

Provided by the author(s) and University of Galway in accordance with publisher policies. Please cite the

published version when available.

Downloaded 2024-04-25T11:00:35Z

Some rights reserved. For more information, please see the item record link above.

Title Querying web polystores

Author(s) Khan, Ya; Zimmermann, Antoine; Jha, AlokKumar; Rebholz-
Schuhmann, Dietrich; Sahay, Ratnesh

Publication
Date 2017-12-11

Publication
Information

Khan, Y., Zimmermann, A., Jha, A., Rebholz-Schuhmann, D.,
& Sahay, R. (2017, 11-14 Dec. 2017). Querying web
polystores. Paper presented at the 2017 IEEE International
Conference on Big Data (Big Data).

Publisher IEEE

Link to
publisher's

version
http://dx.doi.org/10.1109/BigData.2017.8258299

Item record http://hdl.handle.net/10379/7458

DOI http://dx.doi.org/10.1109/BigData.2017.8258299

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Querying Web Polystores
Yasar Khan∗, Antoine Zimmermann†, AlokKumar Jha∗, Dietrich Rebholz-Schuhmann∗ and Ratnesh Sahay∗

∗ Insight Centre for Data Analytics, National University of Ireland, Galway
Email: {yasar.khan, alok.kumar, rebholz, ratnesh.sahay}@insight-centre.org
† CNRS, Laboratoire Hubert Curien, Univ Lyon, MINES Saint-Étienne, France

Email: antoine.zimmermann@emse.fr

Abstract—The database, semantic web, and linked data com-
munities have proposed solutions that federate queries over
multiple data sources using a single data model. Nowadays, the
data retrieval requirements originating from versatile and broad
domains like healthcare and life sciences (HCLS) are changing
this conventional trend – of federating query over a single data
model – primarily due to the simultaneous use of different data
models (CSV, JSON, RDB, RDF, XML, etc.) in a real-life scenario.
It’s now impractical to assume that the variety (graph, key-value,
stream, text, table, tree, etc.) of high volume data residing in
specialised storage engines will first be converted to a common
data model, stored in a general-purpose data storage engine, and
finally be queried over the Web. Nevertheless, in this era where
genomics datasets are growing from petascale to exascale, it is
now important to exploit such vast domain resources in their
native data models. The key approach is to query the vast data
resources from their native data models and specialised storage
engines. In this paper, we propose a Web-based query federation
mechanism – called PolyWeb – that unifies query answering
over multiple native data models (CSV, RDB, and RDF). We
demonstrate PolyWeb on a cancer genomics use-case where it
is often the case that a description of biological and chemical
entities (e.g., gene, disease, drug, pathways) span across multiple
data models. In order to assess the benefits and limitations of
evaluating queries over native data models, we evaluate PolyWeb
with state-of-the-art query federation engine in terms of result
completeness, source selection, and overall query execution time.

Index Terms—Databases, Query Federation, Query Planning,
Cancer Genomics, Semantic Web, Linked Data

I. INTRODUCTION

The database experts have predicted the demise of “One
Size Fits All” approach used in the data retrieval and manage-
ment solutions [1]. This prediction is now evident, as in the last
couple of years several data models (e.g., text, CSV, Graph,
JSON, RDB, RDF, XML) and storage engines are proliferating
with overlapping requirements, use-cases, and user-bases. This
is particularly true in complex domains like healthcare and life
sciences (HCLS) where the organisations are facing a major
shift in the data retrieval requirements; a simultaneous use of
different data storage engines, data models, and supporting
querying mechanism is needed to retrieve data from different
interacting facilities (clinical measurement, medical history,
laboratory test, demographics, etc.) [2].

On the same challenge of combining and querying data
from several repositories, the central idea of Linked Data is
to publish and link wide variety of independent Web data
silos in a manner that is queryable as one connected set of
datasets supporting advanced Web uses, organisations, and

scientific discoveries. The Linked Open Data (LOD) Cloud
as well as enterprise applications of Linked Data have shown
success in connecting and querying resources across disparate
data platforms [3]. Additionally, there is a wider availability
of open-source and commercial tools that allow curating,
publishing, aggregating, storing, and querying the Linked
Data. The standard (typical) Linked Data approach to query
independent data silos is to convert all the underlying native
data models into the RDF data model and devise querying
mechanism through which these independent data silos can
be queried in unison. While this approach can be practical for
simpler verticals, in case of the HCLS domain it is already
predicted that 2–40 exabytes of storage capacity will be needed
by 2025 just for the human genomes which will continue
to grow approximately 40 petabytes of additional genomic
information each year [4]. Nevertheless, raw storage is not
the main concern, but the amount of variant data (graph, key-
value, stream, text, table, tree, etc.) being queried and analysed
is already seen as a major hurdle in the meaningful use of these
vast amount of data.

Recently, an atypical approach of federating queries over
disparate data models has been initiated – called PolyStore1 [5]
– that exploits different data models and storage engines in
their native formats, i.e., without converting them to a common
data model. The early demonstrators of PolyStore have shown
promising outcomes in federating queries across disparate data
models used in the Multiparameter Intelligent Monitoring in
Intensive Care II Databases (MIMIC II) [6]. In this paper,
we present a semantic approach – called PolyWeb – to
federate query over the Web polystores containing cancer and
biomedical datasets. We devise a query federation approach for
Web polystores that focuses on source selection and join over
disparate native data models. It is an open research problem to
perform join across data sources2 using different data models.
Further, it is important to understand the gain and loss of
querying data sources in their native format compared to
the conventional approach of querying curated data sources
– from several heterogeneous sources – using a common
data model; we compare PolyWeb against the state-of-the-
art SPARQL query federation engines. We start the paper by
presenting a motivation scenario that requires to query over
different cancer genomics datasets. We then discuss query

1http://wp.sigmod.org/?p=1629
2a data source stores and encapsulates a dataset

federation approaches developed using relational database and
semantic Web methods. We present the PolyWeb architecture
and evaluation of PolyWeb compared to state-of-art query
federation engines, finally, we present our conclusion and
various routes to optimise the federation process over native
data models.

II. MOTIVATING SCENARIO - CANCER GENOMICS

The Next Generation Sequencing (NGS) technologies are
producing a massive amount of sequencing datasets. As said,
there will be a top-up of approximately 40 petabytes of
genomics information every year from a wide variety of
data sources (hosting different databases, data formats, etc.)
published by human genome research centres worldwide.
Often, these datasets are published from isolated and different
sequencing facilities. Consequently, the process of sharing and
aggregating multi-site sequencing datasets are thwarted by
issues such as the need to discover relevant data from different
sources, built scalable repositories, the automation of data
linkage, the volume of data and efficient querying mechanism.
PolyWeb is motivated by the needs of the BIOOPENER
project3 which is aiming to link cancer and biomedical datasets
providing interlinking and querying mechanisms to understand
cancer progression from normal to diseased tissue with path-
way components, which in turn helped to map mutations,
associated phenotypes, and diseased pathways [7].

1 PREFIX : <http://sels.insight.org/cancer−genomics/schema/>
2 PREFIX gene: <http://sels.insight.org/cancer−genomics/gene/>
3 SELECT ∗ WHERE {
4

t1 ?cnv a :CNV .

5
t2 ?cnv :chr ?chr .

6
t3 ?cnv :start ?start .

7
t4 ?cnv :end ?end .

8
t5 ?cnv :sample ?sample .

9
t6 ?cnv :gene gene:MYH7 .

10
t7 ?cnv :disease ?disease .

11
t8 ?cnv :primary site ?p site .

12
t9 ?cnv :segment mean ?seg mean .

13 }

Fig. 1. Federated SPARQL Query

In cancer genomics, discoveries of biological and chemical
entities (gene, pathway, drug, diseases, etc.) are available in
several overlapping data sources containing complex genomic
features, studies, and associations of such features. In order to
understand the tumorigenesis, it is often the case that several
genetic features, diseases, medical history, etc. are studied
together. Considering the exponential growth and variety of
genomics and biomedical datasets, it is impractical to assume
that all these isolated and disparate datasets will be available
in a single data model. In order to tap the vast knowledge
locked in these disparate datasets, it’s now important to exploit

3http://bioopenerproject.insight-centre.org

them in native formats. The example SPARQL query shown
in Figure 1 retrieves association of a gene (MYH7) with a
primary site (where tumour progression starts), disease, copy
number variation (CNV), CNV location (start, end), CNV
segment mean, and reported samples of patients. The CNV
information gives insight into the structural variation of a
gene which helps analyse the progression of cancer tumour,
ultimately impacting on the prognosis and treatment of disease.
The Figure 2 shows an unoptimised query plan which includes
type of databases/models (e.g., CSV, RDB, RDF) that can
satisfy individual triples from three data sources. In our prior
work we have developed a SPARQL federation engine – called
SAFE [8] – that federates queries over genomics and clinical
trial repositories represented in RDF model. Similarly, in our
previous work, we have evaluated a wide variety of pro-
posals (FedX, LHD, SPLENDID, FedSearch, GRANATUM,
Avalanche, DAW, ANAPSID, ADERIS, DARQ, LDQPS, SI-
HJoin, WoDQA and Atlas) on how to execute SPARQL
queries in federated settings [9].

π

?cnv

?cnv

*

t1

 ?cnv t2

 ?cnv t3

 ?cnv t4

 ?cnv t5

 ?cnv t6

 ?cnv t7

t8 t9

@cosmic - rdf
@tcga- rdb
@cnvd - csv

@cosmic - rdf
@tcga - rdb
@cnvd - csv

@cosmic - rdf
@tcga - rdb
@cnvd - csv

@cosmic - rdf
@tcga - rdb
@cnvd- csv @cosmic - rdf

@tcga - rdb
@cnvd - csv

@cosmic - rdf
@cnvd - csv

@cnvd - csv

@cosmic - rdf @tcga - rdb

Fig. 2. Unoptimised query plan involving three (3) data sources and three
datatypes (CSV, RDB, RDF)

However, we have no work to compare that federates over
native data models. Thus the motivation for our research is to
investigate, how to enable query federation over native data
models. As argued in the introduction, we cannot use existing
federation engines off-the-shelf since they are designed to
federate over a single data model. Hence the core research
question we tackle in this paper is: How can we devise and
implement a query federation approach that retrieves complete
results from different native data models in a manner that
allows us to compete with off-the-shelf querying engines?

The benefit of PolyWeb is twofold, first, it reduces the data
conversion cost and second, it delegates data querying load to
specialised data storage engines, instead of loading curated
data from multiple data models to a general-purpose data
storage engine. In this paper, we demonstrate that PolyWeb
is helpful in reducing the data conversion cost and still be
able to retrieve complete result sets from different native data
models.

III. RELATED WORK

The relational database and semantic Web research initia-
tives have offered several federation systems that can unify
query answering across disparate databases. We now discuss
related literature in these two broad areas.

Relational Databases: The relational database approaches
to query federation are mainly focused around the closed-
world enterprise settings which require predefined number of
data sources, schema, and datasets to process queries across
different business units within or between organizations. Some
early [10] and more recent query federation approaches [11]
target the challenge of distributed query processing and trans-
actions, performance, and replica management. Several early
data mediators [12] and middle ware systems [13] – primarily
based on the Global as View (GAV) and Local as View (LAV)
approaches [14] – developed in the last three decades had
the similar motivation. However, the GAV and/or LAV based
approaches function on costly assumptions, i.e., availability of
global schema, availability of complete data sources, and their
mappings; which are reasonable in a closed-world enterprise
setting, but impractical to assume in a Web like open scenario.
Recently the database community is exploring a new perspec-
tive – called Polystore [5] – to unify queries over multiple data
models. Similarly, other domains such as the streaming and
sensors data processing [15], enterprise analytics [16], social
media [17]), etc. have taken initiatives to query over multiple
data stores which natively support different data models.

Semantic Technologies: Many query federation en-
gines have been proposed for a Web like scenario using
SPARQL [9]. Such engines accept an input query, decompose
it into sub-queries, decide relevance of individual data sources
for sub-queries, forward sub-queries to individual endpoints
accordingly and merge the final results for the query. Initia-
tives such as the Ontology-Based Data Access (OBDA) ex-
ploits ontologies specifically for accessing relational databases
(RDB) [18], [19]; such initiatives are complementary to our
PolyWeb proposal of querying different data models. The
challenges of federating a given query over multiple data
models are different in a Web like scenario. Often the datasets
are selected from a large pool of prospective data sources and
there is no control – unlike enterprises where data resources
are controlled – on the availability of complete schemas and
datasets. It’s important to note that, the database research
is investigating the normal federation approach (using single
RDB data model) vs. Polystore based federation implemented
using database technologies [5], [20]. Similarly, in this paper
we are investigating normal federation (using single RDF
data model) vs. Polystore based federation implemented using
semantic technologies. To the best of our knowledge, no work
has tackled the scenario of processing queries over a federation
of different data models and sources in a Web like scenario.

IV. POLYWEB

The PolyWeb architecture is summarised in Figure 3, which
shows its four main components: (i) Source Selection: per-
forms source selection based on the capabilities of native

data sources; (ii) Query Optimisation: performs cost-effective
arrangement of a query (triples patterns) in a manner that
reduces query joins and remote requests on the network; (iii)
Query Planning: builds joins between query arguments; and
(iv) Query Execution: performs the execution of sub-queries
against the selected native data sources and merges the results
returned. We now briefly describe the four components:

SPARQL Query

Result

Source

Selection

Query

Optimisation

Query

Execution

Query

Planning
R2RML

Fig. 3. PolyWeb Architecture

a) Source Selection: PolyWeb performs a predicate-
based source selection which identifies the set of relevant data
sources, returning non-empty results for the individual triple
patterns in a query [8]. PolyWeb performs the sources selection
on top of different data models and sources, e.g., SPARQL
end-points, RDB and CSV data-access points. PolyWeb relies
on mapping definitions such as R2RML [21] and RML [22]
mappings to identify relevant data sources. In our work,
a mapping definition provides an RDF view of non-RDF
data such that non-RDF data can be queried with SPARQL.
PolyWeb has a very simple data-free4 indexing mechanism, the
index stores minimal information about given datasets. In case
of RDF datasets, it stores only predicate IRIs (Internationalized
Resource Identifier) obtained from individual dataset; other-
wise, it exploits the mapping definitions to associate predicate
IRIs to non-RDF datasets. PolyWeb uses an index of the
predicates and an index of the mapping definitions for all
datasets. Thanks to the mapping definitions, it is possible to
identify non-RDF data sources that can return results from a
SPARQL query. The input SPARQL query is broken down
into BGPs (Basic Graph Pattern5). Each BGP is decomposed
into triple patterns from which we get either a bound predicate
(i.e., an IRI), or an unbound predicate (i.e., a variable). The
predicates extracted from each triple pattern are matched
against the set of predicates (obtained from index) present in
each data source. If a predicate is found in the set of predicates
belonging to a data source, then that particular data source is

4index stores only predicate IRIs
5http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

#BasicGraphPatterns

identified as a relevant data source for that particular triple
pattern. For example, consider triple pattern t2 in the example
query (Figure 1). The predicate : chr in triple pattern t2 is
present in all the three data sources, according to the index.
Hence, all the three data sources are identified as relevant data
sources for triple pattern t2. In the same way, relevant data
sources are identified for all triple patterns of the example
query. The current version of PolyWeb supports only single
BGPs (excluding constructs such as OPTIONAL, UNION,
etc.).

b) Query Optimisation, Planning and Execution: Poly-
Web creates a federated query plan against the relevant data
sources and executes that plan to get results from multiple
data models and merges them into a single result set. In
PolyWeb, we devised a query optimisation method – called
predicate-based join group (PJG) – that reduces the cost of
federated query processing by minimising the number of joins
– a key factor that influences the evaluation of a given query –
between intermediate results and hence the network data flow.
PJG creates a set of unique triple patterns against a group of
datasets and data sources. PJG helps in reducing the number
of remote requests and the amount of data transferred on the
network, which ultimately impact on query performances [9].
In case of our motivational scenario with total 9 unoptimised
joins (Figure 2), EEG creates a set of unique triple patterns
against a group of datasets which generates six (6) extended
exclusive groups (see Figure 4). This is a significant reduction
in the number of joins that need to be executed for the example
query. In our example query, the joins between triple patterns
t1, t2, t3 and t4 were eliminated at the federation level because
of grouping these triple patterns using extended exclusive
group approach. Later a cost model, based on counting the
number of variable in a triple pattern [23], is applied to join-
ordering to further optimise query execution. Low cost joins
are pushed downwards, to be executed early, while high cost
upwards.

A query plan (Figure 4) is executed in a bottom-up fashion,
i.e., it starts from the leaf nodes and traverse up the tree
until a root node is reached to generate a combined result
set for the input query. The joins are physically implemented
in a nested loop bind fashion. Since a two given extended
exclusive groups does not contain any common triple pattern,
a simple implementation of nested loop bind is achieved by
first materializing the left argument and binding the results
of left argument with the right argument based on a set of
identified join variables. As PolyWeb federates over different
data models, the query execution component uses different
transformations between queries and result sets. In our imple-
mentation, we have the following translation (i) SPARQL to
SQL : If an argument of the query plan needs to execute over
RDB dataset, then the argument (sub-query) is translated in the
SQL format. The transformation between SQL and SPARQL
queries is a non-trivial task, due to the difference in semantics
between them. The SQL result set obtained from RDB sources
are transformed back to the standard SPARQL result format;
(ii) SPARQL to SQL (CSV sources): In case of a CSV data

⨝

⨝
?cnv

E
3

E
2

E
1

π*

E
5

E
4

?cnv
⨝
?cnv

⨝
?cnv

E
6

⨝
?cnv

{T6} {T7}

{T8}

{T9}

{T5}

{T1,T2 ,T3 ,T4}

Fig. 4. PolyWeb: Optimised Federated Query Plan of Example Query
(Figure 2)

source the SPARQL query is translated to the SQL format
used by Apache Drill6. The result set obtained is transformed
from its native format to RDF format.

V. EVALUATION

This section highlights the results of our evaluation compar-
ing PolyWeb with state-of-the-art SPARQL query federation
engine for a variety of queries and datasets based on a series
of metrics. Note that the experimental material discussed in
the following section and an implementation of PolyWeb
are available online7. We have selected three datasets for
experimental evaluation (i) COSMIC-CNV; (ii) TCGA-OV-
CNV; and (iii) CNVD-CNV, provided by COSMIC8, TCGA9

and CNVD10 data providers. All these datasets are part of
the studies conducted within the BIOOPENER project. These
datasets are available in different data models, e.g., COSMIC-
CNV is available in the RDF format, TCGA-OV-CNV is
available in RDB format (relational model) and CNVD-CNV
is represented using the CSV format. In order to compare Poly-
Web with the single data model query federation approaches
(such as Fedx), these three datasets are converted into the
RDF format. Table I gives an overview of the experimental
datasets, for instance, COSMIC-CNV consists of 37 million
triples (6.54 GB size in RDF format); with equivalent 27
million database records (3.2 GB size in raw format). The Type
column represents the raw data format with number of records
(rows) specified in column 9. The last column (RDFisation
Time) represents the cost associated with the conversion of

6https://drill.apache.org/docs/sql-reference/
7https://github.com/yasarkhangithub/PolyWeb
8http://cancer.sanger.ac.uk/cosmic
9https://cancergenome.nih.gov/
10http://202.97.205.78/CNVD/

raw data to RDF. One of the main aims of PolyWeb is to
avoid and/or reduce this data conversion cost.

TABLE I
OVERVIEW OF EXPERIMENTAL DATASETS

Datasets № trip RDF Data Type Type Data № record RDFisation Time

COSMIC-CNV 37 M 6.54 GB RDF 3.2 GB 29 M 3 Hours
TCGA-OV-CNV 10 M 494 MB RDB 212 MB 2.6 M 2 Minutes
CNVD-CNV 1.7 M 128 MB TSV 34 MB 0.2 M 3 Seconds

Total 49 M 7 GB - 3.5 GB 32 M 3 Hours

Each RDF dataset was loaded into a different Virtuoso
(Open Source v.7.2.4.2) SPARQL endpoint on separate phys-
ical machines. CSV dataset is loaded into Apache Drill and
relational dataset into MySQL database. All experiments are
carried out on a local network, so that network cost remains
negligible. The machines used for experiments have a 2.60
GHz Core i7 processor, 8 GB of RAM and 500 GB hard
disk running a 64-bit Windows 7 OS. A total of 5 queries are
designed to evaluate and compare the query federation perfor-
mance of PolyWeb against the FedX engine. The queries are of
varying complexity and have varying type of characteristics as
noted in Table II where we summarise characteristics of these
queries following similar dimensions to that used in the Berlin
SPARQL benchmark [24].

TABLE II
FEDX AND POLYWEB RETURNS THE SAME NUMBER OF RESULTS FOR

EACH QUERY

Characteristics QE-1 QE-2 QE-3 QE-4 QE-5

№ of Patterns 5 2 5 5 9
№ of Results 3 603 15 1 64

Filters 3 3
LIMIT modifier 3 3
DISTINCT modifier 3 3 3

For each query type we measured (i) the average source
selection time; and (ii) the average query execution time to
compare the performance of PolyWeb and FedX. Figure 5
compares the source selection time for PolyWeb and FedX
for each query, where the y-axis is presented in log-scale. The
rightmost set of bars compares the average source selection
time over all queries. Given that the index of PolyWeb remains
quite small relative to total data sizes, it can easily be loaded
into memory, where lookups can be performed in milliseconds.
In case of PolyWeb, source selection is performed in less than
a millisecond for all queries. On the other hand, executing
remote ASK queries are orders of magnitude more costly.
Hence we see that the source selection time for PolyWeb
is lower than FedX since PolyWeb uses ASK queries more
sparingly, as previously discussed.

For each query, a mean query execution time was calculated
for PolyWeb and FedX by running each query ten times.
Figure 6 then compares the mean query execution times of
PolyWeb and FedX for all queries. The y-axis is log-scale. We
set a time-out of 30 minutes on query execution; with these
settings, FedX times-out in the case of one query. Looking

at query response times, FedX outperforms PolyWeb in most
of the queries and PolyWeb outperforms FedX in complex
queries (i.e., QE-5). However, the results are comparable
considering the additional factors (different data models, query
conversion cost, query result conversion cost, etc.) which
PolyWeb has to cope with.

0.1

1

10

100

1000

QE-1 QE-2 QE-3 QE-4 QE-5

Ti
m

e
 -

Lo
g

Sc
al

e
 (

m
s)

Query

PolyWeb FedX

Fig. 5. Comparison of source selection time

1

10

100

1000

10000

100000

QE-1 QE-2 QE-3 QE-4 QE-5

Ti
m

e
 -

Lo
g

Sc
al

e
(m

s)

Query

PolyWeb FedX

Fig. 6. Comparison of query execution time

Fedx and PolyWeb returned the same number of results
corresponding to the five queries (Table II). FedX is designed
to retrieve complete result sets and therefore, it implies that
PolyWeb is capable of retrieving complete set of query results
from different native data models.

VI. CONCLUSION & FUTURE WORKS

In this paper, we have presented PolyWeb: a Web query
engine that federates querying answering over native data
models. The work is motivated in particular by the needs
BIOOPENER project that is aiming to link data across the
large-scale cancer and biomedical repositories. PolyWeb aims
to reduce the expensive data conversion cost, i.e., loading
curated data from multiple data models and sources to a
centralized data warehouse for querying; and still be able to
retrieve complete results from different native data models.
PolyWeb is able to avoid the data conversion cost (total 3 hours
for 3.5 GB raw data). PolyWeb has significantly improved
and/or comparatively equals to the normal (i.e., single data
model) federation engine in terms of source and overall query
execution time. In terms of future work, there are a number
of possible routes to explore with respect to improving the
performance of PolyWeb: (i) we plan to devise a mechanism
to probe non-RDF datasets at run-time in the presence of
unbound predicates; and (ii) the transformation between query

results (non-RDF and RDF datasets) is a non-trivial task and
we plan to optimize such transformations in a more declarative
fashion. We plan to include a dynamic cost model that will
further prune the predicate-based join groups.

ACKNOWLEDGMENT

The work presented in this research paper has been
partly funded by Science Foundation Ireland under Grant
No. SFI/12/RC/2289, and by Agence Nationale de la
Recherche under Grant No. ANR-14-CE24-0029.

REFERENCES

[1] M. Stonebraker and U. Çetintemel, “”one size fits all”: An idea whose
time has come and gone (abstract),” in ICDE 2005, 5-8 April 2005,
Tokyo, Japan. IEEE Computer Society, 2005, pp. 2–11.

[2] O. Badawi, T. Brennan, A. L. Celi, M. Feng, and et. al, “Making big
data useful for health care: A summary of the inaugural mit critical data
conference,” JMIR Med Inform, vol. 2, no. 2, p. e22, Aug 2014.

[3] M. Schmachtenberg, C. Bizer, and H. Paulheim, “Adoption of the linked
data best practices in different topical domains,” in ISWC 2014, Riva del
Garda, Italy, October 19-23, 2014, 2014, pp. 245–260.

[4] Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai,
M. J. Efron, R. Iyer, M. C. Schatz, S. Sinha, and G. E.
Robinson, “Big data: Astronomical or genomical?” PLOS Biology,
vol. 13, no. 7, pp. 1–11, 07 2015. [Online]. Available: http:
//dx.doi.org/10.1371%2Fjournal.pbio.1002195

[5] J. Duggan, A. J. Elmore, M. Stonebraker, M. Balazinska, B. Howe,
J. Kepner, S. Madden, D. Maier, T. Mattson, and S. B. Zdonik, “The
bigdawg polystore system,” SIGMOD Record, vol. 44, no. 2, pp. 11–16,
2015. [Online]. Available: http://doi.acm.org/10.1145/2814710.2814713

[6] A. Elmore, J. Duggan, M. Stonebraker, M. Balazinska, and et. al., “A
demonstration of the bigdawg polystore system,” Proc. VLDB Endow.,
vol. 8, no. 12, pp. 1908–1911, Aug. 2015.

[7] A. Jha, Y. Khan, M. Mehdi, M. R. Karim, Q. Mehmood, A. Zappa,
D. Rebholz-Schuhmann, and R. Sahay, “Towards precision medicine:
discovering novel gynecological cancer biomarkers and pathways using
linked data,” Journal of Biomedical Semantics, vol. 8, no. 1, p. 40, Sep
2017. [Online]. Available: https://doi.org/10.1186/s13326-017-0146-9

[8] Y. Khan, M. Saleem, M. Mehdi, A. Hogan, Q. Mehmood, D. Rebholz-
Schuhmann, and R. Sahay, “SAFE: SPARQL federation over RDF data
cubes with access control,” Journal of Biomedical Semantics, vol. 8,
no. 1, pp. 5:1–5:22, 2017.

[9] M. Saleem, Y. Khan, A. Hasnain, I. Ermilov, and A. N. Ngomo,
“A fine-grained evaluation of SPARQL endpoint federation systems,”
Semantic Web, vol. 7, no. 5, pp. 493–518, 2015. [Online]. Available:
http://dx.doi.org/10.3233/SW-150186

[10] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell,
C. Staelin, and A. Yu, “Mariposa: A wide-area distributed database
system,” VLDB J., vol. 5, no. 1, pp. 48–63, 1996. [Online]. Available:
http://dx.doi.org/10.1007/s007780050015

[11] D. J. DeWitt, A. Halverson, R. V. Nehme, S. Shankar, J. Aguilar-Saborit,
A. Avanes, M. Flasza, and J. Gramling, “Split query processing in
polybase,” in ACM SIGMOD ICMD, New York, NY, USA, June 22-27,
2013.

[12] G. Wiederhold, “Mediators in the architecture of future information
systems,” IEEE Computer, vol. 25, no. 3, pp. 38–49, 1992. [Online].
Available: https://doi.org/10.1109/2.121508

[13] L. M. Haas, D. Kossmann, E. L. Wimmers, and J. Yang, “Optimizing
queries across diverse data sources,” in VLDB’97, Proceedings of
23rd International Conference on Very Large Data Bases, August
25-29, 1997, Athens, Greece, 1997, pp. 276–285. [Online]. Available:
http://www.vldb.org/conf/1997/P276.PDF

[14] M. Lenzerini, “Data integration: A theoretical perspective,” in
Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, June 3-5, Madison,
Wisconsin, USA, 2002, pp. 233–246. [Online]. Available: http:
//doi.acm.org/10.1145/543613.543644

[15] E. Kharlamov, T. P. Mailis, K. Bereta, D. Bilidas, S. Brandt, E. Jiménez-
Ruiz, S. Lamparter, C. Neuenstadt, and et. al., “A semantic approach to
polystores,” in 2016 IEEE ICBD, BigData 2016, Washington DC, USA,
December 5-8, 2016, 2016, pp. 2565–2573.

[16] E. Begoli, D. Kistler, and J. Bates, “Towards a heterogeneous, polystore-
like data architecture for the US department of veteran affairs (VA)
enterprise analytics,” in 2016 IEEE ICBD, BigData 2016, Washington
DC, USA, December 5-8, 2016. IEEE, 2016, pp. 2550–2554.

[17] S. Dasgupta, K. Coakley, and A. Gupta, “Analytics-driven data ingestion
and derivation in the AWESOME polystore,” in 2016 IEEE ICBD,
BigData 2016, Washington DC, USA, December 5-8, 2016. IEEE,
2016, pp. 2555–2564.

[18] M. Rodriguez-Muro, R. Kontchakov, and M. Zakharyaschev, “Ontology-
based data access: Ontop of databases,” in The Semantic Web - ISWC
2013 - 12th International Semantic Web Conference, Sydney, NSW,
Australia, October 21-25, 2013, Proceedings, Part I, ser. Lecture Notes
in Computer Science, H. Alani, L. Kagal, A. Fokoue, P. T. Groth,
C. Biemann, J. X. Parreira, L. Aroyo, N. F. Noy, C. Welty, and
K. Janowicz, Eds., vol. 8218. Springer, 2013, pp. 558–573.

[19] M. Bienvenu, B. ten Cate, C. Lutz, and F. Wolter, “Ontology-based
data access: a study through disjunctive datalog, csp, and MMSNP,” in
Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS 2013, New York, NY, USA -
June 22 - 27, 2013, R. Hull and W. Fan, Eds. ACM, 2013, pp. 213–224.

[20] V. Gadepally, P. Chen, J. Duggan, A. J. Elmore, B. Haynes,
J. Kepner, S. Madden, T. Mattson, and M. Stonebraker, “The bigdawg
polystore system and architecture,” in 2016 IEEE High Performance
Extreme Computing Conference, HPEC 2016, Waltham, MA, USA,
September 13-15, 2016. IEEE, 2016, pp. 1–6. [Online]. Available:
http://dx.doi.org/10.1109/HPEC.2016.7761636

[21] S. Das, S. Sundara, and R. Cyganiak, “R2RML: RDB to RDF
Mapping Language,” World Wide Web Consortium (W3C), W3C
Recommendation, Sep. 27 2012. [Online]. Available: http://www.w3.
org/TR/2012/REC-r2rml-20120927/

[22] A. Dimou, M. V. Sande, P. Colpaert, R. Verborgh, E. Mannens, and
R. V. de Walle, “RML: A Generic Language for Integrated RDF
Mappings of Heterogeneous Data,” in Proc. of the Linked Data on
the Web 2014, 2014. [Online]. Available: http://ceur-ws.org/Vol-1184/
ldow2014 paper 01.pdf

[23] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds,
“Sparql basic graph pattern optimization using selectivity estimation,”
in Proceedings of the 17th International Conference on World Wide
Web, ser. WWW ’08. New York, NY, USA: ACM, 2008, pp. 595–604.
[Online]. Available: http://doi.acm.org/10.1145/1367497.1367578

[24] C. Bizer and A. Schultz, “The Berlin SPARQL benchmark,” Int. J.
Semantic Web Inf. Syst., vol. 5, no. 2, pp. 1–24, 2009.

