
Accepted at 2017 IEEE International Conference on Big Data (BIGDATA)

Help Me Find a Job: A Graph-based Approach for
Job Recommendation at Scale

Walid Shalaby1, BahaaEddin AlAila2, Mohammed Korayem3,
Layla Pournajaf3, Khalifeh AlJadda3, Shannon Quinn2, and Wlodek Zadrozny1

1Department of Computer Science, University of North Carolina at Charlotte
{wshalaby, wzadrozn}@uncc.edu

2Institute for Artificial Intelligence, University of Georgia
{bahaaeddin.alaila, squinn}@uga.edu

3Search Data Science, CareerBuilder
{mohammed.korayem, layla.pournajaf, khalifeh.aljadda}@careerbuilder.com

Abstract—Online job boards are one of the central compo-
nents of modern recruitment industry. With millions of candidates
browsing through job postings everyday, the need for accurate,
effective, meaningful, and transparent job recommendations is
apparent more than ever. While recommendation systems are
successfully advancing in variety of online domains by creating
social and commercial value, the job recommendation domain
is less explored. Existing systems are mostly focused on content
analysis of resumes and job descriptions, relying heavily on the
accuracy and coverage of the semantic analysis and modeling
of the content in which case, they end up usually suffering
from rigidity and the lack of implicit semantic relations that
are uncovered from users’ behavior and could be captured
by Collaborative Filtering (CF) methods. Few works which
utilize CF do not address the scalability challenges of real-world
systems and the problem of cold-start. In this paper, we propose
a scalable item-based recommendation system for online job
recommendations. Our approach overcomes the major challenges
of sparsity and scalability by leveraging a directed graph of
jobs connected by multi-edges representing various behavioral
and contextual similarity signals. The short lived nature of the
items (jobs) in the system and the rapid rate in which new users
and jobs enter the system make the cold-start a serious problem
hindering CF methods. We address this problem by harnessing
the power of deep learning in addition to user behavior to serve
hybrid recommendations. Our technique has been leveraged by
CareerBuilder.com which is one of the largest job boards in the
world to generate high-quality recommendations for millions of
users.

Keywords—Large-scale Recommendations; Graph-based Rec-
ommendations; Deep learning for Recommendations; Job Recom-
mendations; Hybrid Recommendations

I. INTRODUCTION

Recommendation systems have demonstrated success in
many online domains such as sales, media, and social com-
munities by connecting users to the items of their interest
and building their loyalty. With the excess of available online
information, job seekers need to have access to relevant
job openings in almost real-time, however, browsing through
thousands of jobs for finding few relevant ones can be a tedious
task for many applicants. With this motivation, our goal is to
build an effective recommendation system to improve the job
search process by harnessing multiple signals of relevance and
providing job seekers (i.e. applicants) with personalized job
recommendations. Collaborative filtering (CF) is one of the
widely used recommendation approaches which exploits the
user-item interactions to identify similar items (a.k.a. item-
based CF) or users (a.k.a. user-based CF) and predict a user’s
future interests [1]. However, there are inherent challenges
in building such systems in the domain of job search and
recommendations.

a) Scalability: Building a scalable recommendation
system for millions of users and jobs is crucial. In the recent
years, item-based recommendation systems have gained more
popularity as they are more scalable compared to their user-
based counterparts [2], [3]. However, with the vast amount of
incoming jobs everyday, building and maintaining a job-based
system is not trivial. We propose a graph-based structure in
order to efficiently model job-job relationships with variable-
length neighborhood sizes. For further performance boost
through incremental updates, we utilize active jobs in building
and updating the online graph while leveraging expired jobs
offline.

b) Job Similarities/Sparsity: User behaviors are typi-
cally captured by user-item interactions expressed as ratings
in domains such as movie recommendations. These ratings978-1-5386-2715-0/17/$31.00 c©2017 IEEE

ar
X

iv
:1

80
1.

00
37

7v
1

 [
cs

.I
R

]
 1

 J
an

 2
01

8

are then used in computing a variety of similarity metrics
between items or users; namely cosine or correlation-based
measures [4]. However, asking users to rate or rank jobs based
on their relevance is not realistic or applicable in a real-
world recruiting systems. Online recommendation systems use
variety of explicit and implicit information sources such as
purchasing histories in e-commerce systems [5], [6], browsing
and clicking behaviors in news recommendations [7], or views
in online video recommendation [8]. One major drawback of
relying on such data sources alone is the high level of data
sparsity in which typical item-item similarity measures may
fail [9]. Hence, we explore various data sources in the jobs
domain and develop alternative similarity measures to fully
capture the relationships between jobs, and alleviate the data
sparsity problem.

c) Cold-Start: Relying on behavioral data solely results
in lower quality recommendations when there is no user-
job interaction data. This is akin to the ’cold-start’ problem
which becomes more prominent in dynamic systems such
as job recommendations where new users and/or jobs are
introduced to the system at high rates. Moreover, many users
become inactive when they do not interact with the jobs for a
considerable period of time. To get the attention of such users
and get them to reengage with the system and become active
users again, it is necessary to distinguish between them and
brand new users.

In this paper, we propose a novel item-based job rec-
ommendation system to overcome the above challenges. Our
model aims at filling the gap in existing job recommendation
systems by leveraging multiple contextual and behavioral
signals in one unified salable graph-based architecture. At a
high level, our system consists of three main steps. First, we
build a scalable homogeneous graph of jobs as nodes with
multiple association edges between nodes capturing multiple
behavioral and contextual signals. Second, a weighted directed
edge is created for every job pair through weighted aggregation
of all their association edges. Third, we model user prefer-
ences and generate recommendations using propagation-based
search strategies on the graph. Our main contributions can be
summarized as below:

• We propose various item-item association measures
tailored for job recommendations including:
◦ several symmetric and asymmetric scores

based on collected clicks and applications data
(from CareerBuilder.com) to capture the im-
plicit and explicit user behaviors without bias
towards certain types of users or jobs.

◦ a content-based similarity measure which is
learned by creating neural job embeddings
using job descriptions [10].

• We successfully model user preferences in terms of
active jobs or predefined job categories. By recogniz-
ing the differences between active vs passive users as
well as registered vs unregistered users, we are able
to provide some level of personalization for a variety
of ’cold-start’ users with limited or no history.

• Our model utilizes a local propagation-based search
strategy to generate personalized recommendations

even when data is scarce. To further alleviate the ’cold-
start’ users, we also adopt a separate personalized
strategy based on a modified PageRank algorithm to
improve our recommendations by incorporating the
popularity of jobs.

• Experimental results show that our approach outper-
forms the classical CF in terms of recommendations
quality and relevancy. In addition, our proposed archi-
tecture is generic and can be easily applied to recom-
mendation domains other than recruitment services.

The remaining sections are organized as follows: Section 2
reviews the related work in detail. In Section 3, we introduce
our proposed job recommendation system. Section 4 presents
the implementation details of our system for Careerbuilder
job recommendations, and the evaluation results. Finally, we
discuss conclusions and future work in Section 5.

II. RELATED WORK

Collaborative filtering (CF) methods rely solely on the past
activity of users (e.g. ratings, purchases) for generating recom-
mendations. Existing CF methods belong to two categories:
i) memory-based (a.k.a. heuristic-based), and ii) model-based
methods [4], [11]. For any unseen user-item pairs, memory-
based methods utilize a heuristic-based search strategy to
find users with similar taste to the current user. Then, they
predict the user’s action on the new item using the aggregated
behavior of these similar users. Alternatively, in an item-based
variation, the past behavior of the user on similar items is
utilized. On the other hand, model-based methods focus on
learning an off-line model from the past activity of users using
machine learning techniques such as clustering [12], [13] or
matrix factorization [14]. A comprehensive survey of CF-based
methods can be found in [1], [15].

CF is widely adopted by real-world systems since it is suit-
able for a variety of applications regardless of the underlying
domains. More specifically, item-based CF has shown to be
more scalable and results in higher quality recommendations
compared to the user-based methods [2], [3]; hence, it is more
suitable for online systems with millions of users and fewer
number of distinct items. One of the shortcomings associated
with CF involves scenarios in which users or items do not
have enough interaction data (e.g. users with unusual tastes,
new users or items). One way to overcome this shortcoming
is to exploit another category of recommendation systems
known as content-based methods which build models using
the explicit domain-specific features of users and items [16].
Systems that combine both CF and content-based approaches
are known as hybrid recommendation systems.

Since our proposed method incorporates content-based
signals to the CF-based core system, it is considered a hybrid
method. We utilize content in two different scenarios by
distinguishing between the ’cold-start’ situation for jobs and
users. In the case of a new job, we compute a content-based
similarity measure between jobs by building a neural network
that learns job embeddings [10]. This way, we guarantee an
association between jobs even when they do not share any
user interactions. For users who do not have any activities, we
model their preferences by classifying their resume content

into pre-defined fine-grained job categories, and then recom-
mend them popular jobs under these categories.

A. Graph-based Recommendation Systems

Graph-based models adopt link analysis methods from
graph theory to address the shortcomings of CF-based ap-
proaches such as sparsity and improve the quality of the
recommendations [17]. One of the main research directions in
this area emerged after the success of the PageRank method
for ranking of web pages based on their importance and
popularity [18]. PageRank builds a directed graph of webpages
as nodes with edges representing the transition probability
between nodes. By adopting a memory-less strategy, they
capture the importance of each webpage based on the single
hop incoming links to them. The intuition is that a random
surfer already visiting a page would choose the next webpage,
mostly an adjacent one, based on the transition probabilities
between the pages, with a small chance of hopping to a
random webpage. Graph-based recommendation systems are
differentiated based on how they build the graph and traverse
it for recommendations. Heterogeneous graph-based models
build a bipartite graph of both users and items [19], while ho-
mogeneous models only include users [20] or items [9] as
nodes.

The CF approach can be expressed as a link prediction
problem in a user-item bipartite graph in which edges reflect
the interaction between users and items. To predict a non-
existing edge between a user and an item, a variety of
neighbor-based and path-based linkage measures are adapted
from graph theory [17]. In a recent study by Li and Dias [5],
bipartite graphs are used for grocery product recommenda-
tions in which nodes include both products and consumers,
while edges represent the frequencies of product purchases by
consumers. The authors proposed an item similarity measure
based on the aggregated higher order stochastic transition ma-
trices between items to overcome the sparsity problem. Then,
they generalized a random-walk-with-restart method [21] for
personalized recommendations based on the content of the
shopping basket. Our method differs from these approaches
in that we only build an item-based graph for a more scalable
solution.

A homogeneous graph-based method is proposed by Ag-
garwal et al. [20], with users as the nodes and a predictability
measure between users as the edges. In contrast to nearest
neighbor search, starting from the user, they traverse paths
from each connected node to find a user that has rated the
item of interest. Similar to other user-based CF approaches,
this method suffers from scalability problem when the number
of users becomes very large. Alternatively, some methods build
a graph of items [8], [22]. Baluja et al. [8] build a graph of
Youtube videos (as items) with edges indicating the co-views
of video pairs by the same users. They adopt a semi-supervised
label propagation method to recommend videos to users. In our
work, we also build an item-based graph, however, instead of a
global propagation-based search on the graph, we mainly use
a local search strategy. Moreover, we allow multiple edges
between the nodes and compute an aggregated asymmetric
association score based on job contents, applications (co-apps),
and co-clicks to capture the popularity of jobs as well as their
content and interaction similarities.

Several methods has adapted PageRank for personalized
recommendations [22]–[24]. Topic-sensitive PageRank [25]
uses a limited set of predefined topics and determines the prob-
abilistic membership of each page into these topics. It modifies
the PageRank random walk to consider hopping between topics
as well as pages, then uses the classification of the current
page to compute personalized weights for each topic. Gori and
Pucci [22] proposed a research paper recommendation system
which uses a modified PageRank algorithm to rank papers in
a citation graph biased by user preferences. In this work, we
adopt a personalized PageRank approach when data is less
than plentiful to get the full advantages of our heuristic-based
search method.

B. Job Recommendation Systems

Information extraction from resumes and job descriptions
is one of the main areas of research in jobs and recruitment
industry [26]–[28]. These works involve text mining, skill
normalization, and developing similarity metrics for matching
jobs and candidate profiles. Most of the existing recommen-
dation systems in this domain focus on candidate selection by
human resources rather than attracting job seekers through job
recommendations which is the main goal of our paper [29],
[30]. Existing automated job recommendation systems belong
to either content-based applicant-job matcher approaches [28],
[31], or user-based methods [32], [33].

Rafter et al. [32] proposed a user-based CF system for
job recommendation in the JobFinder website. the authors
utilized the overlap of interacted jobs as the similarity measure
between two users. Then, they apply a nearest neighbor search
and a clustering-based approach to generate recommendations.
Malinowski et al. [34] proposed a probabilistic method to
match jobs and resume profiles for producing both candidate
and job recommendations. A recent work by Paparrizos et
al. [35] predicts the next job transition of users by building a
supervised learning model using their past employment history.
This model recommends the predicted institution to the user
and can not be considered a real-time job recommendation
system.

Several works exploit social networks to generate job
recommendations [31], [33]. Lu et al. [33] proposed a graph-
based method with three types of nodes including users, com-
panies, and jobs to generate job recommendations exploiting
the relationships between all the three entities in a social
network. The authors only present preliminary results based
on a small sample of the data and further evaluations using
online data is left as future work. In our work, we also
propose a graph-based method exploiting user-job interactions
and job postings content, however, in addition to accuracy,
one of the main focuses of our work is scalability and real-
time recommendations which is not commonly addressed in
the previous work.

III. SYSTEM DESCRIPTION

We propose a homogeneous Graph-Based Recommenda-
tion architecture (GBR). In our recommendation graph, jobs
represent nodes and edges represent various similarity scores
between pairs of jobs. We compute the similarity scores from
multiple data sources that capture users behavior as well as

Search Log
Analyzer

Job
Applications
Analyzer

Deep Learning
Matcher

Co-Clicks

Co-Apps

Content-Similarity

Jobs Graph

Fig. 1. Data sources used to connect jobs in the recommendation graph

resumes and jobs content (Figures 1 & 2). We opted for
building an item-based graph rather than a user-based or a user-
item graph as it allows for more scalability given the number
of users in our recommendation pool (hundreds of millions).

A. Behavioral Data Sources

We model users behavior from explicit signals such as their
job applications, and implicit signals such as their clicks. Such
user-job interactions allow us to compute different job-job co-
statistics such as co-apps indicating, for any pair of jobs, how
many users applied to both jobs, and co-clicks indicating, for
any pair of jobs, how many users clicked both jobs when they
appeared in the resultset of a user query.

First, we compute these co-statistics from a user-job bipar-
tite multigraph where each edge is labeled with the type of
user-job interaction (apply or click). After that, we construct
our job-based labeled multigraph with jobs as nodes and
multiple edges representing the co-apps and co-clicks counts.
Formally, our co-statistics labeled multigraph is a 6-tuple graph
G = (V,E,TV ,TE ,LV ,LE) such that:

• V is a set of vertices representing jobs
• E is a set of edges (arcs) connecting pairs of jobs.
• TV is a finite set of tuples representing global statistics

of each job (i.e. total applications and clicks).
• TE is a finite set of tuples representing co-statistics of

each edge connecting pairs of jobs (i.e. co-apps, and
co-clicks counts).

• LV : V → TV and LE : E → TE are two maps
describing the labeling of the vertices (jobs) and edges
(co-statistics).

Our system utilizes several job-job association scores
which could be computed directly from our initial job-based
multigraph G.

1) Maximum Likelihood Estimation (MLE): The condi-
tional probability p(i|j) of job i given job j can be viewed
as a confidence score for recommending i to a user who
previously interacted with j. We estimate that conditional
probability using the Maximum Likelihood Estimation (MLE)
as in equation 1:

p̂(i|j) = c(i, j)

c(j)
(1)

where c(i, j) is the co-statistic count between i and j, and
c(j) is j’s statistic total count. As there are two types of co-
statistics in G, we obtain, for each job pair, two scores p̂a
and p̂c corresponding to co-apps and co-clicks respectively. As
we notice, these scores are asymmetric (i.e. p̂(i|j) 6= p̂(j|i)),
therefore, they will create directed edges when added to G
making it a multidigraph.

2) Pointwise Mutual Information (PMI): The conditional
probability is biased by the popularity of the job to be
recommended. Popular jobs which have been in the rec-
ommendation pool for several days will have more chance
to be recommended than new jobs which received fewer
interactions. To overcome this problem, we utilize Pointwise
Mutual Information (PMI) [36] as an additional correlation
score. PMI normalizes the correlation score and provides a
chance for the less popular jobs to appear at the top of the
related jobs list if they are strongly related to the given job.
We compute for each job pair (i, j) a variant of PMI called
PMI2 as in equation 2:

pmi2(i, j) = log
c(i, j)2

c(i)× c(j)
(2)

where c(i, j) is the co-statistic count between i and j, and c(.)
is the statistic total count. As with MLE, we obtain, for each
job pair, two scores pmi2a and pmi2c corresponding to co-apps
and co-clicks respectively.

B. Content-based Data Sources

Relying on behavioral data solely results in lower quality
recommendations when there is no user-job interaction data.
This is akin to the ’cold-start’ problem which becomes promi-
nent when new jobs and/or new users are introduced to the
recommendation pool. A related problem is data sparsity which
appears when the interaction data exists but is scarce causing a
very sparse graph structure. We alleviate these problems using
content-based features extracted from both job descriptions and
user resumes.

1) Job Descriptions: In order to reduce the sparsity in
our recommendation graph, we densify the graph by creating
an edge representing a content-based similarity score between
pairs of jobs using their descriptions through a Deep Learning
Matcher (DLM) [10]. DLM works by training a neural network
to generate a distributed representation of each job (a.k.a.
embeddings) using its description. Typically a job description
includes the job title, required and favorable skills, qualifica-
tions, experience, location, and employer information. After we
obtain the embedding vectors vi,vj for jobs i, j respectively,
we compute the embedding-based cosine similarity score be-
tween them as in equation 3:

sime(i, j) =
vi.vj

||vi|| ||vj||
(3)

In addition, we cut off all similarities below threshold γ which
we tune empirically. Thus, the content-based similarity edge
will be created only between pairs of nodes whose sime ≥ γ.
In this way, we guarantee an association between jobs even
when they do not share any user interactions.

(a) (b) (c) (d)

Fig. 2. The recommendation graph when connecting the nodes (jobs) using different sources of behavioral and contextual data. (a) using co-clicks, (b)
using co-apps, and (c) using content-based similarity. Relying only on one source produces relatively sparse disconnected graph. Combining all behavioral and
content-based signals in (d) produces denser graph.

2) User Resume: In our model, we distinguish between two
types of ’cold-start’ users. Brand new users and passive users
who do not have any interaction with current active jobs, but
have a history with expired jobs. Our proposed method ranks
the relevant active jobs for the users by taking into account
their activity with the expired jobs in the past and/or their
skills from their resumes.

For brand new users, we build the user’s preference vector
by classifying their resume content into pre-defined fine-
grained job categories [37]. For passive users, we build the
user’s preference vector as a mixture of: i) active jobs which
are most similar to expired jobs in the user’s interaction history
using the job embeddings model, and ii) active jobs under job
categories matching the user’s resume.

We use jobs in the user’s preference vector to extract a
semi-personalized subgraph of the current graph. Then, we
apply PageRank on this subgraph to further improve our
recommendations by incorporating the general popularity of
the jobs within the subgraph.

C. Score Aggregation

After computing all similarity scores from behavioral and
content-based data sources. We create a single aggregated
edge between pairs of nodes (jobs) representing the weighted
aggregate correlation score using equation 4:

corr(i, j) = w1

∑
s∈{a,c}

p̂s(i|j)+w2

∑
s∈{a,c}

pmi2s(i, j)+w3sime(i, j)

(4)

Where w1, w2, and w3 are weights representing the im-
portance of each similarity score and are tuned empirically.
As we can notice, we aggregate scores from implicit and
explicit behavioral signals as well as content-based signals.
It is important to note that corr(i, j) score is asymmetric and
is computed in both directions resulting in two directed edges
for each pair of jobs i and j.

D. Job Recommendation

Since our proposed graph-based recommendation system
is item-based, an effective way of recommending jobs to users
is needed. There are three types of users that are present in
the system based on their behavior for the last 180 days:

1) Active users who have applied to or clicked on any job
(currently active or expired) within the last 180 days.

2) New users and passive users who have done neither
within the last 180 days, but either have an uploaded resume
on their account at CareerBuilder.com, or otherwise specified
the category of jobs they are looking for.

3) New Users who have not yet interacted with any jobs on
the site, uploaded a resume, or have specified their preferred
category of jobs.

Since we also want to incorporate active and expired job
listings in order to have as rich patterns as possible to aide
the score aggregation process, and to reduce the sparsity of
the multigraph, we add all jobs (active and expired) that were
created within the last 180 days to the GBR with all their
statistics and co-statistics. But in order to recommend active
jobs only, in the score aggregation stage, we only generate
directed edges whose destination is an active job. Restricting
the content of the multigraph to data from the last 180 days
ensures the scalability of our approach. Shorter (or longer)
periods could be considered as long as they yield rich enough
patterns to carry out proper recommendations.

For active users (type 1), generating recommendations is
straightforward: given the jobs (active or expired) they have
interacted with within the last 180 days (source jobs), recom-
mend their highest similar jobs according to the aggregated
score tuples generated by the GBR system. Since the user
could have had interacted with multiple jobs (source jobs),
and each of those jobs provides its own recommendations via
the aggregated scores, a re-ranking step takes place based on
how recent the interaction with this source job was; an activity
score is introduced to each user’s interaction with a source job:
the more recent the interaction, the higher this activity score is.
The aggregated scores of the recommended jobs coming from
each source job are multiplied with the respective source job’s
activity score, hence re-ranking them in an intuitive manner.
This allows for jobs similar to the user’s recent interactions
to be at the top, while still not dismissing recommendations
based on older interactions.

For some users, the aforementioned strategy does not yield
enough recommended jobs, as their source jobs have only a
few aggregate score tuples. As a solution, we go into a second
iteration of recommending jobs from aggregate scores but this
time, using the already just recommended jobs as the source
jobs. Each time multiplying the aggregated scores along the
path to preserve the priorities of the ranks. This process is
illustrated by Figure 3.

For passive and new users of type 2, the only source of

(a) (b)

Fig. 3. (a) the recommendations of job 1 are very few. No direct links
between 1 and any of its neighbors’ neighbors. (b) Extending the recommen-
dations of job 1 to include jobs 3,4, and 5 through 2 and 6. The aggregate
score tuples for non-adjacent jobs is set through multiplying the aggregate
scores along the path. Eg., score(1→4)=score(1→6)× score(6→4).

User
Interacted with active
jobs or expired jobs

within 180 days

User with Job
Category

(Passive more than
180 days or New)

Hit the GBR with the
job(s) she interacted
with and use those

jobs as source nodes
to pull only connected
nodes that represent

active jobs

Hit the GBR and run
personalized Page Rank

using the user job
category. Pull the most
popular jobs of that job

category. Re-rank based
on the user’s location

User without Job
Category

(New)

Hit the GBR and run
Global Page Rank to
Pull the most popular
jobs in the GBR and

recommend the top K
ones

Fig. 4. The 3 types of users and the process of generating their recommen-
dations

clues we have about them is their processed resume and/or
preferred job category. For those users, we take their fine-
grained job category based on their resume, and through
personalized PageRank, we get the list of active jobs in that job
category ranked based on their popularity. From the resume
information, a preferred or current location might be listed
(state, city ..etc). We use a simple heuristic measure to re-
rank the list of active jobs, favoring relevant jobs that are in
locations near the location of the source job.

For users of type 3, we can only serve them global
recommendations drawn from the global PageRank over the
active jobs.

For some active users, if the 2nd level propagation still
does not fill the minimum required number of jobs to recom-
mend, then we use their resume information to generate more
personalized PageRank recommendations, similar to what is
done to passive users.

Figure 4 summarizes the process of generating recommen-
dations for the three types of users.

IV. EXPERIMENTS AND RESULTS

To test and evaluate our proposed system, we used a real
dataset (jobs and users) via CareerBuilder.com. CareerBuilder
operates the largest job posting board in the U.S. and has
an extensive growing global presence, with millions of job
postings, more than 60 million actively searchable resumes,
over one billion searchable documents, and more than a million
searches per hour. In this section, we show how we tested the
effectiveness of our proposed graph-based job recommendation
system as well as an A/B test against CareerBuilder’s classical
recommendation system.

TABLE I. RANDOM SAMPLE JOB-JOB RECOMMENDATIONS

applied job top recommended job
Staffing Consultant / Recruiter (Olde
West Chester, OH)

Staffing Recruiter/Onsite (Cincinnati,
OH)

Certified Nursing Assistant / CNA
(Evansville, IN)

Certified Nursing Assistant (CNA)
(Evansville, IN)

Staff Accountant (Ventura, CA) Staff Accountant (Camarillo, CA)
Sales Representative (Cherry Hill, NJ) Sales Representative (Oaklyn, NJ)
Freight Operations Supervisor (Fort
Worth, TX)

Import Supervisor (Dallas, TX)

Call Center Supervisor (Memphis, TN) Customer Service Supervisor - Call
Center (Memphis, TN)

Armed and Unarmed Security Guards
(Hot Springs, AR)

Security Guards (Arkadelphia, AR)

Electrical Engineer (Saratoga Springs,
NY)

Professional Electrical Engineer (Malta,
NY)

Office Assistant (Lancaster, PA) Office Assistant (Harrisburg, PA)
Entry Level Child Care Giver & Teacher
(Live-in Social Services) (Minneapolis,
MN)

Entry Level Child Care giver Teacher
(Minneapolis, MN)

A. The GBR System Implementation

We implemented our graph-based recommendation model
using Apache Spark’s GraphX framework. The jobs data is
stored in Hive databases which makes it convenient to interface
with Spark. Through SparkSQL, we process the data and store
the results in the shape of aggregated score tuples, without
transferring the data around needlessly.

B. Parameter Tuning

The parameters of the aggregated scores equation, the DLM
cutoff γ, the activity score re-ranking heuristic, and location-
based re-ranking parameters of the recommended jobs were
all tuned empirically through multiple rounds of trial and
error. Experts and job recruiters at CareerBuilder were asked
to validate rounds of recommendations for randomly sampled
jobs obtained via different combination of these parameters.
Combinations of entire signals were also considered to make
sure no over-engineering was done, i.e., evaluating recommen-
dations based on co-apps only, co-clicks only, DLM similarity
only, as well as all their combinations.

C. Qualitative Evaluation of GBR

To show case the problem of sparseness (disconnected-
ness), we counted the active jobs that were connected to any
other jobs through a co-statistic, hence appearing in at least
one aggregated score tuple, and the results were as follows:
With co-clicks edges only, out of a sample of 500K jobs of the
active jobs, only 28% were connected to other jobs. With the
co-apps edges alone, the number rises up to only around 40%.
With both co-clicks and co-apps edges, the number barely
reaches 61% of active jobs. This truly shows the inherent issue
of sparsity and the tough cold-start new jobs have. However,
augmenting with the content-based similarity edges coming
from the DLM, approximately 100% of the active jobs are
connected, only a handful are left out, even though we apply
a cutoff threshold of γ = 0.4 (i.e., no DLM edge constructed
below 0.4). This allows for virtually no active job to be left
out through a very meaningful signal.

We empirically evaluated samples of the aggregate score
tuples of paired jobs resulting from augmenting the jobs’
behavioural co-statistics with DLM similarities. We used jobs
to which random users have recently applied, and validated the

TABLE II. GBR EMAIL CAMPAIGNS (10K USERS)

Sent Opens EOI EOI to Open CTR
9,968 1,670 598 35.81% 25.09%
9,800 1,810 242 13.37% 20.28%
9,740 1,600 225 14.06% 21.13%

TABLE III. GBR EMAIL CAMPAIGNS (100K USERS)

Sent Opens EOI EOI to Open CTR
99,320 32,580 9,073 27.85% 17.25%
81,000 27,740 7,773 28.02% 20.48%
71,230 25,500 7,127 27.95% 18.31%

highest 50 jobs with which they got paired according to the
GBR aggregate scores. For a typical job and 50 jobs paired
with it: 43 would turn out to be very relevant matches, 2
passable recommendations (i.e., the pair would be in the same
coarse-grained job category), and 5 bad matches (i.e., pairs that
are unrelated). Counting the relevant and the passable matches
together, on average, we get around 90% empirical relevancy.
Table I shows a small batch of such pairs.

D. User-Response Metrics

In both of the upcoming testing sections, we focus on
two main user response metrics. The first is the Expression
of Interest (EOI) which is basically a count of how many
new job applications resulted from the sent recommendation
emails. For this, the recommended job link was augmented
with tokens to track the source of the recommendation system
that produced this recommended job. The second metric is the
Click Through Rate (CTR) which is a count of how many
recommended jobs’ links got clicked, also augmented with a
tracking token. We are especially interested in EOI and CTR
over the opened emails, as that would show how relevant were
the recommended jobs to the users.

E. Pilot tests

We set up a recurring email campaigns with recommenda-
tions generated through the GBR system. The first campaign
started with 10K users sampled from the available users in
the system. Users were sent an email containing the top 15
recommended jobs they had not interacted with before, coming
from the GBR based on other jobs with which they had
previously interacted. In the case of passive users, and users
who do not have enough job interactions, the recommendations
were based on the fine-grained job category in which these
users’ resumes show they might be interested, coming from
the personalized PageRank subsystem.

We collected users’ responses to those emails over a period
of few days, and then generated and sent the same users new
recommendation emails taking into account all their possibly
new interactions with the jobs in the system. We repeated the
same process one more time, collecting the final metrics after
another few days, the results of which appear in Table II.

With the very promising EOI and CTR responses of that
first campaign, we executed another email campaign targeting
100K users this time. Table III shows the user-response metrics
of the 100K campaign which is still very promising especially
in terms of EOI.

TABLE IV. EMAIL CAMPAIGN RESULTS (GBR VS. CF)

Metric GBR CF
Sent 350K 1M

Open Rate 22% 13%
CTR 14.7% 15.3%
EOI 18,023 15,439

EOI/Open 23.4% 11%

F. A/B Test - GBR vs. CF

1) Experiment Setup: To test the effectiveness of our
proposed GBR, we carried out multiple A/B tests against
the classical recommendation system CareerBuilder had been
using at the time. The classical system is a custom CF model
that is only based on co-apps. The CF system would track, for
every job, the last 50 applicants. Whenever a user applies to
a certain job, it would recommend jobs that, those other 50
applicants associated with this job, had applied to, recently.

The A/B test was as follows: the classical system would
send recommendation emails to 1 million users sampled from
the available users in the system, while the GBR would send
recommendation emails to 350K different random users. To
further rule out any biases that might tip the comparison off,
both of the email campaigns were set to begin sending on the
same day and at the same time period in order to not have
any difference in the users’ general email checking patterns,
or any other external factors that might have any influence. All
the user response metrics collection was cut off after 24 hours
from the sending time.

2) Populations: The type of users sampled for the two
email campaigns included seekers of a rather diverse types
of jobs; ranging from health care, technology, office workers,
machine operators, sales, and a lot more. We did not restrict the
types of jobs as we wanted to compare the potential of both
systems and their effectiveness of attending to all different
kinds of jobs, and how potentially different job seeking habits
among those job seekers might affect the relevance of the
recommendations of one system or the other.

3) Results: The GBR surpassed the classical CF system
by quite a margin as Table IV shows in terms of EOI/Open.
Despite the number of GBR emails sent being almost only a
third of what the CF system sent, GBR achieved 12% more
EOI/Open. In addition, by looking at the absolute EOI metric,
Table IV shows that we could achieve even larger number of
EOI with a much smaller number of sent emails.

G. Other Considered Baselines - Matrix Factorization

We have also tried other baselines, specifically Matrix
Factorization schemes.

1) Premise and Mechanism: In such schemes, the users’
interactions with the items in the system (jobs) are represented
as a large-scale sparse matrix R of size (m,n), whose rows
represent the m users and columns represent the n items. The
matrix entry Ri,j represents a signal of how interested user i
in job j on a particular scale (e.g., [0-1]).

Matrix factorization then assumes that the matrix A can
be factorized into two matrices U and J of sizes (m, k) and
(n, k) respectively, such that

R ≈ UJT (5)

In elaborate schemes [38], additive biases are added to the
dot product to relieve the representation vectors from catering
to the various tendencies in the datasets. These biases are
usually µ for a general signal mean, bu a bias for the user
u usual level of rating, bj a bias for item j usual received
rating. Therefore the dot product purpose now is to provide
the deviation from the user’s, the item’s, and the overall
tendencies. Hence the reconstructed signal would look like:

ru,i = (µ+ bu + bj + j.u) (6)

In even more elaborate schemes, implicit signals of the
user’s preference are also factored in, to account for the very
few explicit signals new users provide.

ru,i = (µ+ bu + bj + j.
[
u+ |N(u)|−0.5

∑
j∈N(u)

yj

]
) (7)

Where N(u) are the items user u had implicitly interacted
with, and yj is a vector to capture this interaction. The
equivalence in equations 5, 6 and 7 is only limited to the non-
zero items in matrix A, or more specifically, in items where
the original signals are known. The resulting representative
matrices U and J are collections of vectors in a subspace
of k dimensions (usually k is much smaller than M and N),
representing the users and the jobs respectively. According to
the premise depicted in equation 5, a dot product between user
i and job j vectors should reveal i’s interest in j, or in other
words, j’s relevance to i. The same for the elaborate schemes
after adding up all the biases involved.

2) producing recommendations: A job recommendation
system’s objective is to find jobs a user might be interested
in. Hence, after the factorization, the process of recommending
jobs to a certain user boils down to finding the jobs whose vec-
tors produce the highest relevance rate upon matrix-multiplied
by the user’s vector. And then filtering are reranking based on
other criteria (whether the users has had interacted with those
jobs before, location sensitivity...etc).

3) Our Data and Setup: We used Apache Spark’s MLLib
implementation of ALS (Alternating Least Squares) [14], to
factorize an interaction matrix between 1.5M users and the
jobs they interacted with within the last 6 months (160K jobs).

We put a signal of 1.0 in cell i, j of the interaction matrix,
if user i has had applied to job j. This by itself would render
all reconstructed entries as 1.0, since now an entry is either
unknown or 1.0, and a matrix of all 1.0s is the lowest-rank
possible. To mitigate this mode collapse, a negative rating of
-1.0 was used in cell i, j if user i has opened an email we had
sent of jobs we recommended to her, but she did not click on
job j in that email.

4) Problems with this approach: Although we achieved a
relatively low reconstruction MSE (Mean-Squared-Error). It
was apparent that this approach is not suited for our needs for
the following reasons:

a) Cold-Start: The biggest problem with this approach
is the cold-start problem. When a user has no interaction
data within our system it is difficult to serve them recom-
mendations. When no users have interacted with a job, it is
not possible to recommend it in any scenario. This situation
manifests in two ways:

1) Although the jobs in our system that have existed in
the last 6 months far exceed 160K, the interaction
of those 1.5M users only touched those 160K, and
since all the signals in matrix factorization are based
on interaction, jobs outside those 160K do not get
to be represented by other than the trivial vector of
zeros.

2) New users and new jobs that have no interactions yet
are also out of luck in this recommendation scheme.
And even when they get some interaction, they will
have to wait for the next run of this large-scale
intensive process to get represented.

Since GBR is a hybrid system, new jobs do not need to
wait to be represented. Based on the job description, the DLM
module learns its embedding vector which can be readily used
to find similar jobs content-wise. Additionally, new users do
not need to wait for the factorization process to take place in
order to get profiled. The moment a user makes an interaction
with a job (click or application), or just upload resume that gets
classified, she can immediately get recommendations served
and personalized through GBR’s use cases.

Although, like the GBR, the Asymmetric SVD model in
[38] does not explicitly parametrize the users with their own
vectors, but rather profiles them through the items they have
interacted with, it still requires retraining to parametrize new
items.

b) Distribution Skew: An unavoidable characteristic of
the users and jobs in our system is the non-uniform and
highly-skewed distribution across job-types and users’ interest
in them. Since matrix factorization schemes seek to minimize
the square error between the reconstructed signals and the
original ones via low-rank representations, the optimizer gets
forced to disregard relatively rare interactions (treat as noise)
if the model is not flexible enough (e.g., k not large enough).
To mitigate this behavior, individual weights are assigned
to each entry in the interaction matrix. These weights help
penalize the reconstruction loss differently. If rare interactions
(distribution-wise) get assigned higher weights than the rest,
their reconstruction loss would contribute much more to the
overall reconstruction loss of the interaction matrix. Thus
forcing the optimizer to treat them more carefully. However,
without adequate background of the user, it becomes a much
harder problem to differentiate between legitimate rare signals
and noise in order not to give noise higher weights as well.

All of which makes matrix-factorization a computationally
expensive process for a very dynamic system. These problems
prevented us from going forward with an A/B test against the
GBR as the recommendation pool of jobs here is very little
and rare job types are poorly represented.

V. CONCLUSION AND FUTURE WORK

Recommender system technologies have gained consider-
able popularity in online domains due to its effectiveness in
creating commercial and social value. As one of such domains,
online recruiting services utilize recommender systems to
serve millions of applicants with relevant and personalized job
postings. To bring the full potential of advanced recommender
systems into the job search domain, we proposed novel meth-
ods for a scalable and robust job recommendation system. Our

approach entails a multigraph of jobs connected by similarity
edges which are tailored to capture their full relationship based
on users behavior as well as jobs content. Moreover, we fully
exploit the abundance of available implicit and explicit online
data . We empirically evaluate the recommendations coming
out of the proposed approach and find that it achieves around
90% accuracy, on average. We also show that our proposed
system achieves higher EOI with a wide margin over the
classical CF approach while needing only third of the number
of sent emails.

We are working to improve this approach even further to
address three main issues:

• Many of the parameters in the system were decided
heuristically and with manual evaluation. For a dy-
namic system, such parameters are better learned in
a way to maximize user’s CTR (Click-Through-Rate).
A Learning-To-Rank module could be utilized to learn
to better rerank recommendations based on user’s
interactions with previously served recommendations.

• CareerBuilder serves job seekers in more than 24
countries with different spoken languages. Extending
the content-based deep learning matcher to languages
other than english in order to effectively bring the
GBR to serve non-English speaking countries is a pri-
ority. Deep learning approaches pave the way towards
language agnostic NLP tools, so we will be looking
to train more models to capture the similarity between
job postings for different languages.

• Although the sparseness of the behavioral graph is
reduced by introducing the content-based similarity
signal, it still results in jobs only connected through
content-based similarity. A possible extension is to
map the nodes of the graph (the jobs) to an embedding
space that captures the behavioral pattern as well,
since the context of the nodes is well-defined (in our
case, it is the co-apps and the co-clicks), and then use
this embedding to calculate the similarity between any
two nodes to enrich the graph even further. This is a
straightforward extension of the word2vec approach,
and has been studied by others, notably [39]–[41].

ACKNOWLEDGMENT

The authors would like to deeply thank David Lin from
CareerBuilder for providing very professional evaluation to the
quality of the recommendations and working on analyzing the
A/B test results. We also would like to thank the consumer
email team at CareerBuilder for their help and support to
run the large scale A/B test on hundred of thousands of
recommendation emails.

REFERENCES

[1] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl, “Evalu-
ating collaborative filtering recommender systems,” ACM Transactions
on Information Systems (TOIS), vol. 22, no. 1, pp. 5–53, 2004.

[2] M. Deshpande and G. Karypis, “Item-based top-n recommendation
algorithms,” ACM Transactions on Information Systems (TOIS), vol. 22,
no. 1, pp. 143–177, 2004.

[3] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collabo-
rative filtering recommendation algorithms,” in Proceedings of the 10th
international conference on World Wide Web, pp. 285–295, ACM, 2001.

[4] G. Adomavicius and A. Tuzhilin, “Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible
extensions,” IEEE transactions on knowledge and data engineering,
vol. 17, no. 6, pp. 734–749, 2005.

[5] M. Li, B. M. Dias, I. Jarman, W. El-Deredy, and P. J. Lisboa, “Grocery
shopping recommendations based on basket-sensitive random walk,” in
Proceedings of the 15th ACM SIGKD, pp. 1215–1224, ACM, 2009.

[6] G. Linden, B. Smith, and J. York, “Amazon. com recommendations:
Item-to-item collaborative filtering,” IEEE Internet computing, vol. 7,
no. 1, pp. 76–80, 2003.

[7] A. S. Das, M. Datar, A. Garg, and S. Rajaram, “Google news person-
alization: scalable online collaborative filtering,” in Proceedings of the
16th international conference on World Wide Web, pp. 271–280, ACM,
2007.

[8] S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik, S. Kumar,
D. Ravichandran, and M. Aly, “Video suggestion and discovery for
youtube: taking random walks through the view graph,” in Proceedings
of the 17th international conference on World Wide Web, pp. 895–904,
ACM, 2008.

[9] H. Yildirim and M. S. Krishnamoorthy, “A random walk method for al-
leviating the sparsity problem in collaborative filtering,” in Proceedings
of the 2008 ACM conference on Recommender systems, pp. 131–138,
ACM, 2008.

[10] J. Yuan, W. Shalaby, M. Korayem, D. Lin, K. AlJadda, and J. Luo,
“Solving cold-start problem in large-scale recommendation engines: A
deep learning approach,” in Proceedings of the 2016 IEEE International
Conference on Big Data (Big Data), 2016.

[11] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of
predictive algorithms for collaborative filtering,” in Proceedings of the
Fourteenth conference on Uncertainty in artificial intelligence, pp. 43–
52, Morgan Kaufmann Publishers Inc., 1998.

[12] M. O’Connor and J. Herlocker, “Clustering items for collaborative
filtering,” in Proceedings of the ACM SIGIR workshop on recommender
systems, vol. 128, UC Berkeley, 1999.

[13] A. Shepitsen, J. Gemmell, B. Mobasher, and R. Burke, “Personalized
recommendation in social tagging systems using hierarchical cluster-
ing,” in Proceedings of the 2008 ACM conference on Recommender
systems, pp. 259–266, ACM, 2008.

[14] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 42, no. 8, 2009.

[15] L. Candillier, F. Meyer, and M. Boullé, “Comparing state-of-the-art
collaborative filtering systems,” in International Workshop on Machine
Learning and Data Mining in Pattern Recognition, pp. 548–562,
Springer, 2007.

[16] P. Lops, M. De Gemmis, and G. Semeraro, “Content-based recom-
mender systems: State of the art and trends,” in Recommender systems
handbook, pp. 73–105, Springer, 2011.

[17] H. Chen, X. Li, and Z. Huang, “Link prediction approach to collabora-
tive filtering,” in Digital Libraries, 2005. JCDL’05. Proceedings of the
5th ACM/IEEE-CS Joint Conference on, pp. 141–142, IEEE, 2005.

[18] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.,” tech. rep., Stanford InfoLab, 1999.

[19] T. Zhou, J. Ren, M. Medo, and Y.-C. Zhang, “Bipartite network
projection and personal recommendation,” Physical Review E, vol. 76,
no. 4, p. 046115, 2007.

[20] C. C. Aggarwal, J. L. Wolf, K.-L. Wu, and P. S. Yu, “Horting hatches
an egg: A new graph-theoretic approach to collaborative filtering,” in
Proceedings of the fifth ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 201–212, ACM, 1999.

[21] J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu, “Automatic
multimedia cross-modal correlation discovery,” in Proceedings of the
tenth ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 653–658, ACM, 2004.

[22] M. Gori and A. Pucci, “Research paper recommender systems: A
random-walk based approach,” in Web Intelligence, 2006. WI 2006.
IEEE/WIC/ACM International Conference on, pp. 778–781, IEEE,
2006.

[23] T. Haveliwala, S. Kamvar, and G. Jeh, “An analytical comparison of
approaches to personalizing pagerank,” tech. rep., Stanford, 2003.

[24] H.-N. Kim and A. El Saddik, “Personalized pagerank vectors for tag
recommendations: inside folkrank,” in Proceedings of the fifth ACM
conference on Recommender systems, pp. 45–52, ACM, 2011.

[25] T. H. Haveliwala, “Topic-sensitive pagerank,” in Proceedings of the
11th international conference on World Wide Web, pp. 517–526, ACM,
2002.

[26] M. Zhao, F. Javed, F. Jacob, and M. McNair, “Skill: A system for skill
identification and normalization.,” in AAAI, pp. 4012–4018, 2015.

[27] A. Singh, C. Rose, K. Visweswariah, V. Chenthamarakshan, and
N. Kambhatla, “Prospect: a system for screening candidates for re-
cruitment,” in Proceedings of the 19th ACM international conference
on Information and knowledge management, pp. 659–668, ACM, 2010.

[28] S. Guo, F. Alamudun, and T. Hammond, “Résumatcher: A personal-
ized résumé-job matching system,” Expert Systems with Applications,
vol. 60, pp. 169–182, 2016.

[29] I. Lee, “An architecture for a next-generation holistic e-recruiting
system,” Communications of the ACM, vol. 50, no. 7, pp. 81–85, 2007.

[30] F. Färber, T. Weitzel, and T. Keim, “An automated recommendation ap-
proach to selection in personnel recruitment,” AMCIS 2003 proceedings,
p. 302, 2003.

[31] M. Diaby, E. Viennet, and T. Launay, “Toward the next generation of
recruitment tools: an online social network-based job recommender sys-
tem,” in Proceedings of the 2013 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining, pp. 821–828,
ACM, 2013.

[32] R. Rafter, K. Bradley, and B. Smyth, “Automated collaborative fil-
tering applications for online recruitment services,” in International
Conference on Adaptive Hypermedia and Adaptive Web-Based Systems,
pp. 363–368, Springer, 2000.

[33] Y. Lu, S. El Helou, and D. Gillet, “A recommender system for job seek-
ing and recruiting website,” in Proceedings of the 22nd International
Conference on World Wide Web, pp. 963–966, ACM, 2013.

[34] J. Malinowski, T. Keim, O. Wendt, and T. Weitzel, “Matching people
and jobs: A bilateral recommendation approach,” in System Sciences,
2006. HICSS’06. Proceedings of the 39th Annual Hawaii International
Conference on, vol. 6, pp. 137c–137c, IEEE, 2006.

[35] I. Paparrizos, B. B. Cambazoglu, and A. Gionis, “Machine learned
job recommendation,” in Proceedings of the fifth ACM Conference on
Recommender Systems, pp. 325–328, ACM, 2011.

[36] G. Bouma, “Normalized (pointwise) mutual information in collocation
extraction,” in Proceedings of the Biennial GSCL Conference, vol. 156,
2009.

[37] F. Javed, Q. Luo, M. McNair, F. Jacob, M. Zhao, and T. S. Kang,
“Carotene: A job title classification system for the online recruitment
domain,” in Big Data Computing Service and Applications (BigDataSer-
vice), 2015 IEEE First International Conference on, pp. 286–293, IEEE,
2015.

[38] Y. Koren, “Factorization meets the neighborhood: a multifaceted col-
laborative filtering model,” in Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining,
pp. 426–434, ACM, 2008.

[39] Q. Ma, S. Muthukrishnan, and W. Simpson, “App2vec: Vector modeling
of mobile apps and applications,” in 2016 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining,
ASONAM 2016, San Francisco, CA, USA, August 18-21, 2016, pp. 599–
606, ACM, 2016.

[40] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 855–864,
ACM, 2016.

[41] F. Vasile, E. Smirnova, and A. Conneau, “Meta-prod2vec: Product em-
beddings using side-information for recommendation,” in Proceedings
of the 10th ACM Conference on Recommender Systems, Boston,MA,

USA, September 15-19, 2016, pp. 225–232, ACM, 2016.

	I Introduction
	II Related Work
	II-A Graph-based Recommendation Systems
	II-B Job Recommendation Systems

	III System Description
	III-A Behavioral Data Sources
	III-A1 Maximum Likelihood Estimation (MLE)
	III-A2 Pointwise Mutual Information (PMI)

	III-B Content-based Data Sources
	III-B1 Job Descriptions
	III-B2 User Resume

	III-C Score Aggregation
	III-D Job Recommendation

	IV Experiments and Results
	IV-A The GBR System Implementation
	IV-B Parameter Tuning
	IV-C Qualitative Evaluation of GBR
	IV-D User-Response Metrics
	IV-E Pilot tests
	IV-F A/B Test - GBR vs. CF
	IV-F1 Experiment Setup
	IV-F2 Populations
	IV-F3 Results

	IV-G Other Considered Baselines - Matrix Factorization
	IV-G1 Premise and Mechanism
	IV-G2 producing recommendations
	IV-G3 Our Data and Setup
	IV-G4 Problems with this approach

	V Conclusion and Future Work
	References

