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Abstract—The Internet of Mobile Things encompasses stream 

data being generated by sensors, network communications that 

pull and push these data streams, as well as running processing 

and analytics that can effectively leverage actionable 

information for transportation planning, management, and 

business advantage.  Edge computing emerges as a new 

paradigm that decentralizes the communication, computation, 

control and storage resources from the cloud to the edge of the 

network. This paper proposes an edge computing platform 

where mobile edge nodes are physical devices deployed on a 

transit bus where descriptive analytics is used to uncover 

meaningful patterns from real-time transit data streams. An 

application experiment is used to evaluate the advantages and 

disadvantages of our proposed platform to support descriptive 

analytics at a mobile edge node and generate actionable 

information to transit managers.  

Keywords-Edge computing; real-time transit data streams; 

fog computing; descriptive analytics; Internet of Mobile Things 

I.  INTRODUCTION 

The fast growing of data streams generated by the 
Internet of Mobile Things (IoMT) poses several challenges 
in pulling this data from IoMT devices to remote clouds. In 
particular, Lu et al. [1] points out that one critical challenge 
in building the next generation of intelligent transportation 
systems is related to the harsh communication environment 
inside and/or outside a moving vehicle. Solutions for 
vehicle-to-sensor, vehicle-to-vehicle, and vehicle-to-road 
infrastructure connectivity are stringently dependent on 
latency and reliability for controlling and monitoring 
purposes. Moreover, mobility applications usually require 
seamlessly computation, storage, and connection services 
over a vast geographical area (e.g. entire transit system), 
challenging the network communication technology used 
between sensors and the core network in terms of issues such 
as becoming unreliable and error-prone as well as requiring 
an extensive amount of data storage [2]. Finally, developing 
the appropriate analytical workflow for leveraging the data 
streams generated by moving vehicles in order to produce 
active information for decision making is still a challenge 
since the data streams might be unbounded, noisy, and 
incomplete. 

Due to the unpredictable network latency, expensive 
bandwidth, resource-prohibitive and location-awareness 
concerns of the Internet of Mobile Things, edge computing 
emerges as a new paradigm that decentralizes the 
communication, computation, control and storage resources 

to the edge of the Internet [3]–[5]. For current transit 
network systems that produce a vast volume of data streams 
in real-time, edge computing brings the opportunity to 
analyze massive data streams related to any vehicle of a fleet 
at the time the data is being collected and deliver actionable 
information to support tactical and operational decisions of 
transit managers [6]. Some examples in public transit 
analytics include computing the actual maximum/minimum 
transit route length, service demand frequency, and 
predicting dynamic bus stops in real-time.  

Despite the advantages of edge computing, no previous 
research work could be found in the literature on building 
edge analytics platforms for supporting transit network 
systems. This paper proposes an edge computing platform 
where mobile edge nodes are physical devices deployed on a 
transit bus where descriptive analytics is implemented to 
analyze real-time transit data streams. 

The main contributions of this paper are summarized as 
follows. 

• We present an edge computing architecture that 
supports mobile edge nodes, i.e. edge nodes that are 
deployed inside a vehicle, in our case, a bus 
belonging to a transit network system. 

• We develop a set of descriptive analytics tasks to 
analyze real-time transit data streams at the edge of 
a network. 

• We run a real-time experiment to evaluate the 
advantages and disadvantages of our proposed 
platform to support transit managers with actionable 
information.  

The remainder of the paper is organized as follows. 
Section 2 describes the main paradigms of edge computing. 
Our edge computing platform to support descriptive 
analytics is described in Section 3. The results and 
discussions are presented in Section 4. Finally, the 
conclusions are drawn in Section 5. 

II. RELATED WORK 

Currently, three main paradigms can be found in edge 
computing that can be described as Fog Computing [7], 
Mobile Edge Computing [8] and Mobile Cloud Computing 
[9]. Fog Computing was first introduced by Cisco as a bridge 
between IoMT devices and the cloud [7]. It supports a 
distributed computing model that provides services at highly 
geographically distributed fog nodes such as access points, 
switches, and routers. It is defined as “a scenario where a 
huge number of heterogeneous (wireless and sometimes 
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autonomous) ubiquitous and decentralized devices 
communicate and potentially cooperate among them and 
with the network to perform storage and processing tasks 
without the intervention of third-parties. These tasks can be 
for supporting basic network functions or new services and 
applications that run in a sandboxed environment. Users 
leasing part of their devices to host these services get 
incentives for doing so.” [10]. 

Mobile Edge Computing was introduced by Nokia 
Networks [11] with the aim of supporting a base station as an 
intelligent service hub that can collect real-time network data 
such as cell congestion and subscriber locations. The ETSI 
Industry Specification Group (ISG) has defined mobile edge 
computing as “a concept that provides an IT service 
environment and cloud-computing capabilities at the edge of 
the mobile network, within the Radio Access Network (RAN) 
and in close proximity to mobile subscribers.” [8].  

Similarly, Mobile Cloud Computing was proposed to 
overcome the shortage in computing power and storage 
capacity of mobile devices by leveraging the services of 
cloud computing to offload computation for these end 
devices [12], [13]. Khan et al. define mobile cloud 
computing as “a service that allows resource-constrained 
mobile users to adaptively adjust processing and storage 
capabilities by transparently partitioning and offloading the 
computationally intensive and storage demanding jobs on 
traditional cloud resources by providing ubiquitous wireless 
access” [14]. 

All these three paradigms aim to reduce the latency of 
sending the data from the IoMT devices to the core network, 
ensuring highly efficient network operation and service 
delivery as well as providing the edge analytics to offload the 
burden at the core network [9], [15]–[19]. But they have few 
different characteristics that play an important role in the 
selection of an appropriate computing platform for data 
analytics. Table 1 provides an overview of the main 
characteristics of these platforms in terms of bringing the 
computation ability for data analytics to the edge of a 
network. 

Depending on the complexity of the network protocols 
and the high-performance computing needs, data analytics 
can be deployed at a fog node level whereas for some 
applications it might be more appropriate to deploy it 
centrally, typically hosted in a mobile cloud platform. Aazam 
and Huh [20] have already found that unnecessary 
communication not only burdens the core network, but also a 
data center in the cloud. Therefore, the research question still 
remains on how to determine what kind of application 
requires data analytics at edge, fog and/or cloud levels. Fig. 1 
shows an attempt to mapping different applications to a local 
level (edge), aggregation level (fog), and cloud level. We 
expect a blend of these levels to support real-time data 
analytics, and the ability to manage stream data from local 
(i.e. edge) to cloud levels will be increasingly critical in the 
near future. 

 
 

TABLE I.  MAIN CHARACTERISTICS OF FOG COMPUTING, MOBILE 

EDGE COMPUTING, AND MOBILE CLOUD COMPUTING 

 Fog computing 
Mobile Edge 

Computing 
Mobile Cloud 

Computing 
Owned & 

Managed by 
Any (Mobile 

Network Provider, 
Cloud Service 

Provider, 

Organizations, 
Individuals) 

Mobile 

Network 
Provider 

Private 

Organization, 
Individuals 

Target Users Any user Available to 

mobile users 

Specific users 

Network 

Access 
Any short and long 

range networks 
Mobile 

networks 
Any short range 

networks 
Geo-

distribution 
Any location Co-located 

with base 
station 

Static location 

(data center, 
cloudlet) 

Mobility Yes No No 

Computing 

Environment 
Indoor / Outdoor Indoor / 

Outdoor 

Indoor 

Computing 

and Storage 

Capability 

Yes Yes Yes 

Latency 

(Delay) 
Low latency Low latency Ranges from 

low latency to 

high latency 
Edge Analytics Not deployed yet Not deployed 

yet 
Edge Analytics 

[21] 

 
One example includes the cloudlet concept previously 

proposed by Satyanarayanan and his colleagues [22]. 
Cloudlets are trusted, resource-rich, mostly stationary 
computers with well-connected to the Internet, offering 
bandwidth, computation, and storage resources to nearby 
mobile users. In [21], authors proposed GigaSight which is 
an Internet-scale repository of crowd-sourced video content. 
GigaSight’s architecture is a federated system of VM-based 
cloudlets that perform video analytics at the edge of the 
network. Several scenarios have been envisaged to apply fog 
computing, including Augmented Reality (AR), Real-time 
video analytics, Mobile Big Data Analytics, Smart Grid, 
Smart Traffic Lights and Connected Vehicles, Decentralized 
Smart Building Control, Wireless Sensors and Actuators 
Networks [5], [19], [23]–[25]. Unfortunately, none of these 
scenarios has been actually implemented so far. 

We are interested in exploring edge analytics to increase 
the efficiency of transit network systems of cities functioning 
in real-time. In particular, smart transit systems are 
generating a vast amount of sensing data that can generate 
contextual information needed in real-time for offering 
alternative modes of travel, reducing traffic congestion and 
improving the quality of life. To the best of our knowledge, 
there is no previous research work on deploying an edge 
analytical platform for a transit network system. 

 
 
 
 
 
 
 
 



 

III. EDGE ANALYTICS PLATFORM 

Our edge computing platform consists of a mobile edge 
node. The main scenario can be described as a moving bus 
that generates real-time data streams (e.g. Automatic Vehicle 
Location (AVL) data feeds) which are fetched by a mobile 
edge node installed in this bus. The platform supports 
running different descriptive analytics tasks at the mobile 
edge node meanwhile the bus moves around a city. Once the 
analytical results are generated, they provide actionable 
information about what is happening to a moving bus. The 
stream data lifecycle in our platform supports data pre-
processing tasks as well.  

A. Real-Time Data Streaming  

The real-time data streams used in this research were 

provided by Codiac Transit which is responsible for 
delivering efficient transportation services with the aim to 
reduce private car dependency in the metropolitan area of 
Greater Moncton, Canada. Codiac Transit currently operates 
30 regular routes from Monday to Saturday, some of which 
having additional evening and Sunday services. Each bus is 
equipped with GPS receivers which generate geographic 
coordinates of the location of a bus every 5 seconds for each 
bus trip. Moreover, telemetry data is generated with a total of 
17 data fields, including route name, trip identifier, start and 
finish time of a trip. The location and telemetry data is 
transmitted to the mobile edge node using 4G LTE Dual 
SIM.  

The bus route 51 was selected for evaluating our edge 
computing platform because it has the highest trip density 
during a day. For the purpose of explaining our real-time 

Figure 2. The overview of the edge computing architecture 

Figure 1. Application levels of complexity in edge analytics [27]. 



 

descriptive analytics we have used the data retrieved during 
the period from 02/14/2017 to 02/20/2017. 

B. Mobile Edge Node 

Every bus running on route 51 generates 17 data fields 
every 5 seconds which are sent to its mobile edge node 
installed inside the bus. In this experiment, the mobile edge 
node known as Cisco IR829 Industrial Integrated Services 
Router was used, having an Intel Atom Processor C2308 
(1M Cache, 1.25 GHz) Dual Core X86 64bit, 2GB DDR3 
memory, 8MB SPI Bootflash, 8GB (4GB usable) eMMC 
bulk flash, and multimode 3G and 4G LTE wireless WAN 
and IEEE 802.11a/b/g/n WLAN connections. It is resistant to 
shock, vibration, dust, humidity, and water spray, and a wide 
temperature range (-40°C to +60°C and type-tested at +85°C 
for 16 hours) [26].  

This mobile edge node comes with two operating 
systems, a Cisco IOS system that runs a standard Cisco IOS 
package which handles all routing, switching and networking 
traffic and a guest operating system IOx running on a virtual 
machine. The guest operating system IOx runs Linux Yocto 
which is used to perform the descriptive analytical tasks 
described in Section III.D. However, it is important to point 
out that developing analytical tasks for the mobile edge 
nodes involves a trade-off between analytical complexity and 
processing power. Furthermore, it involves orchestrating 
highly dynamic, heterogeneous resources at different levels 
of network hierarchy to support low latency and scalability 
requirements of transit services. 

C. Data Pre-Processing at the Mobile Edge Node  

When the data streams arrive online at the mobile edge 
node, they are potentially unbounded in size and data tuples 
may not come in the order. The data streams need to be pre-
processed in order to remove errors and inconsistencies. It is 
very difficult to ensure data quality for the continuous and 
high volume of data streams, and performing a pre-
processing task automatically is even more challenging 
because the streaming rate is highly dynamic. We 
implemented a Python script algorithm to handle five 
automated steps for dealing with (1) missing tuples, (2) 
duplicated tuples, (3) missing attribute values, (4) redundant 
attributes, and (5) wrong attribute values.      

1) Missing tuples: Too many missing tuples may affect 

to the final analytical results in the latter stages. So, we 

eliminated any bus trip that has in total 100 missing tuples 

and more.  

2) Duplicated tuples: When the data stream arrived at 

the edge node, the data tuples is sometimes transmitted 

twice or more. In this case, any duplicated tuple is 

automatically found using its timestamp and then removed. 

3) Missing attribute values: At arriving at the edge, each 

data tuple contains 17 data fields. However, it may arrive 

with less than 17. So, we fill up the missing field with 

“N/A” if it does not involve directly in the latter analytical 

task. Otherwise, we deleted the whole tuple. 

4) Redundant Attributes: Opposing with the missing 

attribute values case, this case happens when new data field 

is introduced to the data tuple. In this case, the extra 

attribute is automatically deleted. 

5) Wrong attribute values: Any attribute might also 

contain a wrong value due to misspelling, illegal values, and 

uniqueness violation. In this case, the algorithm first try to 

standardize the wrong information. 

D. Descriptive Analytics at the Mobile Edge Node  

Three descriptive analytical tasks have been developed to 
reduce the burden on the data hub as well as avoid 
bottlenecks due to lower network bandwidth. First, each data 
stream that arrives at the mobile edge node is immediately 
computed following a sequence of analytical tasks described 
as one of the following:   

 
Task 1 - Semantic Annotation: The aim of this task is to 

determine whether a bus is moving or not. The GPS 
coordinates which are sent to the mobile edge node every 5 
seconds are used for this computation. In this case, a fixed 
distance value between two consecutive points is used for 
determining stops and moves (Fig. 3). This value was 
empirically determined as being 15m for a transit network. If 
the distance between the previous point and the current point 
is more than 15m, the current point is annotated as a move. 
In contrast, if the distance is less than 15m, the current point 
is annotated as a stop.  

 
Task 2 – Temporal Aggregation: At the end of each trip, 

this task computes the actual duration and length of the trip, 
the total number of stops, and the total number of moves. 
Other data fields such as Trip Identifier, Date, and Start Time 
are also used for the temporal aggregation. In summary, five 
data fields (Trip Id, Date, Start_Time, Total_Move, 
Total_Stop, Total_Time_Length) are generated and sent 
periodically to the data hub located at the Codiac Transit’s 
operation center through the telecommunication network at 
the end of each trip. 

 

 
Figure 3. Computation of Moves and Stops of a moving bus 

 
Task 3 – Summary Function: It is used to compute the 

average trip time in the morning (5h-12h), afternoon (13h-
18h), and evening (19h-24h). Besides, the average of the 
total number of moves is also computed for the different 
times of the day (i.e. morning, afternoon, evening). The same 
function is also used to compute all the stops. Once the 



 

statistics are computed they are sent to the data hub located 
at the Codiac Transit’s operation center through the 
telecommunication network at the end of the day. During the 
week, these data could be further analyzed at the data hub for 
understanding the different mobility patterns during the 
week.  

All the tasks have been implemented in Python 2.7.13. 
There are several basic libraries exploited such as time, 
timedate, csv. Besides, the library haversine was utilized to 
calculate the great-circle distance between two locations on 
the Earth surface. The pseudo-code of the algorithm is 
shown below. 

ALGORITHM 1: Descriptive Analytics at the Mobile Edge Node 

Function Compute_Move_or_Stop (previous_point, current_point) 

{ 

if (distance(previous_point, current_point)<15) 

 return Stop 

else 

 return Move 

} 

 

previous_point = null 

 

Function Process_Data_Stream(incoming_data_point) 

{ 

current_point = incoming_data_point 

Compute_Move_or_Stop(previous_point, current_point) 

previous_point = current_point 

  

if (end_of_trip==True) 

{ 

total_time_length = Compute_Total_Time_Length() 

total_Move = Compute_Total_Move() 

total_Stop = Compute_Total_Stop() 

send_to_the_core( Trip Id, Date, Start_Time, Total_Move,  

                                      Total_Stop, Total_Time_Length )  

} 

 

if (end_of_the_day==True) 

{ 

Average_time_length_morning = total_time_length_morning /  

number_of_trips_morning 

Average_Move_morning = total_Move_morning /        

number_of_trips_morning 

Average_Stop_morning = total_Stop_morning /   

number_of_trips_morning 

Average_time_length_afternoon =total_time_length_afternoon/  

number_of_trips_afternoon 

Average_Move_afternoon = total_Move_afternoon /  

number_of_trips_afternoon 

Average_Stop_afternoon = total_Stop_afternoon /  

number_of_trips_afternoon 

Average_time_length_evening = total_time_length_evening /  

number_of_trips_evening 

Average_Move_evening = total_Move_evening /  

number_of_trips_evening 

Average_Stop_evening = total_Stop_evening / 

number_of_trips_evening 

send_to_the_core (  Average_time_length_morning,  

Average_Move_morning,  

Average_Stop_morning,  

Average_time_length_afternoon, 

Average_Move_afternoon,  

Average_Stop_afternoon,  

Average_time_length_evening,  

Average_Move_evening,  

Average_Stop_evening ) 

} 

} 

 

Function Main() 

{ 

run_every_5_seconds() 

Process_Data_Stream(incoming_data_point) 

} 

IV. RESULTS AND DISCUSSION 

In this section, the results from our descriptive analytics 
platform are visualized to provide actionable information 
about what is happening in the transit network. 

We focus on some prominent abnormalities found in the 
transit network. Fig. 4 illustrates the existence of several 
missing trips that have been detected in real-time. Buses did 
not run on February 14th at 6h to 7h; and there were no trips 
at 22h on the 15th, 16th, 18th. Moreover, missing trips have 
also occurred on the 17th after 12h and on the 19th early in the 
morning (6h and 7h) and in the evening (18h to 22h). This is 
relevant real-time information for a transit manager to have 
for an individual bus trip, or a set of trips during a day. For 
example, the missing trips on February 19th can be explained 
since it was a Sunday when the Codiac Transit provides a 
reduced number of trips. 

Another interesting result from the descriptive analytics 
is related to computing a total trip time in real-time. The 
transit manager can monitor the hourly patterns in real-time 
and be aware of the outliers. For example, on February 14th, 
the trips have ranged from (897 seconds = 14.95 minutes) to 
(13,468 seconds = 3.74 hours). But it is also important to 
point out the occurrence of similar real-time patterns 
between different days of the week. Some of them might be 
explained to have occurred due to traffic conditions and 
snow storms. The transit manager will be able to justify these 
delays or gather more information to justify such a difference 
of services being provided. 

The transit manager will be also interested in monitoring 
the total number of moves and stops in real-time and be able 
to compare them in different times of a day.  Fig. 5 shows 
the variations of the total number of moves and stops 
belonging to the trips at 8h, 12h, and 16h during the entire 
one week. The first level of the upper horizontal axis 
represents the date of a trip, while the second level of the 
upper horizontal axis shows the three selected departure 
times at 8h, 12h, and 16h respectively. Additionally, the 
lower horizontal axis shows the trip identifiers and the 
vertical axis shows the total number of moves and stops.  

 
 
 
 
 
 



 

 

Figure 4. Total trip times during the week  

Figure 5. Total number of moves and stops at 8h, 12h, 16h 



 

In general, the distribution of trips is irregular at different 
times of the day and different days of the week. The patterns 
show a trend of having more moves than stops during the 
days, with the exception of February 16th when the number 
of stops was significantly higher than the moves. This kind 
of information in real-time can encourage a transit manager 
to investigate the reason for this situation. In this case, it was 
a strong snow storm when drivers were stranded in Moncton 
and major highways were closed. Another aspect that can be 
useful to transit managers is the fact that the total number of 
moves is generally similar to the total number of stops except 
on February 16th. More contextual data is needed for 
investigating why this pattern is re-occurring. 

Fig. 6 shows the total number of trips and the average 
time of all trips per day. Several outliers can be identified in 
the graph. In particular, 30 and 31 trips have occurred on 
February 16th and 17th respectively, in contrast to 47 trips 
that have occurred on February 14th. The weekdays had 
usually more than 60 trips (i.e. February 15th, 18th, 20th). We 
have also computed the average of the total time of all trips 
per day. Fig. 6 also shows that although the number of trips 
on February 14th,16th,17th, and 19th are lower than other days, 
the average total time of these days are similar, and some of 
them even have the highest average total time (i.e. days 14th 
and 16th). Table 2 provides the results of the descriptive 
analytics in more detail. 

 
 

 
Figure 6. Total number of trips and average trip times 

 

TABLE II.  OVERVIEW OF DESCRIPTIVE STATISTICS  

  

Date 

 

Period 14 15 16 17 18 19 20 

Average 

Trip Time 

(Seconds)  

Morning 3,056 2,559 2,563 2,562 2,561 2,400 2,551 

Evening 2,393 2,390 2,691 

 

2,443 

 

2,395 

Afternoon 2,693 2,693 2,691 

 

2,693 2,532 2,692 

Average Morning 70 218 10 216 214 191 215 

Number of 

Moves 
Evening 224 208 7 

 

224 

 

203 

Afternoon 234 211 2 

 

227 214 218 

Average 

Number of 

Stops 

Morning 288 225 440 221 234 214 231 

Evening 210 222 473 

 

204 

 

221 

Afternoon 229 233 460 

 

230 218 238 

 
Overall, the aggregated statistics are showing that the 

average number of stops is higher than the average number 
of moves. Moreover, the average trip time column shows 
that the average time of a trip is around 40-45 minutes. This 
is in accordance to the time schedule provided by Codiac 
Transit. These trends between the moves and stops can be 
provided in real-time to a transit manager, or in the morning, 
afternoon, and evening per day (Fig. 7). The patterns reveal 
how the average number of moves and stops in the 
afternoons and evenings are very similar, in contrast to the 
mornings.  
 

 
Figure 7. Average number of moves and stops 

 
Finally, we have also produced box and whisker 

diagrams as illustrated in Fig. 8. Our aim was to detect 
whether a distribution is skewed and whether there are 
outliers between the three groups (i.e. morning, afternoon, 
and evening). The diagrams are showing several outliers that 
have occurred in the mornings on February 19th and 14th, in 
the afternoon on February 19th and in the evening on 
February 16th. Moreover, a transit manger can identify that 
the drivers usually took more time in the afternoon to finish 
the trips rather than in the morning and the evening. 
Additionally, the distribution of average trip time in the 
afternoon is also constant (around 2,693 seconds = 44.9 
minutes). The average trip time in the evening varies from 
2,392 seconds (39.8 minutes) to 2,443 seconds (40.7 
minutes), in contrast to the median time in the morning of 
2,561 seconds (42.7 minutes). 

V. CONCLUSIONS 

Our experiment has demonstrated the potential of 
applying edge descriptive analytics for monitoring one bus 



 

route. However, the proposed edge computing platform 
supports the scalability to an entire transit system. It also 
paves the way to developing new analytical services at the 
edge network in the near future in order to solve the 
challenge of fast-growing data produced by the edge devices 
and sensors.  

Currently, Codiac Transit does not generate real-time 
reports of the mobility patterns of their fleet. We have used 
this experiment to outline the advantages of gaining new 
insights from real-time descriptive analytics and support 
Codiac with actionable decision making. But we also see the 
potential of applying our edge analytical platform in other 
applications such as autonomous vehicles, smart 
intersections, and smart traffic light systems. 
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