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Abstract—The Internet has revolutionized healthcare by of-
fering medical information ubiquitously to patients via web
search. The healthcare status, complex medical information
needs of patients are expressed diversely and implicitly in
their medical text queries. Aiming to better capture a focused
picture of user’s medical-related information search and shed
insights on their healthcare information access strategies, it
is challenging yet rewarding to detect structured user inten-
tions from their diversely expressed medical text queries. We
introduce a graph-based formulation to explore structured
concept transitions for effective user intent detection in medical
queries, where each node represents a medical concept mention
and each directed edge indicates a medical concept transition.
A deep model based on multi-task learning is introduced
to extract structured semantic transitions from user queries,
where the model extracts word-level medical concept men-
tions as well as sentence-level concept transitions collectively.
A customized graph-based mutual transfer loss function is
designed to impose explicit constraints and further exploit
the contribution of mentioning a medical concept word to the
implication of a semantic transition. We observe an 8 % relative
improvement in AUC and 23% relative reduction in coverage
error by comparing the proposed model with the best baseline
model for the concept transition inference task on real-world
medical text queries.

Index Terms—Information Search; Intent Detection; Concept
Transition; Neural Network

1. Introduction

The shortages of healthcare professionals are leading to
healthcare systems plagued by bottlenecks. According to the
World Health Organization, the world will face a shortfall
of nearly 13 million healthcare professionals by 2035 [5].
In the meanwhile, an increasing number of medical-related
online services emerge on the world wide web to offer
ubiquitous medical information to patients via their web
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search [12]. For example, the Chinese search engine Baidu
processes over 6 billion search queries every day, while 60
million of them are healthcare-related text querie Online
medical question answering forums such as xywy.conﬁ has
120 million registered users and more than 22 million unique
daily visitors.

With the flourishing demand for medical-related ser-
vices, it is crucial for service providers to infer implicit
user intentions from the diversely expressed medical text
question: what medical concepts a user mentions and how
concept transitions are formulated among these concepts.
Generally, medical text queries that users search online
or post on medical question-answering websites express
various medical-related conditions and indicate different
information needs, as shown in Table

o Medical Text Questions
o Inferred Concept Mentions & Concept Transitions

o Why do I get dizzy so often?
o Symptom — Cause

o My three-year-old child is sick with a temperature of 100 de-
grees she can’t keep anything down including liquids. What kind
of medicine should I give my child, and how much?

e Symptom — Medicine — Instruction

o Do I have insomnia if I have trouble staying asleep? Any med-
ication is recommended to help me fall asleep easier?
o Disease <— Symptom — Medicine

TABLE 1. MEDICAL QUERIES AND THE EXTRACTED MEDICAL
CONCEPT MENTIONS &TRANSITIONS.

Usually, medical semantic transitions are formulated by
users during their efforts to express their existing medical
conditions as well as their intended medical-related infor-
mation needs, either explicitly or implicitly. The diversely
expressions cover the mention of different types of medical
concepts, each represents a set of notions such as symp-
toms, diseases, medicines etc. In real-world medical text
queries, various expressions can be referred to as a concept
mention, either explicitly (e.g. “Tylenol”, “Ibuprofen” for
the medicine concept) or implicitly (such as “what”, “which
drug/medicine”). Even for the same medical concept, differ-

1. http://science.china.com.cn/2016-1124content_9180719.htm
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ent expressions can be used. For example, “nose plugged”,
“blocked nose” and “sinus congestion” all belong to the
same symptom concept mention but expressed very differ-
ently.

The way concept mentions organized in a question natu-
rally forms a structured concept transition graph that reflects
users information-seeking intentions. Such ubiquitous obser-
vation in medical text questions is rarely studied in previous
literatures. A typical formulation for medical intent detec-
tion is to model each semantic transition as a single label
[43], or as a two-element tuple indicating 1) what a user
have described and 2) what information the user is looking
for [40]. For example, we can have (Symptom, Disease)
and (Symptom, Medicine) for the last query in Table
This formulation defines each tuple as an individual label
and ignores the correlations among the multiple semantic
transitions in a single query. In real-world medical text
queries, multiple semantic transitions in a single question
may conjugate with each other by mentioning the same
medical concept. For example, (Symptom, Disease) and
(Symptom, Medicine) share the same concept Symptom
by expressing symptoms: “trouble staying asleep” and “fall
asleep” in the query. The above formulations fail to consider
the semantic interactions among multiple medical concepts
in a medical query, which prevent them from satisfactorily
detect sophisticated user intentions with complex semantic
structures.

Alternatively, we can formulate concept transitions over
a directed, highly structured concept graph where concept
mentions are nodes and transitions between concepts are di-
rected edges between them. For example, with a graph-based
formulation, the concept transition for the second question
in Table [I] is formulated as Symptom — Medicine —
Instruction since the user first describes his/her symp-
toms (“sick”, “temperature of 100 degrees”) and inquires
about information on medicine concepts (“What kind of
medicine”), followed by phrases (“and how much”) indi-
cating further information seek intentions about instructions
on the medicine. Real-world text questions often exhibit a
mixture of multiple concept transitions in each question (See
Section @] for details), in which shared concept mentions
serve as a bridge coupling two or more concept mentions
into a structured concept transition. Thus, a graph-based
formulation would essentially allow us to jointly model and
infer correlations between concept mentions and multiple
concept transitions simultaneously, which is one of our key
contributions.

Problem Studied: In order to better capture a focused
picture of people’s medical-related information search and
information access strategies, we propose and study the
concept transition inference problem for online healthcare
questions with a graph-based formulation. Given a question
and a concept graph indicating the full spectrum of concept
transitions in the medical domain, our goal is to effectively
infer concept transitions that are activated by the given
medical text question, as shown in Figure

Challenges: A typical solution for the concept transition
inference problem evolves hand-engineering features based

on expert knowledge in the medical domain, such as con-
structing a word-concept mapping dictionary [40] or us-
ing pre-defined rules [11]] or templates [33] for question
intent classification . Even if one discounts the tedious
effort required for feature engineering, those features are
usually designed for a limited number of questions acces-
sible to domain experts and do not generalize to handle
various user expressions in real-world medical text ques-
tions. People with different knowledge background tends to
express the same idea in different ways. For example, a
medicine concept can be mentioned by specific drug names
such as “Tylenol”, “Ibuprofen” or phrases like “what kind
of medicine/drug/medication”. The decent performance of
those approaches usually comes at the cost of acquiring
an external knowledge base to handle varying linguistic
modalities and diversified expressions. How to minimize
feature engineering without compromising the performance
for the concept transition inference is still challenging.
Moreover, comparing with general-purpose text ques-
tions which people have been posting or searching for
online, where users only focus on a single concept (such
as “weather”, “politics” or “stocks™), concept transitions
in medical questions usually involve multiple concepts. It
would take strenuous efforts to model correlations among
multiple concept transitions without considering the shared
concept mentions effectively. What’s more, unlike many
existing works on medical text analysis such as sentiment
classification [15]], [2] which consider positive, negative or
neutral sentiments in medical texts, it is challenging yet
rewarding to consider structured concept transitions which
model sophisticated medical semantic transitions in real-
world medical text queries.
Proposed Work: To overcome those challenges, we intro-
duce a novel neural network architecture that bring struc-
tures to semantic transitions for user intent detection in
medical text queries. We observe an appealing property that

“My 3 year old is sick with a temperature of 100
degrees she can't keep anything down including
liquids. What kind of medicine should I give my
child, and how much?”
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Figure 1. The concept transition inference problem over the full concept
graph. Each node in the concept graph represents a concept. Each directed
edge between two nodes indicates an information-seeking transition over
two concepts. Given a text question and an existing medical concept tran-
sition graph, the concept transition inference problem extracts a directed,
structured subgraph consisting of a set of concepts being mentioned (shown
as colored nodes) as well as a set of concept transitions being encoded
(shown as black dashed lines) from the question.



real-world medical text questions exhibit a strong coupling
between concept mentions and concept transitions. Con-
sequently, a graph-based formulation is defined to jointly
model correlations between concept mentions and multiple
concept transitions. The proposed model can effectively in-
fer concept transitions from real-world medical text queries
and extract a structured representation of users information-
seeking intentions.

Also, we introduce an end-to-end solution to the con-
cept transition inference problem which is well integrated
with the graph-based concept transition formulation. The
concept transition inference task is formulated with a multi-
task learning schema that learns to extract concept men-
tions as well as to infer concept transitions collectively.
A customized graph-based mutual transfer loss function
is designed to impose explicit constraints to reduce the
conflicts between the concepts being mentioned and the
concept transitions being activated.

Furthermore, the proposed model minimizes hand-
feature engineering by using only the text information from
the medical text query and an existing medical concept
graph introduced in [40], without relying on other exter-
nal knowledge bases. The neural network is trained to
automatically discover concept mentions and infer concept
transitions from raw text questions, in contrast to relying
on fixed dictionaries for word-concept mapping [6]], [14],
[40] or using pre-defined parsing rules [11] or templates
[33] in prior works. The neural network also learns to
assign confidence scores to words as an attention mechanism
[39], which makes the model self-explaining in indicating
the contribution of each medical concept mention to the
structured semantic transition.

Moreover, the proposed method learns both semantic and
syntax representations for each word and its Part-of-Speech
tag respectively. The learned embeddings are fed into two
separate recurrent neural networks to build a memory sum-
marizing multiple concept transitions over the input text
sequence. This compositionality of input embedding lends
the proposed method to handle diversified expressions in
user questions.

Experiments are conducted on real-world medical text
queries collected from a medical question-answering forum,
which is publicly available. We contrast the performance of
the proposed model with other alternatives by an 8% im-
provement in micro-AUC and an 23% reduction in coverage
loss for the concept transition inference problem.

Overall, our paper makes the following contributions:

1) We observe and formally define concept transitions
in medical text questions and show appealing prop-
erties among concept transitions and shared concept
mentions.

2) We study the concept transition inference prob-
lem with a graph-based formulation, which brings
semantic structures to diversely expressed natural
language queries.

3) We propose an end-to-end solution with a novel
neural network model to the concept transition in-

ference problem without excessive external knowl-
edge requirements.

4)  We collect datasets and empirically evaluate the
proposed method on real-world medical text
queries.

2. Preliminaries

We now formally define the terminologies and describe
the concept transition inference problem. Also, we provide
observations to show appealing coupling properties of con-
cept mentions and concept transitions in real-world text
queries, which motivates a graph-based concept transition
formulation.

2.1. Terminologies

Concept Let a concept ¢ be a group or class of ob-
jects and/or abstract ideas representing similar fundamental
characteristics in a certain domain. C = {c1,¢a,...,cp}
is list of a full spectrum of M concepts in a specific
domain. ( e.g. the medical domain contains concepts of
diseases, symptoms, medicine and so on). Users can men-
tion concepts in a query by mentioning specific object
names as explicit mentions (“Tylenol”, “Ibuprofen” or “xxx
caplet/capsule/drop/syrup”), as well as implicit mentions
by abstract ideas that refer to concept (e.g. “remedy”)
or phrases indicating this concept (e.g. “which medica-
tion/medicine/drug”).

Concept Transition Let a concept transition t;_,; defines
a transition of a user information search intent from the
concept ¢; to concept ¢;. A concept transition #;_,; exists in
a query when two concepts c;, ¢; € C are mentioned (either
explicitly or implicitly) with a semantic transition between
them. For example, medical queries with concept transitions
tSymptom— Medicine Usually start with patients describing
their symptoms and asking for related information about
medications that help them alleviate their symptoms.

T contains the full spectrum of N concept transi-
tions in a certain domain, which can be indexed as 17" =
{t1,t2,...,tn} for simplicity instead of {t,_,;}. Those two
index notations are used interchangeably in this paper. Mul-
tiple concept transitions can be activated by a single query
and the direction of a concept transition does not necessarily
follow the order of concepts being mentioned in a query.
Multiple concept transitions in a query may follow a natural
chain-like path, such as the path Symptom — Medicine —
Instruction.

Concept Graph Let G = (C,T') be a concept graph where
each node represents a concept ¢, € C and ¢; ; € T be a
directed edge from node c; to c¢;. A concept graph G is
a graph representation of all possible concepts and concept
transitions in a certain domain. Note that the domain-specific
concept graph can be obtained from domain experts, which
we adopted in this paper, or constructed from large text
corpora by existing techniques [18]], [38]], [42].



Active Concept Graph Let an active concept graph Gg =
(Cq,Tq) be a subgraph of G = (C, T, indicating concepts
Cg C C mentioned by a query () and concept transitions
Ty C T activated by the the query Q.

2.2. Problem Statement

The Concept Transition Inference Problem: Given 1) a
text query @ which consists of K elements {q1, g2, ..., ¢x }+
where each element is a word or a phrase and 2) a concept
graph G = (C,T), where C denotes all possible concepts
and T indicates all possible concept transitions, the concept
transition inference problem tries to effectively infer an
active concept graph Gg = (Cq,Tg) given a query Q.
Figure [I] illustrates this idea.

2.3. Observations

Based on the terminologies and the problem defined,
we would like to observe the existence of active concept
graphs given real-world medical text queries. We sample
10,000 medical text queries from an online medical question
answering forum and label them with concept transitions
being activated. We end up having 17 unique types of
concepts and 23 unique types of concept transitions (details
in Section [4.T)). Table [2]shows the top frequent concepts that

Medical Concept ~ Symptom  Disease = Cause Medicine  Treatment
Frequency 7650 7446 5380 3733 2504

TABLE 2. TOP FREQUENT CONCEPTS MENTIONS.

are mentioned either explicitly or implicitly in medical text
queries.

We also show 9 popular active concept graphs in medical
text queries, shown in Figure By characterizing con-
cept transitions with a graph-based formulation, it maps
natural language queries with diversified expressions into
a structured form, which show users information needs in a
structured way.

More importantly, we found that active concept graphs
rarely have disconnected components, from a perspective
of the graph theory. This not only implies that users tend
to have multiple concept transitions within a single medical
text query but also indicates that multiple concept transitions
in the same query are expressed and developed together,
coupled with some shared concept mentions. The connec-
tivity of active concept graphs implies that by taking ad-
vantages of the concepts and concept transitions formulated
on a concept graph, we may able to utilize the correlations
between nodes and edges for a better inference and there-
fore, users information search intent or information access
strategy for their healthcare conditions can be modeled and
inferred more effectively.

3. Medical Concept Transition Inference

We introduce a novel neural network structure which
provides an end-to-end solution to the concept transition
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Figure 2. Popular active concept graphs.
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Figure 3. The proposed neural network architecture.

inference problem where the input is a text query and the
output is an active concept graph inferred by the given query.
The model utilizes distributed representations for sequences
of words and their POS tags respectively, from which se-
mantic and syntax are embedded on a word-level. After that,
two recurrent neural networks are adopted to model the
sequential information from distributed representations of
word and POS tag sequences in each query respectively. In
the graph-based co-inference procedure, concepts and con-
cept transition are inferred collectively and simultaneously.



A concept encoder is proposed to utilize the joint outputs
of two RNNs to encode each element into a concept vector.
Especially, the concept encoder is able to learn a confidence
score which indicates the contribution of each element in
encoding concept mentions in a query. While for inferring
concept transitions, a transition encoder exploits the last
hidden states of two RNNSs to construct a transition vector,
from which we infer a probability distribution on all possible
concept transitions. The loss of the neural network structure
not only incorporates prediction errors between the predict
concept transitions and the true concept transitions but also
exploit a mutual transfer loss indicating the conflicts be-
tween the inferred concepts and their corresponding concept
transitions. An active concept graph is presented with the
inferred concepts and concepts transitions, by collectively
minimizing a graph-based mutual transfer loss based on the
concept graph. Figure [3] gives an overview of the proposed
neural network architecture.

3.1. Semantic-Syntax Representations

Unlike traditional methods which ignore the sequential
information of the input text query and treat it as a bag-of-
words (BoW), in this work a text query () is considered as
a sequence of elements {q1, g2, ..., ¢x }, Where each element
qr can be a word or a phrase. K is the length of a text query,
which varies from different text queries. For each element
qr in a text query (), we utilize both the word indicating
the semantic information, as well as its corresponding Part-
of-Speech (POS) tag as the syntax information.

Part-of-speech (POS) tags bring useful syntax informa-
tion about general word categories (such as noun, verb,
adjective, etc.), which is helpful in dealing with ambiguous
words and diversified expressions. For example, “fever” can
be either a noun or a verb. The word “fever” with a POS
tag “noun” is defined as a disease that causes an increase
in body temperature and the fever with a POS tag “verb”
can be considered as someone in a fever, as a symptom. In
this work, an existing POS taggelﬂis utilized to give general
POS tags to each element in the query. The semantic-syntax
joint representation consists of words along with POS tags
are shown to be effective in modeling both semantic (words)
and syntax (POS tags) from the natural language text corpus
in various tasks [23[], [40]. In this work, each element @
of a query () is represented by words and POS tags as a
tuple:

qr = (Wi, pr) s.t. wy, € RVwerd pp e RVros - (1)

where wy, is the one-hot representation of the k-th word in
the query @@ and V,..q is the number of unique words,
namely the vocabulary size. Similarly, p; is the one-hot
representation of the k-th word’s POS tag in the query.
Vpos is the POS vocabulary size.

3. https://github.com/fxsjy/jieba

3.2. Word Embedding

The one-hot representation suffers from the curse of
dimensionality since the representation becomes extremely
sparse as the vocabulary becomes large. The word embed-
ding is used to transfer one-hot representation of each word
wy, and POS tag py into a dense representation:

w_embedy, € ]RD““’"d,p_embedk € RPvos, 2)

where Vi,,-¢ usually can be large up to millions while
Dyora 18 reduced to several hundreds. Note that D, g
and D, are usually set empirically. In this work, we set
Dyyorq = 100 and D, = 20.

The embedded representation of each wy and p; are
learned respectively by a linear mapping via a skip-gram
model [29]:

embed_wy, = Eyord W
_ 3)

embed_p;, = Epos Pks
where Eyorg € RPwora*Vuord and B, € RProsXVeos are
weights. The skip-gram learns a distributed representation
of each word or POS tag based on its context. In the
medical text queries, that means an explicit mention of a
concept (“Tylenol”) and an implicit mention of a concept
(“Which medicine”) may have similar representations when
they occur in similar context, when trained properly. That
helps us solve the diversified expressions in medical text
queries.

In this work, the embedding is initialized with word
vectors pre-trained from 64 million medical text queries
and updates with the model during training. After the word
embedding, the k-th element in the text query ¢; has a
semantic-syntax representation, represented by a tuple:

er = (embed_wk, 6mb€d_pk)~ “)

3.3. Recurrent Neural Network

Once we obtained semantic-syntax representations ey, for
each element g in a query @, the embed_wy, sequence and
the embed_p, sequences are fed into two recurrent neural
networks, namely RNNyw and RNNp, respectively.

In general, a recurrent neural network keeps hidden
states over a sequence of elements and update the hidden
state hy by the current input z; as well as the previous
hidden state hy_1 where £ > 1 by a recurrent function:

hi = RNN(zg, hi—1) 5)
The simplest form of an RNN is as follows:
hi = a(Wenzr + Wanhg—1 + bn), (6)

where W), € RP»*DPe W, € RP»*Dn b ¢ RPr are
weights and bias that need to be learned as model param-
eters. «(-) is a non-linear transformation function such as
Rectified Linear Unit (ReLU): a(x) = max(0,z)). This
form of RNN fails to learn long-term dependencies due to
gradient vanish or explosion problem [3]], [19]], which is not



suitable to learn dependencies from a long input sequence
in practical.

To address the gradients decay or exploding problem
over long sequences, the Gated Recurrent Unit (GRU) [8]
is proposed as a variation of the Long Short-term Memory
(LSTM) unit [20]. The GRU has been attracting great atten-
tions since it overcomes the vanishing gradient in traditional
RNNs and is more efficient than LSTM on certain tasks [9].
The GRU is designed to learn from previous time stamps
with long time lags of unknown size between important time
stamps. A typical GRU is formulated as:

Tk = 0(Warr + Rpphy—1 + br)

2 = 6(Wazx + Rpzhie—1 +02) )
hi, = tanh(Wanar + Whin (e @ hi—1) + by)
hi =2k Qb1+ (1 —2) ® illw

where a reset gate 75 is designed to makes the GRU
acts whether as if it is reading the first element of an
input sequence or not, allowing it to forget the previously
computed state. The GRU maintains an update gate zj to
balance between previous activation hy_; and the candidate
activation hy. 6(-) and tanh(-) are the sigmoid and tangent
activation function and ® denotes the element-wise multi-
plication operator. An output vector oy, is generated for each
hidden state at time stamp k, by the following equation:

o = 0(Whohi) (8)

, where W}, is the weight and o(-) is a softmax func-
tion. The output vector can be considered as the vector
representation of each input xy, taking the hidden state hy
maintained by the RNN into the consideration. Note that, the
output vector is not affected by any gates in GRU, which
makes the GRU more appealing to our problem setting since
we need an output vector oj without any output gating for
each word in a query.

In this work, two separate RNN with GRU cells, namely
RNNyy and RNNp, are adopted to model the sequential
information for the sequence of embedded words embed_wy
and the sequence of embedded POS tags embed_p,,:

h_wy, o_wy, = RNNw (embed_wg, h_wi_1)

O
h_py., 0_pr, = RNNp(embed_py,, h_pj_1), )

3.4. Graph-based Co-inference

In order to fully exploit the correlations of concept tran-
sitions and corresponding concepts, concepts and concept
transitions are inferred collectively over a concept graph for
each query. The concept inference is aimed to select a subset
of concept Cg € C that are mentioned in a query (), which
is achieved by the concept encoder. To inference transitions,
we also utilize a transition encoder. The concepts C'p and
transitions TQ are inferred collectively, by minimizing a
mutual transfer loss which indicates the conflicts within the
collectively inferred active concept graph G on a concept
graph G.

3.4.1. Concept Encoder. In concept inference, a concept
encoder is proposed to encode all the concept mentions from
a sequence of output states of an RNN to concept vectors
accordingly. Since some words in a query may contribute
more to a concept mention in a query while some other
words are less contributive, the concept encoder itself learns
to assign a confidence score to each output state. Let oy be
the k-th output vector of an RNN, while in this work we
concatenate the output vectors of RNNy, and RNNp:

RlXDO'w ,0_Dy c IRlXDOp7

(10)
where D, and D, are the output dimension of output
vectors in RNNy, and RNN p. The concept encoder assigns
a score s for each oy indicating the degree of confidence
based on the value of oy:

sy = CE(op,0) st Zk sp=1,Vsp €[0,1], (11)

o = [o_wg, 0_p.],o_wy €

where 6 is the parameter of the concept encoder that we
learn along with the whole model. all s scores in a query
are normalized to sum up to one. The concept encoder CE
can be also considered as a mapping from each output
vector o to a real value s € [0,1]. In this work, the
concept encoder is implemented as a single layer neural
network with a non-linear activation function ReLLU. Thus
0 = {Wy € RPowtDop)x1 b, c R}, Note that although
weights and biases are applied on each of the og, they are
shared among all 01, 09, ..., 0.

Figure [] shows the architecture of the concept encoder.
The ocp € R(PowtDop)xK g g representation of encoded
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Figure 4. The concept encoder is used to determine confidence scores for
each joint output state. This figure shows an example of a score s; learned
from the concept encoder for o7.

concepts from the query, which is calculated based on all
the output states {01, 02, ..., 0k }:

Oce = [ (CE(01,0) - 01)" (CE(ok,0) - ox)"
(12)
The probability that a concept ¢; € C' is activated in a
query @ is defined as:

A 1
(CQ)WL = P(CWL'C?’)’L € ana WCE7bCE) =

(13)

1+ e~WeceOcrtbce’



where Wep € R (PowtDor) pop € R are weights and
biases for such probability inference. We use Cp € R?*M
to quantify the probability distribution on all M concepts
for a given query Q.

3.4.2. Transition Encoder. In the field of machine trans-
lation, a novel recurrent neural network encoder-decoder
has gained attention [35]], where the encoder recurrent neu-
ral network encodes the global information spanning over
the whole input sentence in its last hidden state. The ef-
fectiveness of the last hidden states in modeling natural
language sequences are also witnessed in application like
dialog systems [32]]. Inspired by those ideas, we propose
a transition encoder which leverages the last hidden state
of the neural network for both RNNy,, RNNp to make
inferences on concept transitions, where the transition vector
org is constructed by

OTE == [h_'LUK, h_pK]7 (14)

where K is the length of the query. The probability that a
transition ¢,, € T is activated given a query () is quantified
by:
1

14 e WreOrg+bre’

15)
where Wrg € R (PowtDor) prp € R are weights and
biases for the transition encoder. Similarly, Ty € RIXN
denotes the inferred probability distribution on all NV concept
transitions given a query Q.

(TQ)n = P(t, € T|Wrg,brg) =

3.5. Mutual Transition Loss

The idea of mutual transition loss is to characterize the
loss caused by transferring the inferred concept transitions
to their corresponding concepts, and the other way around.
Since for each concept transition ¢;_,; € T', two concepts ¢;
and c; are evolved in the query. If a concept transition ;_, ;
is inferred with a high probability while its corresponding
concepts ¢;, ¢; have low probabilities, then that indicates
conflicts in the final active concept graph. The mutual
transition loss is proposed in the co-inference procedure to
minimize the conflicts between the inferred concepts and
concept transitions so that the resulting active concept graph
can be more reasonable.

The graph-based formulation for concept graph gives
an appealing property that transitions and their proximate
concepts can be clearly characterized by a transfer matrix
A € RM*N gver the concept graph G = (C, T'). Each entry
amn = 1 if and only if the concept ¢, involves in at least
a concept transition ¢,,_,. or t._,,. o

The mutual transfer loss is defined on Cp,Tg, 7 as:

Lurr(Co. T, Tg) = H(Tq, Tg) + E(Cq, Tg),  (16)

where 7g is a ground truth one-hot indicator for concept
transitions given a query Q. CQ and TQ are inferred con-
cepts and concept transitions with the proposed method.
H(-,-) calculates the cross entropy [36]. F(Cq,Tg) is

an energy-based function on inferred transitions 7 and
inferred concepts Cg. Each combination of C and T
corresponds with an energy value, the lower energy level
a combination of Cg and T has indicates less conflicts
among the inferred concepts and transitions. In this work,
an energy-based function for E(Cg,Tg) is proposed as:

E(Cq.Tq) = Lr(Cqo. ToAT) + Lr(To.Cod), (17

where Lp is similar with the ranking loss [30]]. In this work,
Lr penalizes cases where the inferred concepts/transitions
after transformation by matrix A have high probabilities
but order below the ranking of the originally inferred con-
cepts/transitions in a query. Lr has a general form:

La(X V)= G 0 X, > X

X

(L

(18)
where X € R'Z is the originally inferred labels and Y e
R*Z is the inferred labels from the transformation with A.
|-| denotes the number of ground truth labels being assigned.
L is the label size, where we have M for concepts and N
for concept transitions.

4. Evaluation

4.1. Data Set

We collect medical queries from an online medical ques-
tion answering foruny’| on which user posted their healthcare
related questions and medical professionals give online sug-
gestions or advice. The obtained corpora are in Chinese. Due
to the fact that Chinese text queries are not naturally split
by spaces, word segmentation is performed using a Chinese
word segmentation package [7]. The segmentation results
do not simply segment queries by each Chinese character.
Instead, it tries to combine strongly correlated consecutive
characters into words, thus “word” referred in this work can
contain more than one Chinese character. After preprocess-
ing and annotation, a medical text query has the following

format: { text” CESVE 1B RIE M BRI B N2
5 i RE 2 BESUE 1Y UE 19 FE leep TR 157,
“pos “nbnvnnnnnvvnyayvengny’,
“concept”: “fee|disease|surgery|recover|treatment”, ‘“‘con-
cept_transition”: “disease — surgery — recover”}, where
the POS tagging uses ICTCLAS annotation [41]]. Among
10,000 medical text queries, 11,531 unique words and 60
unique POS tags are observed. The average length of ques-
tion is 13.8, with a standard variation of +6.1. The average
number of concepts in labeled queries is 3.6020+0.8. The
average number of concept transitions is 2.4723+0.7. Word
embeddings are pre-trained using a skip-gram model [29]
on 64 million unlabeled medical text queries separately.
Context window size is set to 8 and we specify a mini-
mum occurrence count of 5. The vocabulary contains 100-
dimension vectors on 382216 words. Words not presented

4. http://club.xywy.com



in the set of pre-trained words are initialized as random
vectors. All word vectors will be updated during training.

4.2. Experiment Settings

4.2.1. Comparison Methods. To show the advantages of
the proposed method in addressing the concept transition
inference problem, we compare it with the following base-
line models.

o LR: a logistic regression model applied with POS
tagging features and word representations.

e NNID-JM [40]]: the neural network intention de-
tection model with joint modeling. Both words
and POS tags are used to -characterize the
question . Domain-specific POS tags, such as
“noun_medicine”, are used in NNID-JM instead of
“noun” for word “Tylenol”. The NNID-JM doesn’t
explicitly exploit label correlations on the output
level.

e CI: the concept inference model which only infers
mention of concepts from queries with the concept
encoder. H(Cg,Cg) is used as the loss function for
the CI task.

e CTI: the concept transition inference model without
co-inference. Only concept transitions are inferred
from queries without considering concepts. The last
output states of two RNNs are concatenated to pre-
dict the concept transitions. H(7q,Tq) is used as
the loss function.

o coCTL: the concept transition inference model with
co-inference. H(7q,Tg) + H(Cg,Cq) is used as
the loss function. This variation can be seen as a
multi-task learning model for concept and concept
transitions, where both tasks share the neural net-
work structure for word representation.

e coCTI-MTL: the proposed model with co-inference
and a mutual transfer loss Lp;rr, where the CI
task and CTI task not only share the neural network
structure, but also guided by the mutual transfer loss.

4.2.2. Evaluation Metrics. Each edge in the concept graph
is considered as an individual label and we evaluate inferred
concept transitions as a multi-class, multi-label classifica-
tion problem. Receiver operating characteristic (ROC) [17],
the micro/macro-average area under the curve (micro-AUC,
macro-AUC) [10], coverage error [36] and label ranking
average precision (LRAP) [28]] are used to evaluate the
effectiveness of the proposed model in inferring concept
transition in medical text queries. The ROC and AUCs focus
on the quality of prediction, while the coverage error and
LRAP are introduced to evaluate the completeness/ranking
of the prediction. ROC is the curve created by plotting
the true positive rate (TPR) against the false positive rate
(FPR) at various threshold settings. Micro-AUC computes
the averaged area under the ROC curve over all the labels.
Coverage error computes the average number of labels that
we need to have in the final prediction in order to predict

all true labels. LRAP score favors better rank to the labels
associated to each sample, which is used in multi-label
ranking problems.

4.2.3. Experiment Settings. The embeddings for word and
POS tagging have a dimension of 100 and 20, respectively.
The hidden layer and the output layer of the GRU unit
have a dimension of 100. For training the proposed neural
network structure, 70% of the labeled data are used for
training and 10% data serve as a validation set to tune
for the best parameter set. The remaining data are used for
testing. Cross-validation is used and we combine test data in
each fold to report the test performance. The optimization
is performed in a mini-batch fashion with a batch size of
32. The Adam Optimizer [21]] is applied to train the neural
network and the initial learning rate is set to 10~%. Weight
variables are initialized with the Xavier initializer [13] and
bias variables are initialized as zeros. The proposed model
is implemented in Tensorflow [1].

4.3. Evaluation Results
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Figure 5. micro-AUC scores and ROC curves.

Figure [5] shows the effectiveness of the proposed model
by micro-AUC and ROC curves. Generally, neural network
based models (NNID-JM, CTI, coCTI, coCTI-MTL) outper-
form traditional logistic regression model (LR) consistently.
For NNID-JM, in order to make a fair comparison, domain
specific POS tags (such as noun_disease, noun_medicine,
noun_symptom) are maintained as an external knowledge
base. Those POS tags are used by the POS tagger in NNID-
IJM as its default setting. When compared with NNID-JM,
the proposed CTI model achieves similar performance on
micro-AUC, while it doesn’t rely on any other external
knowledge like domain-specific POS tags in NNID-JM. In
practical, utilizing a concept transition graph is usually more
feasible than tagging words and building dictionaries to
maintain words for each domain-specific concept.

From Figure [5] we can further observe that CTI-MTL
achieves the best performance (0.8731 in micro-AUC)
among all the comparison methods in inferring concept
transitions in medical queries. The CTI-MTL model has a
nearly 2.5% improvement on micro-AUC when compared



with coCTI and a nearly 7.5% improvement with CTI. This
demonstrates that the mutual transfer loss which penalizes
conflicts between the inferred concepts and inferred concept
transitions can improve the inference quality.
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Figure 6. Micro/Macro-AUC scores for collective inference (coCTI) VS.
concept inference(CI) and concept transition inference (CTI) separately.

Concept Transition LR NNID-JM CTI coCTI coCTI-MTL
Symptom— Diet 0.6544 (5)  0.7755 (4)  0.7669 (3)  0.7959 (2) 0.8495 (1)
Symptom— Medicine 0.7022 (5) 0.7893 (4) 0.8242 3)  0.8571 (2) 0.8624 (1)
Symptom— Cause 0.7600 (5)  0.8549 (4) 0.8786 (3)  0.8911 (1) 0.8880 (2)
Disease—sDiet 0.7818 (5)  0.8670 (4)  0.8681 (3)  0.9059 (2) 0.9458 (1)
Disease— Treatment 0.7181 (5) 0.7787 (3)  0.7482 (4)  0.8456 (2) 0.8836 (1)
Disease— Examine 0.6397 (5) 0.6707 (4) 0.7838 (3)  0.8221 (2) 0.8480 (1)
Disease—Medicine 0.7623 (5)  0.8726 (4) 0.8749 3)  0.8873 (2) 0.9015 (1)
Surgery—Recover 0.8117 (5) 09126 (3) 0.9012 (4)  0.9239 (2) 0.9396 (1)
Surgery—Sequela 0.7385 (5)  0.8031 (4) 0.8214 3) 0.8417 (2) 0.8972 (1)
Surgery— Syndrome 0.7896 (5)  0.7994 (4) 0.8634 (2) 0.8619 (3) 0.9172 (1)
Surgery—Risk 0.6613 (5)  0.8063 (4) 0.8688 (3) 0.8715 (2) 0.9099 (1)
Medicine— Symptom 0.6861 (5)  0.8275 (3)  0.7553 (4)  0.8294 (2) 0.8598 (1)
Medicine—Side Effect ~ 0.6652 (5)  0.8162 (3)  0.7771 (4)  0.8135 (2) 0.8814 (1)
Medicine— Disease 0.6806 (4)  0.6514 (5) 0.8081 (3) 0.8126 (2) 0.8678 (1)
Medicine—sInstruction 0.7090 (5)  0.7761 (3)  0.7603 (4)  0.8170 (2) 0.8820 (1)
Examine— Fee 0.7576 (5)  0.9049 (3)  0.8981 (4)  0.9425 (2) 0.9482 (1)
Examine— Diagnosis 0.6832 (5)  0.7956 (3)  0.7445 (4)  0.8383 (2) 0.8822 (1)
Symptom—;Treatment 0.6817 (5) 0.7640 (3) 0.7313 (4)  0.8130 (2) 0.8531 (1)
Symptom—s Department ~ 0.5978 (5)  0.6460 (3)  0.6013 (4) 0.6738 (2) 0.8080 (1)
Disease—Cause 0.7306 (5)  0.8206 (4) 0.8515 (3)  0.8608 (2) 0.8634 (1)
Disease— Symptom 0.6936 (4)  0.7552 (3)  0.6845 (5)  0.7554 (2) 0.8372 (1)
Disease— Department 0.6931 (5) 0.7387 (4)  0.7431 3)  0.7652 (2) 0.8290 (1)
Disease— Surgery 0.7801 (5)  0.8795 (4)  0.9029 3)  0.9236 (2) 0.9380 (1)

TABLE 3. FINE-GRAINED AUC SCORES FOR CONCEPT TRANSITION
INFERENCE FOR EACH CONCEPT TRANSITION (EACH EDGE IN THE
CONCEPT GRAPH).

Figure [6] shows the effectiveness of the co-inference pro-
cedure by comparing the performance of CTI with coCTI.
The CI infers concept mentions so we can’t simply compare
its performance with CTI/coCTI where concept transitions
are inferred. However, for CTI and coCTI, the improved
performance on both micro-AUC and macro-AUC validate
the effectiveness of inferring concept transitions and concept
mentions collectively than inferred separately. The coCTI
model can be considered as a multi-task learning model
where the question representation is learned jointly and
shared between two inference tasks.

Furthermore, the fine-grained AUC scores on all concept
transitions without micro/macro-averaging are shown in Ta-
ble 3] A general observation we can draw from the results

is that the coCTI-MTL model is able to outperform other
baselines in almost all types of concept transitions.
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Figure 7. Coverage Loss and Label Ranking Average Precision (LRAP).

Figure [7] shows the coverage loss and LRAP over pro-
posed methods and other baselines, where the coCTO-MTL
model is able to achieve the lowest coverage error and the
highest label ranking average precision score.

o MftA(why) @A) FHgey) HBA(Vitiligo) [E¥(transmitted) i (or) iE (% (inherited)

o 15T (got) EE(cold) FAIRA[LA(can I) HZ(have) ERETZAR Pl (spicy food)

o HNELf) HHFEJE(cholecystitis) ALT(ALT) f&FR(metric) %:(can) Jii(rise)

o HR(everyday) |7 (bruch teeth) {3IH(still) [ R(fetid breath) F(to) M(have) ftZ(which) Zj(medicine)

o Fi(two) Mdi(knees) H(inside) XFN( feel weak) [EZ [EIH(why)

Figure 8. Confidence scores assigned by the concept encoder on sample
queries. A darker color indicates a higher score.

Five case studies are presented in Figure [§] to show
scores assigned by the concept encoder on real-world med-
ical text queries. Some stop-words are removed for clarity.
We can see that the concept encoder is properly trained
as it is able to assign important words or words refer to
concepts higher confidence scores, while common words
are less likely to receive such high scores. This observation
indicates the effectiveness of the proposed concept encoder
in encoding concept mentions without relying on domain-
specific external knowledge bases.

5. Related Works

5.1. Medical Query Analysis

As a growing number of people are posting medical
related questions or searching with medical text queries
online, researchers have been focusing on new problems and
applications based on medical queries or search queries that
users generated. [25] analyzes the conceptual relationship
in medical records for a better medical search. [34] studies
the circumlocution problem in diagnostic medical queries,
where users are not able to express their ideas effectively.



[40] tries to model user intentions as a classification task
for medical text queries. [27] proposes a technique to detect
whether users express patient experiences in their medical
text queries. In [26], authors introduce a neural network
model to understand users healthcare related questions and
try to generate answers appropriately. Being able to in-
fer medical concept transitions from noisy, user-generated
healthcare questions may further facilitate various medical
applications such as healthcare question-answering, medical
dialog systems or recommendation. For example, once we
extracted the concept transition Symptom — Medicine
from a question Any medication is recommended to help me
fall asleep easier?, we may follow up by recommending the
user to the nearest pharmacy for further medical consulta-
tions on corresponding OTC medicines on Insomnia.

5.2. Text Classification

Recently, lots of neural network models are developed
for classifying natural language texts into different cate-
gories [37], [44], [22], [16], [39]. Those methods achieve
decent performance on general text classification tasks. The
proposed concept transition problem can be cast as a multi-
class multi-label classification problem. Unlike traditional
text classification tasks like news classification where the
existence of some topic words may easily dominate the
label for a news title, users tend to mention multiple medical
concepts in a single medical text query. It is crucial to extract
user medical concept transitions among multiple medical
concepts, besides just concept mentions individually.

Also, the aforementioned methods consider the textual
information only. With a graph-based formation in this pa-
per, our model is able to seamlessly incorporates an existing
concept graph with the medical text query. Moreover, we
propose to predict concept mentions as nodes and transitions
as links on an abstract level collectively, while most existing
works have been focusing on predicting links among con-
crete entities, e.g. among users in social networks [24], or
predicting links among entities on a knowledge graph [31]],

(4]
6. Conclusions

People nowadays are posting or searching with medical
text queries extensively on the world wide web. Various
medical information needs are expressed diversely in users
medical text queries. In this work, we bring semantic struc-
tures to user intention detection in real-world online medical
queries by mapping diversely expressed medical queries
to a concept graph where each node on a concept graph
represents a concept mention and concept transitions are
represented as directed edges. A novel neural network struc-
ture based on multi-task learning is introduced to extract
concept mentions as well as medical concept transitions that
users encoded in online healthcare questions collectively.
Evaluation results on real-world medical questions address
the effectiveness of the proposed model.
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