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Resumo

O reconhecimento antecipado de trajetórias de alto risco durante a estadia em uma

Unidade de Tratamento Intensivo (UTI) é uma das chaves para aumentar a sobre-

vivência de pacientes. Aprender tais trajetórias a partir de parâmetros fisiológicos e

epidemiológicos medidos continuamente durante uma estadia em UTI requer o apren-

dizado de features temporais que são robustas e discriminativas através de diversas

populações de pacientes. Pacientes em populações de UTIs diferentes (ou domínios)

podem variar de acordo com a idade, condições e intervenções, e modelos construí-

dos usando dados de pacientes de um domínio de uma UTI particular performam

mal em outros domínios, pois as features utilizadas para treinar tais modelos possuem

distribuições diferentes entre os grupos. Neste trabalho, nós propomos um modelo pro-

fundo capaz de capturar e transferir as features locais e temporais de dados de UTIs

compostos por séries temporais multivariadas. Tais features são capturadas de uma

forma que o estado do paciente em um determinado tempo dependa do tempo anterior.

Isto permite predições dinâmicas e cria um espaço de risco de mortalidade, permitindo

uma fácil descrição do risco do paciente em qualquer momento. Um extenso exper-

imento entre UTIs com diversos domínios revelou que nosso modelo supera todos os

baselines considerados. Os ganhos de AUC vão de 4% a 8% para predições antecipadas,

quando comparados com um representativo do estado-da-arte recente para predição de

mortalidade em UTI. Nossos experimentos também mostram a importância de apren-

der modelos que são específicos para cada domínio de UTI. Em particular, modelos

para o domínio Cardíaco alcançam valores de AUC tão altos quanto 0.87, mostrando

utilidade clínica excelente para predição antecipada de mortalidade.

xiii





Abstract

Early recognition of risky trajectories during an Intensive Care Unit (ICU) stay is one

of the key steps towards improving patient survival. Learning such trajectories from

epidemiological and physiological parameters that are continuously measured during an

ICU stay requires learning time-series features that are robust and discriminative across

diverse patient populations. Patients within different ICU populations (or domains)

may vary by age, conditions and interventions, and models built using patient data

from a particular ICU domain perform poorly in other domains because the features

used to train such models have different distributions across the groups. In this work,

we propose a deep model to capture and transfer complex spatial and temporal features

from multivariate time-series ICU data. Features are captured in a way that the state

of the patient in a certain time depends on the previous state. This enables dynamically

predictions and creates a mortality risk space, allowing to easily describe the risk of

the patient at a particular time. A comprehensive cross-ICU experiment with diverse

domains reveals that our model outperforms all considered baselines. Gains in terms

of AUC range from 4% to 8% for early predictions, when compared with a recent state-

of-the-art representative for ICU mortality prediction. Our experiments also show the

importance of learning models that are specific for each ICU domain. In particular,

models for the Cardiac domain achieve AUC numbers as high as 0.87, showing excellent

clinical utility for early mortality prediction.
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Chapter 1

Introduction

The Intensive Care Unit (ICU) is a department of a hospital in which patients who are

dangerously ill are kept under constant observation. Usually, those units have a single

specialization, such as cardiac surgery or pediatric diseases, and deal with patients who

have high mortality risk and, therefore, need to be constantly monitored by means of

equipments that control their status on real time (e.g., a heart beat monitor) or by

exam results requested by ICU doctors, also called intensivists.

1.1 Motivation

According to Gruenberg et al. [2006], the estimated ICU length of stay in the United

States is of 3.8 days and the leading causes of death in the ICU are multi-organ failure,

cardiovascular failure and sepsis [Wunsch et al., 2010]. Multi-organ failure has a mor-

tality rate of up to 15-28% and severe respiratory failure has a mortality rate ranging

from 20% to 50%, while sepsis has a mortality rate of up to 45%. Overall, mortality

rates in patients admitted to adult ICU average from 10% to 29%, depending on age

and illness severity.

Data from patients in an ICU are extensive, complex and often produced at a

rate far greater than intensivists can absorb. As a consequence, monitoring ICU pa-

tients is becoming increasingly complicated and systems that learn from ICU data

in order to alert clinicians to the current and future risks of a patient are playing a

significant role in the decision making process [McNeill and Bryden, 2013]. However,

one of the main barriers in the deployment of these learning systems is the lack of

generalization of results, i.e., the learning performance achieved in controlled environ-

ments often drops when the models are tested with different patient populations and

conditions [Alemayehu and Warner, 2004; Seshamani and Gray, 2004].
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2 Chapter 1. Introduction

This behavior could be explained by the difference between patients’ data, since

each specific environment has a set of conditions and means to treat the patient, creat-

ing thus sub-populations. For instance, a patient admitted on a Cardiac ICU probably

has a different status than a patient on a Medical ICU, and both should be observed

differently. Also, this could be explained by the reasons that eventually leads to death,

observed not only in different hospital domains, but also inside the same hospital, from

an ICU to another, and even inside a single ICU. Each patient is different and although

there might be some similarity between them, other factors contribute to the outcome

variance, such as the designated professional staff, applied treatments and the ICU

environment.

1.2 Contributions

In this work, we explore domain adaptation to improve the performance of systems

evaluated with mismatched training and testing conditions. We propose deep models

that extract the domain-shared and the domain-specific latent features. This enables

us to learn multiple models that are specific to each ICU domain, improving predic-

tion accuracy over diverse patient populations. For this, we discuss several domain

adaptation approaches that differ in terms of the choice of which layers to freeze or

tune.

The proposed models are composed of convolutional and recurrent components.

They capture local physiological interactions (e.g., heart rate, creatinine, systolic

blood pressure) at the lower level using a Convolutional Neural Network (CNN)

[LeCun et al., 1998] and extracts the long range dependencies based on convoluted

physiological signals at the higher level using a Long Short-Term Memory network

(LSTM) [Hochreiter and Schmidhuber, 1997]. Thus, our models exploit spatial and

temporal information within vital signals and laboratorial findings to dynamically pre-

dict patient outcomes, i.e., the CNN component extracts spatial features of varying

abstract levels and the LSTM component ingests a sequence of spatial features to gen-

erate temporally dynamic predictions for patient mortality. As a result, our models

perform predictions that are based on information continuously collected over time and

that can be dynamically updated as soon as new information becomes available.

While the combination of convolutional and recurrent structures has been inves-

tigated in a prior scenario other than that of mortality prediction [Wang and Nyberg,

2015], this architecture is a proper choice here because it offers a complementary spatial-

temporal perspective of the patient condition. As a result, predictions based on infor-
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mation that are continuously collected over time can be dynamically updated as soon

as new information becomes available.

We also propose a novel neural network layer, which we called Switch. This layer

is able to create internal dense representations of the patient’s features and then use

these representations to modify the features themselves. With this modifications, our

layer is able to find different distributions along the dataset, identify which distribution

the patient belongs to and use that information to improve the prediction.

As a consequence, the learned representations along with the predictions for a

specific patient during the ICU stay form the corresponding patient trajectory and,

thus, a mortality risk space can be obtained from a set of past patient trajectories.

The fundamental benefit of analyzing future patient trajectories in the mortality risk

space is the focus on dynamics, emphasizing the proximity to risky regions of the

space and the speed in which the patient condition changes. Therefore, the mortality

risk space enables clinicians to track risky trends and to gain more insight into their

treatment decisions or interventions.

The data used to validate our hypothesis was drawn from the PhysioNet 2012

dataset [Silva et al., 2012], an open competition that aimed to create new methods for

patient-specific prediction of in-hospital mortality. The dataset includes the records

of 4000 patients who have stayed at least 48 hours in one of the following four ICUs:

Coronary Care Unit, Cardiac Surgery Recovery Unit, Medical ICU and Surgical ICU.

In this work, we elucidate the extent to which ICU mortality prediction may

benefit from domain adaptation. In summary, our main contributions are:

• We propose deep models trained and applied for dynamic ICU mortality pre-

diction. Our models are composed of convolutional and recurrent layers, thus

offering a complementary spatial-temporal perspective of the patient condition.

As a result, our models perform predictions that are based on information con-

tinuously collected over time and that can be dynamically updated as soon as

new information becomes available.

• We propose a novel type of neural layer that not only improved the results of

mortality prediction on ICU, but can also be used in many other domains, since

it fits on any current neural network architecture.

• We show that patients within different ICU domains form sub-populations with

different marginal distributions over their feature spaces. Therefore, we propose

to learn specific models for different ICU domains that are trained using different

feature transference approaches, instead of learning a single model for different
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ICU domains. We show that the effectiveness of different feature transference

approaches varies greatly depending on the factors that define the target domain.

• We conducted rigorous experiments using the PhysioNet 2012 dataset, which

comprises data from four different ICU domains, that shows that multi-domain

ICU data used for adaptation can significantly improve the effectiveness of the

final model. Gains in terms of the Area Under the ROC Curve (AUC) range from

4% to 8% for early predictions, i.e., predictions based on data acquired during

the first 5− 20 hours after admission, and from 2% to 4% for predictions within

the first 48 hours after admission.

• We show that the patient representations along with the predictions provided by

our models are meaningful in the sense that they form trajectories in a mortality

risk space. Dynamics within this space can be very discriminative, enabling

clinicians to track risky trends and to gain more insight into their treatment

decisions or interventions.

1.3 Organization

The rest of this dissertation is structured as follows. First, Chapter 2 discusses related

work and Chapter 3 describes our methodology, including the proposed mortality pre-

diction model, the application addressed and the experiments designed to evaluate our

multi-domain model for mortality preview. Then, Chapter 4 describes our experimental

results and Chapter 5 concludes the dissertation.



Chapter 2

Related Work

In this chapter, we bring some of the most relevant research results that guided

our work, exposing the methodologies used by the authors and how they corre-

late to ours. Research on predicting ICU mortality is of great academic interest in

medicine [Cai et al., 2016; Tabak et al., 2014; Wu et al., 2017] and in clinical machine

learning [Ghassemi et al., 2014; Johnson et al., 2016a; Luo et al., 2016; Nori et al.,

2017], since a good model can help doctors to save lives. A number of researchers

have investigated how to correlate ICU data with patient outcomes. In one of the first

studies [Patel et al., 2009], a group of computer scientists, chemists, geneticists and

philosophers of science was brought together to develop a model that could identify

parameters in patient data that correlate with its outcome.

Next, we present an overview of works that address some of the most critical

problems we faced in this dissertation, such as different domains and sub-populations

and imbalanced data. We also explain how our work is different from the previous ones,

since we explore local and temporal dependencies, which are able to create dynamic

predictions.

2.1 Mortality Prediction

The PhysioNet ICU Mortality Challenge 2012 [Silva et al., 2012] provided bench-

mark data that incorporate evolving clinical data for ICU mortality prediction.

As Johnson et al. [2014] reported, this benchmark data fostered the development of

new approaches, leading to up to 170% improvement over traditional risk scoring sys-

tems that do not incorporate such clinical data currently used in ICUs [Gall et al.,

1993]. In what follows, we discuss previous work in contrast with ours.

5



6 Chapter 2. Related Work

Most current work uses the PhysioNet ICU Mortality Challenge 2012 data. The

most effective approaches are based on learning discriminative classifiers for specific

sub-populations. One of the first works to use this data and also a top scorer on

the challenge was that of Citi and Barbieri [2012], which proposes a robust Support

Vector Machine (SVM) classifier. In their work, the authors train six different SVMs,

each with a sixth of the negative examples and all positive examples, thus making

each model capture specific patterns that lead to the patient outcome. Then, they

used a linear model to combine the output of all SVMs into a single binary output,

in order to predict the patient’s survival. This work is focused on feature extraction

and the authors used both general descriptors (features that do not change over time)

and time-series features, which they represented by statistic descriptors (e.g., mean,

minimum and maximum values). Other top scorers on the challenge, Bera and Nayak

[2012] and Hamilton and Hamilton [2012], proposed similar approaches, but using a

logistic regression classifier instead.

Vairavan et al. [2012] also employed logistic regression classifiers, but coupled

them with Hidden Markov Models in order to model time-series data. Their Markov

Chain was modeled to output the transaction probability between a patient being alive

to being dead. They used this model to predict at each time step the patient’s survival

probability, and then used this score as an input to the logistic classifier, along with

the patient’s general descriptors and some selected features. One of their contributions

is that their model does not need to receive the data from the whole 48 hours to output

a prediction, allowing it to be used as a real time predictor.

Unlike the aforementioned works, Xia et al. [2012] used a shallow neural network

approach. They trained one hundred small networks, composed of only two layers and

fifteen neurons, and each of those models voted for the patient’s output. The final de-

cision was made by averaging all votes. Also, they did not used all available features,

having selected the 26 most relevant features, and modeled the time-series with simple

statistics, such as maximum, minimum and mean values. The work of Johnson et al.

[2012] employed a tree-based Bayesian ensemble classifier. They also performed data

pre-processing, polishing the input data based upon a domain knowledge, and feature

extraction on the time-series signals. Their ensemble was composed of 500 weak learn-

ers, being each a decision tree with depth of two. Finally, they used a Markov chain

Monte Carlo sampler to fit the ensemble parameters.

Krajnak et al. [2012] employed fuzzy rule-based systems for mortality prediction,

aiming to combine clinicians expertise and machine learning techniques and used a

genetic algorithm to generate the final solution. Like other works, they also represented

the time series with statistic features. The usage of expert opinions in their work
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was also a novel approach and they showed that it indeed improved the algorithms’

performance, achieving competitive results.

McMillan et al. [2012] also proposed an unconventional approach. In their work,

the authors created a model that identifies and integrates information in motifs that

are statistically over- or under-represented in ICU time series of patients. They first

discretized the time-series signals into sequences of symbols, which were then searched

for short subsequences associated with the patient’s true outcome, and finally used this

information to train an SVM model that outputs the prediction.

More recently, Lee and Horvitz [2017] proposed a Markov model that accumulates

mortality probabilities. They applied an exponential statistical model with parameter

lambda to calculate at each time step the probability of a patient death, accumulating

each result into the Markov model that outputs the final probability after the 48 hours

of observation. Finally, the parameter lambda is estimated using statistical inference.

Likewise, Barajas and Akella [2015] proposed an approach that models the mortality

probability as a latent state that evolves over time. The latent state is created with the

patient features, both general descriptors and time-series, and updated at each time

step with the new patient observations. Unlike the previous works, they also used text

features that provided context about the patient state.

Gong et al. [2015] proposed an approach to address the problem of small data

using transfer learning in the context of developing risk models for cardiac surgeries.

They explored ways to build surgery-specific and hospital-specific models using in-

formation from other kinds of surgeries and hospitals. Their approach is based on

weighting examples according to their similarity to the target task training examples.

The three aforementioned works are considered as baselines and compared with our

approach.

Following Gong et al. [2015], in this work we use feature transference, but in a

quite different way, as follows: (i) instead of applying instance weighting, we employed

a deep model that transfers domain-shared features; (ii) we studied a broader sce-

nario that includes diverse ICU domains; and (iii) our models employ temporal feature

extraction, being able to dynamically predict the patient’s outcomes.

2.2 ICU Domains and Sub-Populations

Imbalanced data [Bhattacharya et al., 2017], sub-populations of patients with differ-

ent marginal distributions over their feature spaces [Nori et al., 2017] and sparse data

acquired from heterogeneous sources [Ghassemi et al., 2015; Huddar et al., 2016] are
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issues that pose significant challenges for ICU mortality prediction.

Gong et al. [2017] discussed problems due to the lack of consistency in how se-

mantically equivalent information is encoded in different ICU databases. They argue

that information is recorded differently across institutions and even over time, which

can render potentially useful data obsolescent. The authors then propose a mapping

that allows models to be built across different databases, thus making it possible to

use more data for training.

Bhattacharya et al. [2017] discussed the problem of imbalanced ICU data, which

occurs when one of the possible patient outcomes is significantly under-represented

in the data. Further, since features are often imbalanced, some ICU domains have a

significantly larger number of observations than others (e.g., respiratory failure in adults

vs. children). The authors’ approach is to transform the feature space, making the

new features easier to classify. They approximate the probability distribution function

for the set of samples of each class and then skew those probabilities, minimizing the

intersection.

In a recent work, Bonomi and Jiang [2017] carried out a mortality study based

on the notion of burstiness. They study the patient as a time-series where high values

of burstiness indicate presence of rapidly occurring events in short time periods. This,

in ICU data, may relate to possible complications in the patient’s medical condition

and hence provide indications on the mortality. Through this method they ended up

encapsulating the dynamics of the patient’s condition, basing their predictions on the

behavior of the time-series, instead of on the values themselves.

While most studies on mortality prediction for ICU patients have assumed that

one common risk model could be developed and applied to all the patients, Nori et al.

[2017] advocated that this might fail to capture the diversity of ICU patients. Their

method consist in constructing a few latent basis tasks, each having its own parameter

vector, and then creating a parameter vector for each patient as a linear combination

of those. The latent representation of a patient is then learned based on the collection

of diseases associated with her. This way, the authors were able to model the patient,

in place of creating a classifier, and could use the patient’s representation not only for

predictions but also for uncovering patient-specificity from different viewpoints.

2.3 Our Work

The works mentioned in this chapter show that ICU mortality prediction is a very

well studied problem, with a very broad range of solutions, from simple classifiers
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to complex statistical modeling. Although, none of the aforementioned approaches

attempted to perform ICU domain adaptation, which is the core focus of our work.

As shown by Alemayehu and Warner [2004], as well as by Seshamani and Gray [2004],

models built using patient data from particular age groups perform poorly on other

age groups because the features used to train the models have different distributions

across the groups. There is often a mismatch between different ICU domains or patient

sub-populations, and domain adaptation seems to be a natural solution for learning

more robust models, as different ICU domains share features that exhibit different

distributions. While data in different ICU domains may vary, there are potentially

shared or local invariant features that shape patients in different ICU domains.

Another focus of our work is to capture local and temporal features from time-

series ICU data. Features are captured in a way that the state of the patient in a

certain time depends on the previous state. This forms a mortality risk space, and

trajectories in this space allow to easily describe the state of the patient at a particular

time, helping intensivists to estimate the patient progress from the current patient

state. Most of the work cited before did not consider the time dependency of the

problem, usually describing the patient’s time-series as a set of statistics, while others

were able to model the series features, but did not considered the general descriptors

or even the feature dependency on a single time step.





Chapter 3

Methodology

In this chapter we will discuss the methods and guidelines used to create our predictive

models and their applications. One can define the task of predicting patient outcomes

from ICU data over time as follows. Each ICU patient can be represented by their

physiological observations at a given time, such as heart rate, temperature, blood

pressure, and others. Since a patient is continuously observed, his representation is an

ordered set of multiple discrete time observations.

We then have as input the training set, which consists of a sequence of observa-

tions of the form < At, o >, where At is a vector of values corresponding to physiological

parameters associated with a patient at time t and o is the outcome for the patient

(i.e., whether or not the patient survived the hospitalization). The training set is used

to construct a model that relates features within the sequence of observations to the

patient outcome. The test set consists of a sequence of observations < At, ? > for which

only the physiological parameters for the patient until time t are available, while the

corresponding patient outcome is unknown. The model learned from the training set

is used to produce predictions of the outcome for patients in the test set.

The full set of data is split into five equally large stratified folds, used to perform

a 5-fold cross validation. Each fold is divided in training and test set. Early stopping

[Prechelt, 1998] was also applied, so the training set is divided itself in the actual

training set, which is used to build the model, and a validation set, used to prevent

the neural network from overfitting.

The task of predicting patients outcomes in the ICU has two important require-

ments:

• It is a domain-specific problem, i.e., a prediction model learned from a sub-

population (or ICU domain) is likely to fail when tested against data from other

11
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population [Seshamani and Gray, 2004]. Feature transferability is thus an ap-

pealing way to provide robustness to prediction models.

• It is a time-sensitive problem, i.e., accurately predicting patient outcomes as early

as possible may lead to earlier diagnosis and more effective therapy.

Our goal is to analyze patient data at each moment and evaluate the probability

of a patient not surviving the treatment, simulating a real time medical expert with

full attention to each patient. In order to do so, we need a well defined data structure

that consists of fixed time steps and a invariable set of patient’s signs at each time

step.

3.1 Data and Domains

We use the publicly available dataset of multivariate clinical time-series of 4,000 pa-

tients from the PhysioNet 2012 challenge [Silva et al., 2012]. The data for each patient

includes age, gender, height, weight and 37 time-stamped physiological parameters

measured during the first 48 hours of ICU stay. All those parameters are listed in Ta-

ble 3.1. Patient outcomes, including mortality, are available. Note that some of those

features are measured a lot more frequently than others, as the difficulty to measure

each feature differs. For instance, it is quite simple to measure someone’s heart rate or

temperature, but it is a lot harder and more costly to measure his Cholesterol.

In order to better understand the patients, we analyze some their outcomes that

are not in-hospital death. Figure 3.1 shows a boxplot with the patient’s length of stay

grouped by the ICU. This type of plot allows us to understand the ICU population

through the quantiles, indicating where is concentrated and how spread is the data.

In this Figure, we can observe that patients’s stay usually last around 10 to 15 days,

going from a minimum of 2 days to almost 40. Also, the Cardiac ICU has the least

variation, with most patients staying from 6 to 14 days, while the Surgical ICU variates

the most, with patients’ stay concentrated between 8 and 20 days.

We also show in Figure 3.2 how many days the patients survive after being hos-

pitalized. We only included in this figure patients that have died some time after

hospitalization. Patients without information of death were not included. Through

this figure it is possible to observe that patients that go through the Cardiac ICU have

the most survival time, reaching over 6 years, while patients from the Medical ICU are

limited to less than 3 years. It is important to note from Table 3.1 that the average

age from patients on the Cardiac ICU is 67.91 years old while from the patients in the

Medical ICU is 62.83 years old.
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Figure 3.1. Relative frequency in which physiological parameters are measured
in different ICU domains.
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Figure 3.2. Relative frequency in which physiological parameters are measured
in different ICU domains.

Figures 3.3 and 3.4 show calculated risk scores for each ICU. The SAPS (Simpli-

fied Acute Physiology Score) [Le et al., 1984] is a simple scoring system based on 14

easily measured biologic and clinical variables that aims to reflect the risk of death in

ICU patients. This risk score ranges from 0 to 100. Figure 3.3 shows us that the SAPS

score for all ICU has a similar distribution, varying from 1 to 30, with exception of
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the Cardiac ICU that has a higher low boundary, median, first and third quartiles. In

summary, the SAPS score for this ICU is usually higher.
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Figure 3.3. Relative frequency in which physiological parameters are measured
in different ICU domains.

On the other hand, the SOFA (Sepsis-related Organ Failure Assessment)

[Vincent et al., 1996] score describes quantitatively the degree of organ dysfunction

or failure over time in a patient. It is composed of six scores, each designed to measure

the risk of a specific body part, being those respiration, coagulation, live, cardiovascu-

lar, central nervous system and renal. In Figure 3.4 we see that the SOFA score ranges

from 1 to 17, again not show much difference for all ICU but the Cardiac one, which

as a similar range from the other but higher quartiles.

In order to make the data equally formated for each patient, we first propagate

measurements forward (or backward) in time to fill gaps, so observations that are less

frequent are considered constant until new measurement. We then resample the time

series on an hourly basis, averaging the values observed on each hour for each patient

feature, so that our patient can be represented by the mean value for each physiological

observation on each hour during its ICU stay. Finally, we scale each variable to fall into

the [0, 1] interval. All patients are 16 years or older and had ICU stays of at least 48

hours. In contrast to Bhattacharya et al. [2017], we did not perform feature selection

and thus used the entire feature-set in all experiments.

Table 3.1 shows the average physiological data for patients in each ICU domain.

The dataset also specifies the ICU domain to which the patient has been admitted:

Cardiac Surgery, Coronary Care Unit, Medical and Surgical. It is possible to conclude



3.2. Network Architecture 15

Cardiac Coronary Medical Surgical
ICU

0

5

10

15

20

S
O
F
A
 s
co
re

SOFA Score by ICU

Figure 3.4. Relative frequency in which physiological parameters are measured
in different ICU domains.

that physiological data differ greatly between patients admitted to different ICUs, but

some features also have a common range across one or more ICUs, thus reinforcing

our main hypothesis that transfer learning can indeed be applied to improve mortality

prediction.

Figure 3.5 shows the relative frequency in which physiological parameters are

measured within each ICU domain. As can be seen, some ICU domains have a sig-

nificantly larger number of observations than others (e.g., PaCO2 and PaO2 are much

more frequently measured in the Cardiac ICU, while TroponinT is much more fre-

quently measured in the Coronary ICU).

3.2 Network Architecture

In this section we introduce the deep model architectures we evaluated to perform mor-

tality prediction, eventually selecting those with the best results. We compared several

architectures, from using only a Convolutional Neural Network [Krizhevsky et al.,

2012] or recurrent layer, to combining both, and adding intermediate layers, such as

Dropout layers. Convolutional and recurrent components offer a complementary per-

spective of the patient condition, as follows: the convolutional layer emphasizes the lo-

cal interaction between physiological parameters, while the recurrent layer is designed

to capture long range information and forget unimportant local information.
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Table 3.1. Average patient physiological data. Mean, first and third quartiles
within each physiological parameter. Mortality rate is concentrated in the Medical
ICU (49.6% of all the deaths).

Cardiac Coronary Medical Surgical
N 874 577 1,481 1,067
Age 67.91 (56−79) 69.22 (59−81) 62.83 (51−78) 60.50 (48−76)
Male 530 (60.6%) 333 (57.7%) 753 (50.8%) 630 (59.0%)
Mortality Rate 4.9% (7.8%) 14.0% (14.6%) 18.6% (49.6%) 14.5% (28.0%)

Albumin (g/dL) 2.92 (2.4−3.5) 3.31 (2.9−3.6) 2.92 (2.5−3.3) 2.99 (2.5−3.5)
Alkaline phosphatase (IU/L) 74.93 (46−83) 92.44 (59−102) 126.15 (64−138) 91.43 (52−96)
Alanine transaminase (IU/L) 89.16 (18−45) 128.28 (19−78) 164.87 (16−61) 191.52 (17−84)
Bilirubin (mg/dL) 1.01 (0.4−1.1) 0.87 (0.4−0.9) 2.44 (0.4−1.6) 1.85 (0.5−1.5)
Blood urea nitrogen (mg/dL) 18.76 (12−21) 29.92 (16−36) 32.59 (14−42) 20.36 (11−24)
Cholesterol (mg/dL) 150.14 (114−174) 163.59 (134−189) 141.04 (111−169) 157.87 (122−184)
Creatinine (mg/dL) 1.04 (0.7−1.1) 1.58 (0.8−1.6) 1.64 (0.7−1.7) 1.12 (0.7−1.1)
Invasive diast. press. (mmHg) 58.85 (51−66) 62.65 (53−74) 54.97 (48−70) 59.65 (52−72)
Fractional inspired O2 0.91 (1.0−1.0) 0.82 (0.5−1.0) 0.72 (0.5−1.0) 0.72 (0.5−1.0)
Serum glucose (mg/dL) 129.28 (103−145) 165.74 (114−191) 155.02 (104−175) 148.85 (114−167)
Serum bicarbonate (mmol/L) 23.41 (22−25) 23.31 (21−26) 22.74 (19−26) 23.44 (21−26)
Hematocrit (%) 29.32 (25.3−32.8) 34.48 (30.7−37.8) 31.82 (27.9−36) 33.01 (29.1−36.8)
Heart rate (bpm) 85.43 (79−91) 84.32 (69−97) 95.61 (80−110) 87.83 (74−100)
Serum potassium (mEq/L) 4.49 (4−4.7) 4.28 (3.8−4.5) 4.19 (3.6−4.5) 4.07 (3.6−4.3)
Lactate (mmol/L) 2.76 (1.5−3.3) 2.76 (1.4−3) 2.58 (1.3−2.8) 2.65 (1.3−3.1)
Serum magnesium (mmol/L) 2.22 (1.8−2.4) 1.90 (1.7−2.1) 1.95 (1.6−2.1) 1.80 (1.5−2)
Invasive mean press. (mmHg) 78.86 (69−86) 86.14 (73−99) 86.58 (68−96) 87.13 (73−98)
Serum sodium (mEq/L) 138.42 (136−140) 137.82 (135−140) 138.96 (136−142) 139.33 (137−142)
Non-invasive diast. press. (mmHg) 52.21 (44−59) 61.15 (49−72) 62.03 (50−72) 62.42 (52−73)
Non-invasive mean press. (mmHg) 71.53 (62−79) 78.93 (67−89) 80.55 (68−91) 82.78 (71−94)
Non-invasive syst. press. (mmHg) 110.88 (96−125) 117.46 (101−134) 121.78 (104−138) 126.72 (108−145)
Partial press. of art. CO2 (mmHg) 41.20 (36−45) 40.61 (35−45) 42.50 (34−48) 41.01 (35−45)
Partial press. of art. O2 (mmHg) 295.46 (218−387) 181.58 (89−248) 147.68 (78−185) 188.24 (101−250)
Arterial pH (0-14) 7.39 (7.35−7.44) 7.84 (7.31−7.43) 7.44 (7.3−7.42) 7.46 (7.32−7.43)
Platelets (cells/nL) 170.36 (117−208) 241.44 (181−283) 230.89 (143−287) 219.19 (150−268)
Respiration rate (bpm) 17.55 (14−20) 19.74 (16−23) 21.10 (17−24) 18.95 (16−21)
O2 saturation in hemoglobin (%) 97.48 (97−98) 96.25 (96−98) 94.84 (94−98) 96.99 (97−98)
Invasive systolic press. (mmHg) 117.16 (105−127) 117.65 (100−139) 107.45 (95−137) 123.33 (108−148)
Temperature (oC) 35.57 (35.5−36.6) 36.38 (36−37.1) 36.77 (36.2−37.4) 36.51 (36.1−37.4)
Troponin-I (µg/L) 6.77 (0.8−10.1) 10.05 (0.8−12.4) 5.59 (0.8−7) 7.02 (0.4−6.7)
Troponin-T (µg/L) 1.51 (0.04−0.59) 2.78 (0.17−2.8) 0.33 (0.04−0.25) 0.22 (0.03−0.14)
Urine output (mL) 497.92 (120−615) 365.62 (100−500) 255.39 (70−325) 389.29 (100−500)
White blood cell (cells/nL) 12.98 (9.2−15.5) 12.31 (8.5−14.3) 13.33 (7.8−17) 12.37 (8.4−15.1)

Our first model was a single recurrent layer, more specifically a LSTM layer that

sought to capture the tendencies between the patient states each time. Long-Short

Term Memories are largely used in time-dependent problems, because of its great

ability to deal with series data, so its a natural choice in this case. As our patient can

be understood as a series of points moving in a high dimensional space, the LSTM

will be able to create a representation based on this movement, which is then used to

perform a prediction, although it may overlook the feature codependency in a single

time step.

We also tried a Convolution-only model, that captured the relationship between

features on a single time period, and then treated all time periods as one. This approach
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Figure 3.5. Relative frequency in which physiological parameters are measured
in different ICU domains.

is not as intuitive as the later, but shows a surprisingly better performance. Here

we create several filters that combine the patient observations only locally, i.e., it

does not combine features across time. Alongside a Max Pooling layer, the model

extracts some information about risk regions in the patient’s feature space over this

local combination and, finally, all this information is flattened into a single vector

that is the patient representation, then used to predict his outcome. Although this

method does not explicitly create a representation based on the patient’s time series,

by creating a flatting representation with all the time steps we are also encapsulating

time information.

Finally, we have the model that employs a CNN layer followed by a max-pooling

layer, thus extracting correlations between physiological parameters measured in the

same time period and exploring their simultaneous effects. For instance, it may find

that if both temperature and heart rate are high on the same time period, the odds

of survival decrease. In a complementary way, the recurrent layer (LSTM) is devoted

to learn how changes in observations for a patient affect the corresponding outcome.

Intuitively, the recurrent layer captures temporal dependencies, enabling the estimation

of a patient’s progress from the current patient state. For instance, if the heart rate

was low at the beginning of the stay and then becomes very high, then the odds of

survival decrease. Finally, a dense layer takes the output of the recurrent layer and

predicts the patient outcome. This model is shown in Figure 3.6.
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< A1, o1 > < A2, o2 > . . . < At−1, ot−1 > < At, ot >

CNN CNN . . . CNN CNN

LSTM LSTM . . . LSTM LSTM

dynamic predictions

Dense Dense Dense Dense

Figure 3.6. Network architecture for predicting patient outcomes over time.
Each convolutional (CNN) layer is followed by a LSTM layer and different feature
transference approaches are designed using this architecture.

Naturally, this is a high variance data, since all features come from measuring

something as complex as a human being, which leads to the model quickly overfit-

ting the training set. In order to prevent this, we applied several dropout layers

[Srivastava et al., 2014], specifically after the input, max pooling and LSTM layers.

A dropout layer will choose a random set of neurons at each batch and disable them

during training. This will make the other neurons (that were not disabled) generalize

more, simulating the effect of training multiple smaller networks and averaging them

during test. We drop from 20% to 30% of all neurons on each layer. We also apply

L2 regularization [Wager et al., 2013] to the LSTM inner cell neurons and the fully

connected layer at the end of the model. This regularization will force each neuron

to keep their activation weights low, thus generalizing more. Our loss function was

binary cross-entropy, because of its good performance for classification problems with

two classes. This loss function is given by the following formula:

ℓ(λ) = − 1

n

∑n
i=1[yilog(pi) + (1− yi)log(1− pi)] + λ

∑k
j=1w

2
j

where λ is the set of weights, n is the number of samples in the batch, yi is the

true output of the ith patient, pi is the predicted output for the ith patient, and k is

the number of neurons to regularize. We optimize the network weights using Adam

[Kingma and Ba, 2014], a stochastic optimization method with adaptive momentum,

that is able to quickly achieve low error on the training set.

The final component tested in the neural architecture was the activation function

of each layer. A few activation functions have been tried, being those the following.
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Linear

f(x) = x

Sigmoid

f(x) = 1

1+e−x

Tanh

f(x) = ex−e−x

ex+e−x

Rectifier Linear Unit (ReLU)

f(x) = max(0, x)

Scaled Exponential Linear Unit (SELU)

f(x) = λx, if x > 0, αex − α, otherwise,

being x the neuron output. Since this is a binary classification problem, ranged

from 0 to 1, we chose to sustain a sigmoid activation on the output layer. This will

scale any output to the (0, 1) interval.

In order to choose a set of model parameters that perform well for this task, a

hand tuning method was applied. This means that we manually executed tests with

different parameter sets and chose the set that performed best, making adjustments

based on the output of previous executions. Those parameters include the number of

neurons on each layer, activation functions (as mentioned above), regularization type

and amount, dropout percentage, along with some layer-specific parameters, such as

kernel size, for convolutional layers and pool size for max pooling layers.

In summary, our models work by passing each observation through a spatial

feature extractor and then the sequence model captures how the extracted spatial

features are associated with patient outcomes over time. Also, a dropout operation is

performed after each layer of the network.

As not all the descriptors and time-series were available for all records, we had to

deal with the problem of missing values. If one feature (either a descriptor or a time-

series) was never recorded for a given record, we used the approach called "imputation"

and replaced its values with zero. Because of the normalization step, this approximately

corresponds to replacing the missing raw variable with a measure of central tendency,

which corresponds to the arithmetic mean for Gaussian-distributed variables and to

the geometric mean for log-normal ones. In some cases, the time-series measurements

were taken only in the first 24 hours or only during the next 24 hours. In this case,
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replacing with zero all the features related to the period with missing measurements

could possibly create a non-existing improvement or deterioration trend. Instead, we

duplicate the values from the available period, assuming stationarity conditions as

default in absence of further measurements.

3.3 Feature Transferability

Our goal is to train multi-domain models to predict patient outcomes over time, which

is based on patient observations associated with multiple ICU domains. Although

patients associated with a given ICU domain may be better represented by specific

features, there still exist some common features that permeate all other ICU domains.

The main intuition that we exploit for feature transferability is that the fea-

tures must eventually transition from general to specific along our model. Besides,

feature transferability drops significantly in higher layers with increasing domain dis-

crepancy [Yosinski et al., 2014]. In other words, the features computed in higher layers

must depend strongly on a specific domain, and prediction effectiveness suffers if this

domain is discrepant from the target one. Since we are dealing with many domains

simultaneously, we tested multiple transference approaches, which are detailed as fol-

lows:

A1: No layer is kept frozen during fine-tuning, i.e., errors are back-propagated through

the entire network during fine-tuning.

A2: Only the convolutional layer is kept frozen during fine-tuning.

A3: Convolutional and LSTM layers are kept frozen during fine-tuning, i.e., errors are

back-propagated only thought the fully-connected layers during fine-tuning.

A4: Only the convolutional layer is kept frozen during fine-tuning and other layers

have their weights randomly initialized for fine-tuning.

A5: Convolutional and LSTM layers are kept frozen during fine-tuning and weights in

fully-connected layers are randomly initialized for fine-tuning.

3.4 Switch Layer

As mentioned before, in this scenario we deal with high variance data. With the Switch

Layer, our hypothesis is that there could be inner distributions on the data, i.e., there

could be groups of patients that behave similar, being the optimum scenario those
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z′1 z′2 . . . z′n−1 z′n

S

z1 z2 . . . zn−1 zn

Figure 3.7. Switch Layer. Each circle is a neuron, each full arrow is a trainable
weight and each dashed arrow is a constant weight.

groups matching exactly the ICU domains. Thus, this layer was designed to learn

those groups during training, and then it uses this knowledge to modify outputs and

improve prediction. It takes the output of the previous layer in the network and creates

a dense representation for this output, using this representation to modify the output

itself again. Figure 3.7 shows a diagram for the Switch Layer, where zi is the ith neuron

of the previous layer, s is the dense representation and z′i is ith neuron modified by the

switch. Also, the full arrows represent trainable weights and the dotted arrows indicate

a copy (the same as setting the weight to 1).

Mathematically, the switch layer can be expressed as the following:

S = φz(Z ·Wz + bz)

Z ′ = φs(S ·Ws + bs) ∗ Z

where Z is the previous layer output , W is the set of trainable weights, b is the bias, φ

is the activation function, S is the switch output (also the layer inner representation),

Z ′ is the modified output.

We called this layer a switch because the inner neurons (S), when constrained

to assume either 0 or 1, will turn each input neuron on or off, performing a feature

selection and, therefore, acting as a switch. It was initially inspired by the dropout

layer, as a way to learn what neurons to drop according to the incoming data.

What this layer does is learning how to represent the input neurons in the dense

space and apply this representation to scale each neuron according to its learned im-

portance. Thus, similar patients will have similar representations and will have their

neurons scaled similarly, while different patients will be scaled differently. This scal-

ing helps the prediction by making the feature space more separable. As this layer is

trained, it should be able to differ more patients that are not similar and then create a
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more well-defined representation space. This inner activation is very similar to a fully

connected layer, so one can interpret it as a classifier. It indeed can be seen this way

and the learned classification is therefore used to scale the output.

The layer does not modify the input dimension, and can be applied to any layer

output, including the network input. It also can be stacked, creating several represen-

tations in a row. In theory, a multi-layer Switch can work, but it was not tested in this

work, since we only propose this layer here.
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Experimental Results

In this chapter we present our main questions about the problem, along with the

baselines we used to compare our models’ performance. We also show the main results

obtained in several scenarios and discuss their implications.

In particular, our experiments aim to answer the following research questions:

RQ1: Does domain adaptation improve mortality prediction? Do models that are

specific to each ICU domain improve the state-of-the-art models for mortality

prediction?

RQ2: Which feature transference approach is more appropriate to each ICU domain?

RQ3: How accurate are dynamic predictions?

RQ4: How meaningful are the mortality risk spaces created from patient trajectories?

4.1 Baselines

We considered the following methods in order to provide a baseline comparison:

• Traditional classifiers: Support Vector Machines (SVM), Random Forest (RF),

Logistic Regression (LR), Linear Discriminant Analysis (LDA), Quadratic Dis-

criminant Analysis (QDA) and AdaBoost. The main objective of using these

baselines is to compare our model with shallow ones.

• Training on Target (TT): A CNN−LSTM model is trained using only the target

domain data. No source domain data is used. The main objective of using this

baseline is to assess the benefits of different feature transfer approaches.

23
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• Deep architecture [Che et al., 2015]: A deep network that uses prior-based reg-

ularization. The main objective of using this baseline is to compare our model

with state-of-the-art results on the PhysioNet data.

4.2 Setup

The metric used to evaluate the effectiveness of our models is the standard Area Under

the ROC Curve (AUC), as adopted by Che et al. [2015]. Like Johnson et al. [2012], we

also used five-fold cross validation and relevant hyper-parameters were found using a

further internal cross-validation. The results reported are the average of the five runs,

which are used to assess the overall performance of the models. To ensure the relevance

of the results, we assess the statistical significance of our measurements by means of a

pairwise t-test [Sakai, 2014] with p−value ≤ 0.05. Hereinafter, we refer to our model

as CNN−LSTM.

First, we trained several architectures to identify which one would work better

for this particular problem. We trained each architecture using three methods:

DA Domain Adaptation training, where we apply one of the techniques described on

Subsection 3.3

TT Specific training, where only the target ICU is trained

GT General training, where all ICU are trained together

All the models were trained using the same set of hyper-parameters. We used a

hand-tuning approach, and the set of hyper-parameters that presented the best overall

AUC results is the following:

• 64 filters on the CNN;

• CNN kernel size of 5;

• CNN stride of 1;

• Max pooling of size 4;

• 70 neurons on the inner LSTM cell;

• SELU activation for both CNN and LSTM;

• L2 Regularization for both LSTM and Dense layers.
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4.3 Domain Adaptation

In this section, we compare the performance of each training approach and discuss their

results, searching to explain why each approach works better for each ICU domain.

Table 4.1. AUC comparison between Convolutional, Recurrent and CNN-LSTM
models

CNN LSTM CNN-LSTM
ICU Domain DA TT GT DA TT GT DA TT GT
Cardiac 0.828 0.737 0.866 0.786 0.740 0.812 0.833 0.773 0.876
Coronary 0.771 0.742 0.802 0.785 0.731 0.807 0.809 0.744 0.833
Medical 0.754 0.739 0.747 0.732 0.714 0.742 0.757 0.732 0.737
Surgical 0.813 0.787 0.812 0.752 0.753 0.769 0.807 0.791 0.801
Average 0.791 0.751 0.807 0.764 0.735 0.782 0.802 0.760 0.812

Table 4.1 displays the best result for each ICU domain and each model (Convolu-

tion Neural Network (CNN), LSTM Network and CNN-LSTM Network), considering

each training method. Those results give us some insights about the models’ behavior

for each ICU. For instance, the specific training (M2) never outperformed the other

two methods (more discussion on this later). Moreover, although the best overall per-

formance was obtained with the CNN-LSTM model, we can see that the CNN model

reaches a very close result with general training (M3). This indicates that, even though

the convolution layer does not explicitly capture time series dependencies, the network’s

ability to look at all time steps at once comes close to the LSTM sequence representa-

tion for this problem. We can also note that, for the Surgical ICU, the best result is

the one without the LSTM layer, which means that the time dependency in this case

is not as important as for the other ICUs.

If we look at the results for each model individually and ignore the specific training

(that underperformed on every experiment), we can see that the range of the AUC does

not change too much and each ICU follows a distinct range. The Cardiac ICU always

show the highest AUCs, followed by the Coronary ICU, then by the Surgical ICU and

finally by the Medical ICU. We can interpret this as each ICU having its own difficulty

in mortality prediction, which can be also explained by the patient profile in each ICU.

More specific ICUs, such as Cardiac and Coronary, that deal with a single kind of

disease or procedure, have more similar patients, thus making the prediction easier,

since the death causes are usually alike. On the other hand, general purpose ICUs,

such as the Surgical and Medical ones, tend to have a more diverse type of patient and

the causes of death are a lot broader, making it more difficult to accurately predict

mortality.
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4.4 Switch Layer

In this section, we apply the Switch layer to the models described in Section 4.3 and

evaluate their performance in the same manner. Using the same architectures than

before, we introduce switch layers in the input and after the LSTM layer. For the

CNN model, that does not have a LSTM layer, we apply the switch layer after a

Flatten layer. In doing so, the model should be able to modify the input, improving

the features that impact the most on the output, or alter the high level representations

created by the previous layers in order to improve the final classification.

Table 4.2. AUC Scores for Models With and Without Switch Layer

Without Switch With Switch
ICU Domain Model Mode Score Model Mode Score
Cardiac CNN-LSTM M3 0.876 CNN-LSTM-SW M1 0.881
Coronary CNN-LSTM M3 0.833 CNN-LSTM-SW M3 0.837
Medical CNN-LSTM M1 0.757 CNN-SW M1 0.762
Surgical CNN M1 0.812 CNN-SW M1 0.827
Average 0.818 0.827

Table 4.2 shows the best results for each ICU with and without the Switch layer.

We observe that while without Switch layers we have domain adaptation (M1 mode)

performing better on two ICU domains, Medical ICU and Surgical ICU, when ap-

plying those layers, domain adaptation also performs better on Cardiac ICU domain.

This indicates that the shared feature space created by this layer benefits the domain

adaptation, allowing more similarities between the ICU domains.

It is also clear from those results that the Switch layer improves the mortality

prediction, with gains ranging from 0.4% to 1.5%, according to the ICU domain. Each

ICU has a different gain, indicating that the Switch behaves differently for each domain,

creating feature spaces that are either more simple or more complex, depending on the

complexity of the domain. On average, the layer improves the AUC score by 0.9%.

4.5 Answering Our Research Questions

In this section, we take the best results from Sections 4.3 and 4.4 and use them to

answer the research questions proposed at the beginning of this chapter. Here we

compare our results with the state-of-the-art ones, expand the experiments on domain

adaptation, show how the models’ predictions behave in the patient’s early admission

hours and explain how we can construct a semantic space to provide an intuitive way

to visualize the model predictions for medical experts.
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4.5.1 Domain Adaptation and the State of the Art

The first experiment in this section is devoted to answer RQ1, i.e., how well does

domain adaptation help to predict mortality. We present a comparison between our

best models and other shallow and deep models. Table 4.3 shows AUC numbers for

predictions performed using information acquired within the first 48 hours after the

patient admission. Predictions performed by the baseline models were simply separated

according to the ICU domain in which the corresponding patient was admitted, so that

we can report AUC numbers for each ICU domain. On the other hand, the CNN-LSTM-

SW model employs domain adaptation and, thus, is composed of four sub-models that

are specific to each of the four domain ICUs. Clearly, domain adaptation improves

the accuracy of our models and consistently outperform all baselines considered in

this work. Overall, our model shows an AUC number of 0.827, which is considered

to provide excellent clinical utility in the field of mortality prediction [Johnson et al.,

2014].

Table 4.3. AUC numbers for shallow and deep models. Numbers in bold indicate
the best models for each ICU domain.

Model Cardiac Coronary Medical Surgical

AdaBoost 0.572 0.551 0.510 0.531

SVM 0.627 0.572 0.503 0.532

LR 0.629 0.601 0.510 0.517

LDA 0.632 0.602 0.516 0.513

RF 0.610 0.578 0.587 0.623

QDA 0.689 0.668 0.567 0.610

[Che et al., 2015] 0.853 0.802 0.760 0.785

CNN-LSTM-SW 0.881 0.837 0.762 0.827

4.5.2 Domain Adaptation Approaches

The next set of experiments is concerned with RQ2. This is an extension of the results

shown in Table 4.1, with the approaches discussed in Section 3.3. We present a com-

parison between the TT model and models learned following our five feature transfer

approaches, along with the results for not performing Domain Adaptation. In this last

case, we train on all ICU together and evaluate only on the target ICU. Table 4.4 shows

AUC numbers for predictions performed using information acquired within the first 48

hours after the patient admission. Feature transfer is never detrimental when compared
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with the TT and no Domain Adaptation models, and they provide substantial gains

that are up to 6.7% (Cardiac), 8.3% (Coronary), 8.3% (Medical), and 11.0% (Surgical)

when compared to the first one. These gains seem to be related to the mortality rate

associated with each target ICU domain − gains are higher for domains with higher

mortality rates.

Table 4.4. AUC numbers for different feature transference approaches. Numbers
in bold indicate the best transference approach for each target ICU domain.

TT No DA A1 A2 A3 A4 A5

Cardiac 0.821 0.876 0.852 0.881 0.829 0.849 0.858

Coronary 0.769 0.837 0.800 0.823 0.798 0.817 0.786

Medical 0.722 0.757 0.754 0.763 0.744 0.759 0.736

Surgical 0.727 0.812 0.821 0.827 0.778 0.818 0.788

Average 0.746 0.802 0.792 0.804 0.774 0.798 0.770

Finally, we can see from Table 4.4 that the best transfer approach varies depend-

ing on the target ICU domain, but for most of them, freezing only the convolutional

layer works better. Randomly initializing the weights for fine-tuning does not show to

be the best approach, since A4 and A5 were not the best performers for any target ICU

domain, and those were the approaches that randomly initialized the weights. It seems

that the temporal patterns play an important role when comes to ICU specifics, since

A2 was the best for approach for most of them. For the Coronary ICU, however, not

performing the domain adaptation gives the best results, which indicates that this ICU

does not share many common factors with the other ones, taking the most advantage

when they are all trained as one.

4.5.3 Early Predictions

The set of experiments presented now is devoted to answer RQ3. Figure 4.1 shows

AUC numbers obtained with predictions performed using information acquired within

the first y hours after the patient admission. As expected, the AUC increases as more

information is acquired. From the first 5 to 20 hours, the slopes associated with Cardiac

and Coronary domains increase much faster than the slopes associated with Medical

and Surgical domains. It is also important to note that although the AUC increases as

more data is introduced in the model, its value for the first measure, i.e., after 5 hours

of admission, it is still high, indicating that the model can still predict the patient’s

outcome reasonably well, gaining more confidence as the time passes.
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Figure 4.1. CNN−LSTM−SW AUC numbers for predictions performed using
information within the first y hours after the patient admission (5 ≤ y ≤ 48).
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Figure 4.2. Gains over [Che et al., 2015] at different prediction times (5 ≤ y ≤

48).

Figure 4.2 shows the gains obtained when compared with the work by Che et al.

[2015] at different prediction times. The early predictions performed by the CNN-

LSTM-SW architecture are much more accurate than the early predictions performed

by Che et al. [2015], particularly in the first hours after the admission. The 10−20

hours period concentrates the more impressive gains, which vary from 4% (Medical) to

almost 8% (Coronary).

4.5.4 Patient Dynamics

The last set of experiments is concerned with RQ4, i.e., they aim to assess how mean-

ingful are the mortality risk spaces. Figure 4.3 shows risk spaces for each ICU domain,

before and after applying the neural network. These spaces are obtained by gather-
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ing patient trajectories, i.e., the coordinates (CNN-LSTM-SW representations) along

with the predicted outcome at each time. Risk spaces can also be obtained from

raw data and, in this case, the coordinates are simply the entire feature-vector. Risk

spaces created from CNN-LSTM-SW representations are much more meaningful than

the corresponding spaces obtained from raw data.

Cardiac (raw) Coronary (raw) Medical (raw) Surgical (raw)

Cardiac (CNN-LSTM-SW) Coronary (CNN-LSTM-SW) Medical (CNN-LSTM-SW) Surgical (CNN-LSTM-SW)

Figure 4.3. Mortality risk space for different ICU domains. Regions in red are
risky.
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Figure 4.4. Dynamics of 48-hour trajectories in different ICU domains. Red
curves are computed from trajectories associated with patients that have died.
Blue curves are computed from trajectories associated with patients that survived.

Time is also encoded in the risk spaces and, thus, we can exploit dynamics, such

as the proximity to mortality risky regions or the speed in which the patient condi-

tion changes. Figure 4.4 shows such dynamics in mortality risk spaces obtained from

CNN−LSTM representations. Dynamics associated with the mortality risk space for
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the Cardiac and Coronary ICU domains, for instance, are highly discriminative since

red and blue curves are separated in the first hours after the patient admission. This

may explain the high AUC numbers obtained in these domains. Patients show dis-

tinct dynamics, depending on the ICU domain. Patients admitted to the Cardiac and

Surgical units, for instance, move much faster than patients admitted to the Coronary

and Medical units. Also, the speed increases over time for patients admitted to the

Coronary and Medical units.

Combining the results shown in Figure 4.3 and Figure 4.4, it is possible to provide

an intuitive way of visualizing the model’s output, by representing a patient as a particle

moving through the mortality risk space. If the particle is moving towards a risky zone,

the patient’s survival probability is decreasing, otherwise it is increasing.





Chapter 5

Conclusions and Future Work

5.1 Conclusions

ICU mortality prediction is a domain-specific problem. Thus, a prediction model

learned from a sub-population of patients is likely to fail when tested against data

from another population. In this dissertation, we investigated this problem by consid-

ering four sub-populations of patients that were admitted to different ICU domains.

We were able to show that patients within a specific ICU domain are epidemiologi-

cally and physiologically different from patients within other domains. Nevertheless,

patients across ICU domains still share basic characteristics. This motivated us to pro-

pose improved mortality prediction models based on domain adaptation. Specifically,

we applied deep learning to create models that learned domain invariant representations

from time series ICU data while transferring the complex temporal latent dependencies

between ICU sub-populations. The proposed models employ local and temporal feature

extractors, through a combination of convolutional and recurrent neural networks, be-

ing thus able to perform dynamic predictions during the ICU stay, potentially leading

to earlier diagnosis and a more effective therapy. The proposed models are also able to

be dynamically updated, improving their predictions with each new information about

the patient’s status. We showed that specific models built with domain adaptation

outperforms the general models in three of the four ICU studied, making use of all the

available data but still specializing on the target ICU domain.

We also propose a novel neural layer, capable of learning internal representations

that are then used to modify the input data itself, creating thus a feature space that is

easier to be classified by the model’s final layers. The proposed layer is also agnostic to

the problem, i.e., it could be used in other problems too and should be able to improve

deep learning models in general. Finally, our models produce a mortality risk space,

33
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and the dynamics associated with patient trajectories are meaningful and can be very

discriminative, enabling clinicians to track risky trends and to gain more insight into

their treatment decisions or interventions by observing how the patient’s representation

changes over time in the mortality risk space. Our models provide impressive gains

(4% to 8%) for early predictions, i.e., predictions within the first 5-20 hour period after

admission. Significant gains (2% to 4%) are also observed for predictions performed

based on information acquired during the first 48 hours after admission. Although it

may take several ours to train (each experiment took from 2 to 48 hours of training on

a NVIDIA GeForce GTX TITAN X), the models can score patients almost instantly

(under a second), which makes them viable to production and real time environments.

5.2 Future Work

In this dissertation, we analyzed the data of 4000 patients admitted to four different

ICU, in the form of time series that reflects the status of each patient in the first 48 hours

of stay. This data is available in the Physionet’s MIMIC Database. However, we lack

some important information about the patient’s treatment, such as to which procedures

was the patient submitted and what kind of interventions the doctors suggested, not

to mention the patient’s actual cause of death. Those informations are available in a

latter databased, the Physionet’s MIMIC-III Clinical Database [Johnson et al., 2016b],

which comprises a more extensive set of information about 53,423 patients and which

we intend to use in our future works.

Our studies have shown that domain adaptation indeed helps to create more

robust models in order to predict mortality, but we were not able to explain why the

model make such predictions or what is the main factors that eventually leads a patient

to surviving or not. We identify as future work the following improvements:

• Provide means to explain the models’ output. Given a single patient’s status, we

should be able to describe what are the most relevant features that the model

analyzes to output its prediction. In doing so, we could provide a much clearer

assistance to intensivists, being able to not only sort their patients by the atten-

tion needed, but also showing where among the patient’s status to pay attention,

leading to a better understating of the patient’s condition.

• Suggest which interventions should be made. If the model identifies that a pa-

tient’s survival probability is decreasing, it should be able to provide to inten-

sivists the most likely effective interventions that should restore the patient’s

health.
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• Show probable death causes. Once the model starts to predict that the patient

may not survive, it should rank the most probable causes of death, helping the

intensivists to prevent them as soon as possible.

• Define which exams are really necessary. By understanding which variables are

important and predictive to the model, we can define what needs to be measured

and what does not, since some variables are hard to obtain.

• Predict targets beyond in-hospital death, such as ICU staying time, out-hospital

death and readmission. It is possible to study how well the model is able to

predict those targets, as well as how each target affects the others.

So far we were able to build a model that can accurately predicts that a patient

will or will not survive the ICU stay in the first few hours. Our main interests as future

works is to help medical experts to better understand the model’s output and be more

effective on the patients’ treatment.
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