easier than it seems. We do not need 
to produce synthetic exemplars that are perfect in every way 
or even visually resemble the true objects to the human eye. It 
is sufficient to create synthetic objects that have the same 
properties with regards to the best setting for w. In the next 
section, we show our strategy for generating an arbitrary 
number of such instances. 

C. Our Algorithm 

We are finally in a good position to explain our algorithm, 

which can be tersely summarized as follows: 

Make N copies of the original training set. For each copy, 

replace a fraction of the data with synthetically generated 

data, and use cross-validation to learn the error vs. w 

curve. Use the average of all N curves to predict w. 

TABLE 1. ALGORITHM FOR MAKING AUGMENTED TRAINING SET 

 Input:  D, the original training set with n objects  

Input:  M, the amount of warping to add 

Input:  R, the ratio of synthetic objects to create 

Output: Dnew, a new version of dataset D 

1 

2 

3 

4 

5 

6 

realObjects  random_sample(D,(1-R)*n objects) 

fakeObjects  random_sample(D,(R*n) objects) 

for i  1:1:numberOfInstances(fakeObjects) 

 fakeObjectsi  add_warping(fakeObjectsi,M) 

end 

Dnew  [realObjects;fakeObjects] 

 
This algorithm, outlined in Table 2, contains a subroutine 

presented in Table 1. The essence of the method is in making 
N new training data sets using the algorithm in Table 1. These 
datasets will be used in lieu of the original training set to learn 
w. While each of these individual datasets may produce a 
noisy error vs. w curve (as in Figure 7.right), the average of 
all such curves will be smoother, and it will more closely 
resemble the true noisy error vs. w curve (as in Figure 8.right). 
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TABLE 2. ALGORITHM FOR FINDING THE WARPING WINDOW WIDTH 

 Input:  D, the original training set  

Output: w, the predicted best warping window 

1 

2 

3 

4 

5 

6 

7 

8 

9 

for i  1:1:numberOfIterations 

 Dnew  make_new_train_set(D)        // See Table 1 

 for j  1:1:maximumWarpingWindow 

  errorRatei,j  run_cross_validation(Dnew) 

 end 

end 

meanOfAllIterations  mean(errorRate) 

[minValue, minIndex]  min(meanOfAllIterations) 

w  minIndex - 1 

 
The sub-routine of making new training set is invoked 

over a number of iterations, as shown in line 2 of the main 
algorithm in Table 2. For each new training set, we run cross-
validation to compute the classification error-rate at each 
setting of the maximum warping width allowed, from 0% 
(Euclidean distance) to 100% (unconstrained DTW), in steps 
of 1%. Finally, we calculate the mean error-rate of all runs in 
line 7 and obtain the index of the minimum error. 

D. Add Warping to Make New Time Series 

To add warping to a time series, we nonlinearly shrink it 
to a smaller length by randomly removing data points and then 
linearly stretching the down-sampled time series back to its 
original size. Figure 9 illustrates how a time series is 
transformed into its warped version. For concreteness, Table 
3 contains the MATLAB code that we used. 

 
Figure 9. Adding 20% warping to an exemplar of Trace.  In the bottom panel, 

the generated times series (bold/red) is a slightly warped version of the 

original time series. 

To eliminate the possible “endpoint effects” introduced by 
the resampling process, we add “paddings” at the beginning 
and end of the down-sampled time series by repeating its 
endpoint/start point values ten times. These paddings are 
removed from the final time series later (Figure 9. middle). It 
is important, as a recent work indicates, the endpoints can 
result in a misleading DTW distance [21]. Recall that DTW’s 
constraints require it to match the pairs of beginning and end 
points, even though they may be a poor match. 

It may be possible to further improve our overall method 
if we find better ways to make more “natural” synthetic 

exemplars. We experimented with several methods to 
generate a synthetic time series [9][16]. In brief, there are 
dozens of ways to produce synthetic examples (averaging, 
grafting, perturbing etc.), and many of these ideas work well. 
We chose the method shown in Table 3, because it is simple 
and effective. 

TABLE 3. CODE TO ADD WARPING TO A TIME SERIES 

1 

2 

3 

4 

5 

6 

7 

function [warped_T] = add_warping(T,p) 

 i = randperm(length(T)); 

 t = T(sort(i(1:end-length(T) * p))); 

 t = [repmat(t(1),1,10), t, repmat(t(end),1,10)]; 

 warped_T = resample(t,length(T) + 20, length(t)); 

 warped_T = warped_T(11:end - 10); 

end 

IV. EMPIRICAL EVALUATION 

All code and datasets used in the paper are archived in 
perpetuity at [22]. We also include a technical report, which 
provide more details for interested readers. 

A. Datasets 

We use the UCR Time Series datasets for our experiments 
[5]. As of May 2017, the UCR Time Series Archive, which 
has 85 datasets from various domains, has served as the 
benchmark for the time series community. 

As we have demonstrated in Figure 7.left, our ability to 
learn w greatly depends on the amount of training data. With 
enough data, the simple UCR-method is effective, and we 
have little to offer [5]. The ideas proposed in this work are 
most useful for smaller datasets. Some of the train/test splits 
in the UCR datasets have large enough training sets that our 
ideas do not offer any advantages. Rather than ignoring these 
datasets, we will recast them to a smaller uniform size. 

We merge the original train and test set together, then 
randomly sample ten objects per class for training. The 
remaining objects are used for testing. As three datasets do not 
have enough ten objects per class, we excluded them from the 
experiment (the excluded are: OliveOil, 50words and 
Phoneme). Therefore, we are left with 82 datasets. These new 
splits are published in [22] for reproducibility. Note that with 
these new splits, the training sets all have equal class 
distribution. This, however, may not be true for the test set. 

B. Performance Evaluation 

Using the algorithm in Table 2 to learn the warping 
window size, we classified the holdout test data on the training 
set with 1-NN. Figure 10 and Figure 11 show a visual 
summary of the results. Perceptibly, our method wins more 
often and by larger margins.  

We call our proposed method a success if it can reduce the 
error-rate, in absolute value, by at least 0.5% (i.e., we round 
the error-rate to two decimal places). We call it a failure if our 
method increases the error-rate by 0.5% or more compared to 
the UCR-method. If the newly learned w results in test error-
rate that is less than 1% different from the test error-rate 
obtained by the traditional method, we consider our method 
neutral. This can happen in two ways. Our method suggests 
the same value of w as the classic UCR-method, or it 
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recommends a different value of w, which offers similar 
accuracy. 

Given this nomenclature, we can say that out of the 82 
datasets tested, our method improves the classification 
accuracy of twenty-four, with an average improvement of 
3.2%, and it decreases the accuracy on just thirteen of them 
with a much smaller average of 1.6%. This statement can in 
turn be visualized with the linear plot in Figure 10. 

 
Figure 10. The number of datasets that we help are nearly twice the number 

of datasets that we hurt. 

Another way to demonstrate how our proposed method 
outperforms the traditional method is to look at the possible 
room for improvement, which is the difference between the 
error-rate achieved by the learned w and the error-rate by the 
best w of a dataset, which was found by exhaustive search. 
The smaller the difference, the better the method is. This is 
illustrated in Figure 11. 

  

Figure 11. Possible error-rate reduction of the UCR-method and our method 

(how close a method’s error-rate to the optimal error-rate is). 

While the results are visually compelling, we turn to 
statistical tests to ensure that they are statistically significant. 
Both the paired-sample t-test and the one-sided Wilcoxon 
signed rank test confirm that our method is better than the 
UCR-method at the 5% significance level [22]. 

V. CONCLUSIONS 

We have demonstrated that the choice of warping window 
width w is critical for an accurate DTW-based classification 
of time series. In many cases, a more careful setting of the 
value of w can close the performance gap gained by other 
more complicated algorithms recently proposed in the 
literature.  

Our method is parameter-free (or equivalently, we 
hardcoded all parameters). However, experimenting with 
adaptive parameters may allow others to improve upon our 
results. We note that the ideas we are proposing are very 
simple. We hope that the reader sees this simplicity as the 
strength it is intended to be, not as a weakness. 
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