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Veridical Data Science
Bin Yua,b,c and Karl Kumbiera

aStatistics Department, University of California, Berkeley, CA 94720; bEECS Department, University of California, Berkeley, CA 94720; cChan Zuckerberg Biohub, San
Francisco, CA 94158

Building and expanding on principles of statistics, machine learning, and scientific inquiry, we
propose the predictability, computability, and stability (PCS) framework for veridical data science.
Our framework, comprised of both a workflow and documentation, aims to provide responsible,
reliable, reproducible, and transparent results across the entire data science life cycle. The PCS
workflow uses predictability as a reality check and considers the importance of computation in
data collection/storage and algorithm design. It augments predictability and computability with
an overarching stability principle for the data science life cycle. Stability expands on statistical
uncertainty considerations to assess how human judgment calls impact data results through data
and model/algorithm perturbations. Moreover, we develop inference procedures that build on PCS,
namely PCS perturbation intervals and PCS hypothesis testing, to investigate the stability of data
results relative to problem formulation, data cleaning, modeling decisions, and interpretations. We
illustrate PCS inference through neuroscience and genomics projects of our own and others and
compare it to existing methods in high dimensional, sparse linear model simulations. Over a wide
range of misspecified simulation models, PCS inference demonstrates favorable performance in
terms of ROC curves. Finally, we propose PCS documentation based on R Markdown or Jupyter
Notebook, with publicly available, reproducible codes and narratives to back up human choices
made throughout an analysis. The PCS workflow and documentation are demonstrated in a ge-
nomics case study available on Zenodo (1).

1. Introduction

Data science is a field of evidence seeking that combines data
with domain information to generate new knowledge. The
data science life cycle (DSLC) begins with a domain ques-
tion or problem and proceeds through collecting, managing,
processing (cleaning), exploring, modeling, and interpreting∗

data results to guide new actions (Fig. 1). Given the trans-
disciplinary nature of this process, data science requires human
involvement from those who collectively understand both the
domain and tools used to collect, process, and model data.
These individuals make implicit and explicit judgment calls
throughout the DSLC. The limited transparency in reporting
such judgment calls has blurred the evidence for many analy-
ses, resulting in more false-discoveries than might otherwise
occur (3, 4). This fundamental issue necessitates veridical data
science to extract reliable and reproducible information from
data, with an enriched technical language to communicate and
evaluate empirical evidence in the context of human decisions.
Three core principles: predictability, computability, and sta-
bility (PCS) provide the foundation for such a data-driven
language and a unified data analysis framework. They serve
as minimum requirements for veridical data science†.

Many ideas embedded in PCS have been widely used across
various areas of data science. Predictability plays a central
role in science through Popperian falsifiability (5). If a model
does not accurately predict new observations, it can be re-
jected or updated. Predictability has been adopted by the
machine learning community as a goal of its own right and
more generally to evaluate the quality of a model or data result

∗For a precise definition of interpretability in the context of machine learning, we refer to our recent
paper (2)

†Veridical data science is the broad aim of our proposed framework (veridical meaning “truthful” or
“coinciding with reality”). This paper has been on arXiv since Jan. 2019 under the old title “Three
principles of data science: predictability, computability, stability (PCS).

(6). While statistics has always considered prediction, machine
learning emphasized its importance for empirical rigor. This
was in large part powered by computational advances that
made it possible to compare models through cross-validation
(CV), developed by statisticians Stone and Allen (7, 8).

The role of computation extends beyond prediction, setting
limitations on how data can be collected, stored, and analyzed.
Computability has played an integral role in computer science
tracing back to Alan Turing’s seminal work on the computabil-
ity of sequences (9). Analyses of computational complexity
have since been used to evaluate the tractability of machine
learning algorithms (10). Kolmogorov built on Turing’s work
through the notion of Kolmogorov complexity, which describes
the minimum computational resources required to represent
an object (11, 12). Since Turing machine-based notions of
computabiltiy are not computable in practice, we treat com-
putability as an issue of algorithm efficiency and scalability.
This narrow definition of computability addresses computa-
tional considerations at the modeling stage of the DSLC but
does not deal with data collection, storage, or cleaning.

Stability‡ is a common sense principle and a prerequisite for
knowledge. It is related to the notion of scientific reproducibil-
ity, which Fisher and Popper argued is a necessary condition
for establishing scientific results (5, 13). While replicability
across laboratories has long been an important consideration
in science, computational reproducibility has come to play an
important role in data science as well. For example, (14) dis-

‡We differentiate between the notions of stability and robustness as used in statistics. The latter
has traditionally been used to investigate performance of statistical methods across a range of
distributions, while the former captures a much broader range of perturbations throughout the
DSLC as discussed in this paper. At a high level, stability is about robustness.
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cusses reproducible research in the context of computational
harmonic analysis. More broadly, (15) advocates for “prepro-
ducibility” to explicitly detail all steps along the DSLC and
ensure sufficient information for quality control. Stability at
the modeling stage of the DSLC has been advocated in (16) as
a minimum requirement for reproducibility and interpretabil-
ity. Modeling stage stability unifies numerous previous works,
including Jackknife, subsampling, bootstrap sampling, robust
statistics, semi-parametric statistics, and Bayesian sensitivity
analysis (see (16) and references therein). These methods have
been enabled in practice through computational advances and
allow researchers to investigate the reproducibility of data re-
sults. Econometric models with partial identification (see the
book (17) and references therein) and fundamental theoretical
results in statistics, such as the central limit theorem (CLT),
can also be viewed as stability considerations.

In this paper, we unify and expand on these ideas through
the PCS framework, which is built on the three principles of
data science. The PCS framework consists of PCS workflow
and transparent PCS documentation. It uses predictability
as a reality check, computability to ensure that the DSLC
is tractable, and stability to test the reproducibility of data
results (Sec. 2) relative to human judgment calls at every step
of the DSLC. In particular, we develop basic PCS inference,
which leverages data and model perturbations to evaluate the
uncertainty human decisions introduce into the DSLC (Sec. 3).
We propose PCS documentation in R MarkDown or a Jupyter
(iPython) Notebook to justify these decisions through narra-
tives, code and visualizations (Sec. 4). We draw connections
between causal inference and the PCS framework, demon-
strating the utility of the latter as a recommendation system
for generating scientific hypotheses (Sec. 5). We conclude by
discussing areas for further work, including additional vet-
ting of the framework and theoretical analyses on connections
between the three principles. A case study of our proposed
framework based on the authors’ work studying gene regulation
in Drosophila is documented on Zenodo.

2. PCS principles in the DSLC

Given a domain problem and data, the purpose of the DSLC is
to generate knowledge, conclusions, and actions (Fig. 1). The
PCS framework aims to ensure that this process is both reliable
and reproducible through the three fundamental principles of
data science. Below we discuss the roles of the three principles
within the PCS framework§, including PCS workflow and PCS
documentation. The former applies the relevant principles
at every step of the DSLC, with stability as the paramount
consideration, and contains PCS inference proposed in Sec. 3.
The latter documents the PCS workflow and judgment calls
made with a 6-step format described in Sec. 4.

A. Stability assumptions initiate the DSLC. The ultimate goal
of the DSLC is to generate knowledge that is useful for future
actions, be it a biological experiment, business decision, or
government policy. Stability is a useful concept to address
whether another researcher making alternative, appropriate¶

decisions would obtain similar conclusions. At the modeling
stage, stability has previously been advocated in (16). In this

§We organize our discussion with respect to the steps in the DSLC.
¶We use the term appropriate to mean well-justified from domain knowledge and an understanding

of the data generating process. The term “reasonable” has also been used with this definition (16).

Domain 
question Data collection Data cleaning

Exploration &
visualization

Modeling
Post hoc
analysis

Interpretation
of results

Update domain
knowledge

Stability

Fig. 1. The data science life cycle

context, stability refers to acceptable consistency of a data
result relative to appropriate perturbations of the data or
model. For example, jackknife (18–20), bootstrap (21), and
cross validation (7, 8) may be considered appropriate pertur-
bations if the data are deemed approximately independent
and identically distributed (i.i.d.) based on domain knowledge
and an understanding of the data collection process.

Human judgment calls prior to modeling also impact data
results. The validity of an analysis relies on implicit stability
assumptions that allow data to be treated as an informative
representation of some natural phenomena. When these as-
sumptions do not hold in a particular domain, conclusions
rarely generalize to new settings unless empirically proven
by future data. This makes it essential to evaluate stability
to guard against costly future actions and false discoveries,
particularly in the domains of science, business, and public
policy, where data results are used to guide large scale actions,
and in medicine, where human lives are at stake. Below we
outline stability considerations that impact the DSLC prior
to modeling.

Question or problem formulation: The DSLC be-
gins with a domain problem or a question, which could be
hypothesis-driven or discovery-based. For instance, a biolo-
gist may want to discover biomolecules that regulate a gene’s
expression. In the DSLC this question must be translated
into a question regarding the output of a model or analysis
of data that can be measured/collected. There are often mul-
tiple translations of a domain problem into a data science
problem. For example, the biologist described above could
measure factors binding regulatory regions of the DNA that
are associated with the gene of interest. Alternatively, she
could study how the gene covaries with regulatory factors
across time and space. From a modeling perspective, the
biologist could identify important features in a random forest
or through logistic regression. Stability relative to question or
problem formulation implies that the domain conclusions are
qualitatively consistent across these different translations.

Data collection: To answer a domain question, domain
experts and data scientists collect data based on prior knowl-
edge and available resources. When this data is used to guide
future decisions, researchers implicitly assume that the data
is relevant to a future time. In other words, they assume that
conditions affecting data collection are stable, at least relative
to some aspects of the data. For instance, if multiple labo-
ratories collect data to answer a domain question, protocols
must be comparable across experiments and laboratories if
they expect to obtain consistent results. These stability con-
siderations are closely related to external validity in medical
research, which characterizes similarities between subjects in a
study and subjects that researchers hope to generalize results
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to. We will discuss this idea more in Sec. B.
Data cleaning and preprocessing: Statistics and ma-

chine learning models or algorithms help data scientists answer
domain questions. Using models or algorithms requires clean-
ing (pre-processing) raw data into a suitable format, be it a
categorical demographic feature or continuous measurements
of biomarker concentrations. For instance, when data come
from multiple laboratories, biologists must decide how to nor-
malize individual measurements (for example see (22)). When
data scientists preprocess data, they are implicitly assuming
that their choices are not unintentionally biasing the essential
information in the raw data. In other words, they assume
that the knowledge derived from a data result is stable with
respect to their processing choices. If such an assumption
cannot be justified, they should use multiple appropriate pro-
cessing methods and interpret data results that are stable
across these methods. Others have advocated evaluating re-
sults across alternatively processed datasets under the name
“multiverse analysis” (23). Although the stability principle
was developed independently of this work, it naturally leads
to a multiverse-style analysis.

Exploratory data analysis: Both before the modeling
stage and in post hoc analyses, data scientists often engage
in exploratory data analysis (EDA) to identify interesting
relationships in the data and interpret data results. When
visualizations or summaries are used to communicate these
analyses, it is implicitly assumed that the relationships or
data results are stable with respect to any decisions made by
the data scientist. For example, if the biologist believes that
clusters in a heatmap represent biologically meaningful groups,
she should expect to observe the same clusters with respect to
any appropriate choice of distance metric, data perturbation,
or clustering method.

B. Predictability as reality check. ‖ After data collection,
cleaning/preprocessing, and EDA, models or algorithms∗∗ are
frequently used to identify more complex relationships in data.
Many essential components of the modeling stage rely on the
language of mathematics, both in technical papers and in code.
A seemingly obvious but often ignored question is why conclu-
sions presented in the language of mathematics depict reality
that exists independently in nature, and to what extent we
should trust mathematical conclusions to impact this external
reality.††

This concern has been articulated and addressed by many
others in terms of prediction. For instance, Philip Dawid drew
connections between statistical inference and prediction under
the name “prequential statistics,” highlighting the importance
of forecasts in statistical analyses (24). David Freedman ar-
gued that when a model’s predictions are not tested against
reality, conclusions drawn from the model are unreliable (25).
Seymour Geisser advocated that statistical analyses should
focus on prediction rather than parametric inference, particu-
larly in cases where the statistical model is an inappropriate
description of reality (26). Leo Breiman championed the essen-
tial role of prediction in developing realistic models that yield
sound scientific conclusions (6). It can even be argued that
the goal of most domain problems is prediction at the meta

‖Predictability is a form of empirical validation, though other reality checks may be performed beyond
prediction (e.g. checking whether a model recovers known phenomena).

∗∗Different model or algorithm choices could correspond to different translations of a domain problem.
††The PCS documentation in Sec. 4 helps users assess whether this connection is reliable.

level. That is, the primary value of learning relationships in
data is often to predict some aspect of future reality.

B.1. Formulating prediction. We describe a general framework for
prediction with data D = (x, y), where x ∈ X represents input
features and y ∈ Y the prediction target. Prediction targets
y ∈ Y may be observed responses (e.g. supervised learning) or
extracted from data (e.g. unsupervised learning). Predictive
accuracy is a simple, quantitative metric to evaluate how well a
model represents relationships in D. It is well-defined relative
to a prediction function, testing data, and an evaluation metric.
We detail each of these elements below.

Prediction function: The prediction function

h : X → Y [1]

represents relationships between the observed features and
the prediction target. For instance, in the case of supervised
learning h may be a linear predictor or decision tree. In this
setting, y is typically an observed response, such as a class
label. In the case of unsupervised learning, h could map from
input features to cluster centroids.

To compare multiple prediction functions, we consider

{h(λ) : λ ∈ Λ}, [2]

where Λ denotes a collection models/algorithms. For exam-
ple, Λ may define different tuning parameters in lasso (27)
or random forest (28). For deep neural networks, Λ could
describe different network architectures. For algorithms with
a randomized component, such as k-means or stochastic gra-
dient descent, Λ can represent repeated runs. More broadly,
Λ may describe a set of competing algorithms such as linear
models, random forests, and neural networks, each correspond-
ing to a different problem translations. We discuss model
perturbations in more detail in Sec. D.3.

Testing (held-out) data: We distinguish between training
data that are used to fit a collection of prediction functions,
and testing data that are used to evaluate the accuracy of fitted
prediction functions.‡‡ At a minimum, one should evaluate
predictive accuracy on a held-out test set generated at the
same time and under the same conditions as the training data
(e.g. by randomly sampling a subset of observations). This
type of assessment addresses questions internal validity, which
describe the strength of a relationship in a given sample. It is
also often important to understand how a model will perform
in future conditions that differ from those that generated the
training data. For instance, a biologist may want to apply their
model to new cell lines. A social scientist might use a model
trained on residents from one city to predict the behavior of
residents in another. As an extreme example, one may want to
use transfer learning to apply part of their model to an entirely
new prediction problem. Testing data gathered under different
conditions from the training data directly addresses questions
of external validity, which describe how well a result will
generalize to future observations. Domain knowledge and/or
empirical validation are essential to assess the appropriateness
of different prediction settings. These decisions should be
reported in the proposed PCS documentation (Sec. 4).

‡‡ In some settings, a third set of data are used to tune model parameters.
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Prediction evaluation metric: The prediction evaluation
metric

` : H×X × Y → R+ [3]
quantifies the accuracy of a prediction function h ∈ H by
measuring the similarity between h(x) and y. We adopt the
convention that increasing values of `(h,x, y) imply worse
predictive accuracy. The prediction evaluation metric should
be selected to reflect domain-specific considerations, such as
the types of errors that are more costly. In fact, there is an
entire area of research devoted to evaluating the quality of
probabilistic forecasts through “scoring rules” (see (29) and
references therein). In some cases, it may be appropriate to
consider multiple prediction evaluation metrics and focus on
models that are deemed accurate with respect to all.

Prediction requires human input to formulate, including the
preferred structure of a model/algorithm and what it means
for a model to be suitably accurate. For example, the biologist
studying gene regulation may believe that the simple rules
learned by decision trees are an an appealing representation of
interactions that exhibit thresholding behavior (30). If she is
interested in a particular cell-type, she may evaluate prediction
accuracy on test data measuring only these environments. If
her responses are binary with a large proportion of class-0 re-
sponses, she may choose an evaluation function ` to handle the
class imbalance. All of these decisions should be documented
and argued for (Sec. 4) so that other researchers can review
and assess the strength of conclusions based on transparent
evidence. The accompanying PCS documentation provides a
detailed example.

B.2. Cross validation. As alluded to earlier, CV has become a
powerful work horse to select regularization parameters when
data are approximately i.i.d. (7, 8). CV divides data into
blocks of observations, trains a model on all but one block,
and evaluates the prediction error over each held-out block.
In other words, CV incorporates the scientific principle of
replication by evaluating whether a model accurately predicts
the responses of pseudo-replicates. CV works more effectively
as a tool to select regularization parameters than as an estimate
of prediction error, where it can incur high variability due
to the often positive dependencies between the estimated
prediction errors in the summation of the CV error (31). Just
as peer reviewers make judgment calls on whether a lab’s
experimental conditions are suitable to replicate scientific
results, data scientists must determine whether a removed
block represents a justifiable pseudo replicate of the data,
which requires information from the data collection process
and domain knowledge.

C. Computability. In a broad sense, computability is the gate-
keeper of data science. If data cannot be generated, stored,
managed, and analyzed efficiently and scalably, there is no
data science. Modern science relies heavily on information
technology as part of the DSLC. Each step, from raw data
collection and cleaning, to model building and evaluation, rely
on computing technology and fall under computability in a
broad sense. In a narrow sense, computability refers to the
computational feasibility of algorithms or model building.

Here we use computability in the narrow-sense, which is
closely associated with the rise of machine learning over the
last three decades. Just as scientific instruments and tech-
nologies determine what processes can be effectively measured,

computing resources and technologies determine the types of
analyses that can be carried out. In particular, computability
is necessary to carry out predictability and stability analy-
ses within the PCS framework. Computational constraints
can also serve as a device for regularization. For example,
stochastic gradient descent is widely used for optimization in
machine learning problems (32). Both the stochasticity and
early stopping of a stochastic gradient algorithm play the role
of implicit regularization.

Computational considerations and algorithmic analyses
have long been an important part of statistics and machine
learning. Even before digital computing, calculus played a
computational role in statistics through Taylor expansions
applied to different models. In machine learning, computa-
tional analyses consider the number of operations and required
storage space in terms of observations n, features p, and tun-
ing (hyper) parameters. When the computational cost of
addressing a domain problem or question exceeds available
computational resources, a result is not computable. For in-
stance, the biologist interested in gene regulation may want
to model interaction effects in a supervised learning setting.
However, there are O(ps) possible order-s interactions among
p regulatory factors. For even a moderate number of fac-
tors, exhaustively searching for high-order interactions is not
computable. In such settings, data scientists must restrict
modeling decisions to draw conclusions. Thus it is important
to document why certain restrictions were deemed appropriate
and the impact they may have on conclusions (Sec. 4).

Increases in computing power also provide an unprece-
dented opportunity to enhance analytical insights into complex
natural phenomena. We can now store and process massive
datasets and use these data to simulate large scale processes.
Simulations provide concrete and quantitative representations
of a natural phenomena relative to known input parameters,
which can be perturbed to assess the stability of data results.
As a result, simulation experiments inspired by observed data
and domain knowledge are powerful tools to understand how
results may behave in real-world settings. They represent a
best effort to emulate complex processes, where the reliability
of data results is not always clear. Pairing such simulation
studies with empirical evidence makes the DSLC more trans-
parent for peers and users to review, aiding in the objectivity
of science.

D. Stability at the modeling stage. Computational advances
have fueled our ability to analyze the stability of data results
in practice. At the modeling stage, stability measures how a
data result changes when the data and/or model are perturbed
(16). Stability extends the concept of sampling variability in
statistics, which is a measure of instability relative to other
data that could be generated from the same distribution.
Statistical uncertainty assessments implicitly assume stability
in the form of a distribution that generated the data. This
assumption highlights the importance of other data sets that
could be observed under similar conditions (e.g. by another
person in the lab or another lab at another time).

The concept of a model (“true”) distribution§§ is a con-
struct. When randomization is explicitly carried out, the
model distribution can be viewed as a physical construct. Oth-
erwise, it is a mental construct that must be justified through

§§We believe it is important to use the term “model distribution” instead of “true distribution” to avoid
confusion over whether it is well-justified.
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domain knowledge, an understanding of the data generating
process, and downstream utility. Statistical inference proce-
dures use distributions to draw conclusions about the real
world. The relevance of such conclusions requires empirical
support for the postulated model distribution, especially when
it is a mental construct. In data science and statistical prob-
lems, practitioners often do not make much of an attempt to
justify this mental construct. At the same time, they take the
uncertainty conclusions very seriously. This flawed practice is
likely related to the high rate of false discoveries (3, 4). It is a
major impediment to progress of science and to data-driven
knowledge extraction in general.

While the stability principle encapsulates uncertainty quan-
tification when the model distribution construct is well sup-
ported, it is intended to cover a much broader range of pertur-
bations, such as problem formulation (e.g. different problem
translations), pre-processing, EDA, randomized algorithms,
and choice of models/algorithms. Although seldom carried out
in practice, evaluating stability across the entire DSLC is nec-
essary to ensure that results are reliable and reproducible. For
example, the biologist studying gene regulation must choose
both how to normalize raw data and what algorithm(s) she will
use in her analysis. When there is no principled approach to
make these decisions, the knowledge data scientists can extract
from analyses is limited to conclusions that are stable across
appropriate choices (23, 33, 34). This ensures that another
scientist studying the same data will reach similar conclusions,
despite slight variation in their independent choices.

D.1. Formulating stability at the modeling stage. Stability at the
modeling stage is defined with respect to a target of interest, an
appropriate perturbation to the data and/or algorithm/model,
and a stability metric to measure the change in target that
results from perturbation. We describe each of these in detail
below.

Stability target: The stability target

T (D,λ), [4]

corresponds to the data result or estimand of interest. It
depends on input data D and a specific model/algorithm λ
used to analyze the data. For simplicity, we will sometimes
suppress the dependence on D and λ in our notation. As an
example, T can represent responses predicted by h(λ). Other
examples of T include features selected by lasso with penalty
parameter λ or saliency maps derived from a convolutional
neural network (CNN) with architecture λ.

Data and model/algorithm perturbations: To evaluate
the stability of a data result, we measure the change in target T
that results from a perturbation to the input data or learning
algorithm. More precisely, we define a collection of data
perturbations D and model/algorithm perturbations Λ and
compute the stability target distribution

{T (D,λ) : D ∈ D, λ ∈ Λ}. [5]

For example, appropriate data perturbations include boot-
strap sampling when observations are approximately i.i.d.,
block bootstrap for weakly dependent time series, generative
models that are supported by domain knowledge (Sec. D.2),
and probabilistic models that are justified from an understand-
ing of the data generating process or explicit randomization.

When different prediction functions are deemed equally ap-
propriate based on domain knowledge, each may represent an
appropriate model perturbation (Sec. D.3).

It can be argued that the subjectivity surrounding appropri-
ate perturbations makes it difficult to evaluate results within
the PCS framework. Indeed, perturbation choices are both
subjective human judgment calls and critical considerations
of PCS. The degree to which a data result can be trusted
depends on the justification for a perturbation. This is true
if the perturbation comes from a probabilistic model, as in
traditional statistical inference, or some broader set of pertur-
bations, as in PCS. The goal of PCS is to use and explicitly
document perturbations that are best suited to assess stabil-
ity in complex, high-dimensional data rather than relying on
probabilistic models alone, which have little objective meaning
when the model is not justified. To ensure that results can
be evaluated, the case for an appropriate perturbation must
be made in the publication and in the PCS documentation
(Sec. 4). These transparent narratives allow readers to scruti-
nize and discuss perturbations to determine which should be
applied for a particular field and/or type of data, encouraging
objectivity.

Stability evaluation metric: The stability evaluation met-
ric s(T ; D,Λ) summarizes the stability target distribution
in Eq. (5). For example, if T indicates features selected by
a model trained on data D, we may report the proportion
of times each feature is selected across data perturbations
D ∈ D. If T corresponds to saliency maps derived from dif-
ferent CNN architectures λ ∈ Λ, we may report each pixel’s
range of salience across Λ. When the stability evaluation met-
ric combines targets across model/algorithm perturbations, it
is important that these different targets are scaled appropri-
ately to ensure comparability.

A stability analysis that reveals the target T is unstable
(relative to a meaningful threshold for a particular domain)
may suggest an alternative analysis or target of interest. This
raises issues of multiplicity and/or overfitting if the same data
are used to evaluate new stability targets. Held-out test data
offer one way to mitigate these concerns. That is, training
data can be used to identify a collection of targets that are
suitably stable. These targets can then be evaluated on the
test data. More broadly, the process of refining analyses and
stability targets can be viewed as part of the iterative approach
to data analysis and knowledge generation described by (35).
Before defining a new target or analysis, it may be necessary
to collect new data to help ensure reproducibility and external
validity.

D.2. Data perturbation. The goal of data perturbation under the
stability principle is to mimic a process that could have been
used to produce model input data but was not. This includes
human decisions, such as preprocessing and data cleaning,
as well as data generating mechanisms. When we focus on
the change in target under possible realizations of the data
from a well-supported probabilistic model, we arrive at well-
justified sampling variability considerations in statistics. Hence
data perturbation under the stability principle includes, but
is much broader than, the concept of sampling variability.
It formally recognizes many other important considerations
in the DSLC beyond sampling variability. Furthermore, it
provides a framework to assess trust in estimates of T when a
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probabilistic model is not well-justified and hence sampling
interpretations are not applicable.

Data perturbations can also be used to reduce variability
in the estimated target, which corresponds to a data result of
interest. Random forests incorporate subsampling data per-
turbations (of both the data units and predictors) to produce
predictions with better generalization error (28). Generative
adversarial networks (GANs) use synthetic adversarial exam-
ples to re-train deep neural networks and produce predictions
that are more robust to such adversarial data points (36).
Bayesian models based on conjugate priors lead to marginal
distributions that can be derived by adding observations to
the original data. Thus they can be viewed as a form of data
perturbation that implicitly introduces synthetic data through
the prior. Empirically supported generative models, includ-
ing PDEs, can be used to explicitly introduce synthetic data.
As with Bayesian priors, synthetic data perturbations from
generative models can be used to encourages stability of data
results relative to prior knowledge, such as mechanistic rules
based on domain knowledge (for examples see (37)).

D.3. Algorithm or model perturbation. The goal of algorithm or
model perturbation is to understand how alternative analyses
of the same data affect the target estimate. A classical example
of model perturbation is from robust statistics, where one
searches for a robust estimator of the mean of a location family
by considering alternative models with heavier tails than the
Gaussian model. Another example of model perturbation is
sensitivity analysis in Bayesian modeling (38, 39). Many of the
model conditions used in causal inference are in fact stability
concepts that assume away confounding factors by asserting
that different conditional distributions are the same (40, 41).

Modern algorithms often have a random component, such as
random projections or random initial values in gradient descent
and stochastic gradient descent. These random components
provide natural model perturbations that can be used to assess
the stability of T . In addition to the random components of
a single algorithm, multiple models/algorithms can be used
to evaluate stability of the target. This is useful when there
are many appropriate choices of model/algorithm and no
established criteria or established domain knowledge to select
among them. The stability principle calls for interpreting only
the targets of interest that are stable across these choices of
algorithms or models (33).

As with data perturbations, model perturbations can help
reduce variability or instability in the target. For instance,
(42) selects lasso coefficients that are stable across different
regularization parameters. Dropout in neural networks is a
form of algorithm perturbation that leverages stability to im-
prove generalizability (43). Our previous work (34) stabilizes
random forests to interpret decision rules in tree ensembles
(34, 44), which are perturbed using random feature selection
(model perturbation) and bootstrap (data perturbation).

E. Dual roles of generative models in PCS. Generative mod-
els include both probabilistic models and partial differential
equations (PDEs) with initial or boundary conditions. These
models play dual roles in the PCS framework. On one hand,
they can concisely summarize past data and prior knowledge.
On the other hand, they can be used to generate synthetic
observations that offer a form of data perturbation.

When a generative model is used to summarize data, a com-

mon target of interest is the model’s parameters. Generative
models with known parameters may be used for prediction or
to advance understanding through the mechanistic rules they
represent. Such models correspond to infinite data, though fi-
nite under computational constraints. Generative models with
unknown parameters can be used to motivate surrogate loss
functions through maximum likelihood and Bayesian modeling
methods. Mechanistic interpretations of such models should
not be used to draw scientific conclusions. They are simply
useful starting points to optimize algorithms that must be
subjected to empirical validation.

Generative models that approximate the data generating
process, a human judgment call argued for in the PCS docu-
mentation, can be used as a form of data perturbation. Here
synthetic data augment the observed data and serve the pur-
pose of domain-inspired regularization. The amount of syn-
thetic data to combine with the observed data reflects our
degree of belief in the models, and is an interesting area for
future exploration. Using synthetic data for domain inspired
regularization allows the same algorithmic and computing
platforms to be applied to the combined data. This style of
analysis is reminiscent of AdaBoost, which use the current
data and model to modify the data used in the next iteration
without changing the base-learner (45).

F. Connections among the PCS principles. Although we have
discussed the three principles of PCS individually, they share
important connections. Computational considerations can
limit the predictive models/algorithms that are tractable, par-
ticularly for large, high-dimensional datasets. These com-
putability issues are often addressed in practice through scal-
able optimization methods such as gradient descent (GD) or
stochastic gradient descent (SGD). Evaluating predictability
on held-out data is a form of stability analysis where the train-
ing/test sample split represents a data perturbation. Other
perturbations used to assess stability require multiple runs of
similar analyses. Parallel computation is well suited for these
perturbations.

3. PCS inference through perturbation analysis

When data results are used to guide future decisions or actions,
it is important to assess the quality of the target estimate.
For instance, suppose a model predicts that an investment
will generate a 10% return over one year. Intuitively, this
prediction suggests that “similar” investments return 10% on
average. Whether or not a particular investment will realize a
return close to 10% depends on whether returns for “similar”
investments ranged from −20% to 40% or from 8% to 12%. In
other words, the variability of a prediction conveys important
information about how much one should trust it.

In traditional statistics, confidence measures describe the
uncertainty of an estimate due to sampling variability under
a well-justified probabilistic model. However, decisions made
throughout the DSLC add another layer of uncertainty that
may bias data results. This issue has been previously acknowl-
edged in the modeling stage by (46), who derive “hacking
intervals” to assess the range of a summary statistic optimized
over a possible set of data and algorithm perturbations. In
the PCS framework, we propose perturbation intervals, or
perturbation regions in general, to quantify the stability of
target estimates relative to different perturbations, including
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data cleaning and problem translations. Perturbation intervals
are conceptually similar to confidence intervals. The primary
difference is that they are explicitly connected to perturba-
tions, justified in PCS documentation (Sec. 4) and evaluated
by independent reviewers and domain experts.

As an example, perturbation intervals for a target parame-
ter from a single method based on bootstrap sampling special-
ize to traditional confidence intervals based on the bootstrap.
More broadly, perturbation intervals quantify the variability of
a target parameter value across the entire DSLC. For instance,
a data scientist may consider multiple preprocessing, subsam-
pling, and modeling strategies to predict investment returns.
The resulting perturbation intervals describe the range of re-
turns across worlds represented by each perturbation. Their
reliability lies squarely on whether the set of perturbations
captures the full spectrum of appropriate choices that could be
made throughout the DSLC, which should be evaluated by do-
main experts and independent reviewers. This highlights the
importance of perturbations that could plausibly generate the
observed data, represent the range of uncertainty surrounding
an analysis to the best degree possible, and are transparently
documented for others to evaluate (Sec. 4).

As a starting point, we focus on a basic form of PCS in-
ference that generalizes traditional statistical inference. Our
approach to inference allows for a range of data and algo-
rithm/model perturbations, making it flexible in its ability to
represent uncertainty throughout the DSLC.

A. PCS perturbation intervals. The reliability of perturbation
intervals lies on the appropriateness of each perturbation. Con-
sequently, perturbation choices should be seriously deliberated,
clearly communicated, and evaluated by objective reviewers.
Here we propose a framework for PCS inference based on a
single problem translation and target estimand, leaving the
case of multiple translations/estimands to future work.¶¶

1. Problem formulation: Translate the domain question
into a data science problem that specifies how the question
will be addressed. Define a prediction target y, appro-
priate data D and/or model Λ perturbations, prediction
function(s) {h(λ) : λ ∈ Λ}, training/test split, prediction
evaluation metric `, stability metric s, and stability target
T (D,λ). Document why these choices are appropriate in
the context of the domain question.

2. Prediction screening: For a threshold τ , screen out
models that do not fit the data (via prediction accuracy)

Λ∗ = {λ ∈ Λ : `(h(λ),x, y) < τ}. [6]

Examples of appropriate threshold include domain ac-
cepted baselines, the top k performing models, or models
whose accuracy is suitably similar to the most accurate
model. If the goal of an analysis is prediction, testing
data should be held-out until reporting the final predic-
tion accuracy of a model in step 4. In such a case, Eq. (6)
can be evaluated using a surrogate sample-splitting ap-
proach such as CV. If the goal of an analysis extends
beyond prediction (e.g. to feature selection), Eq. (6) may
be evaluated on held-out test data.

¶¶The PCS perturbation intervals cover different problem translations through Λ and are clearly ex-
tendable to include perturbations in the pre-processing step through D.

3. Target value perturbation distributions: For each
of the survived models Λ∗ from step 2, compute the stabil-
ity target under each data perturbation D. This results
in a joint distribution of the target over data and model
perturbations as in Eq. (5). For a collection of perturba-
tions, requiring stability of T across all perturbations is
more conservative in terms of type I error than requiring
stability for any single perturbation. However, different
domain questions require control over different types of
error. How and when to combine results across pertur-
bations is thus a human judgment call that should be
transparently justified and documented.

4. Perturbation result reporting: Summarize the target
value perturbation distribution using the stability metric
s. For instance, if T is one-dimensional we could summa-
rize its perturbation distribution using the 10th and 90th
percentiles or a visualization. If T is multi-dimensional,
we could report a low dimensional projection of the pertur-
bation distribution. When perturbation results combine
targets across models/algorithms, they may need to be
rescaled to ensure comparability. When perturbation
intervals are reported separately for model/algorithm per-
turbation, predictive accuracy evaluated in step 2 may be
used as a measure of trust to rank each interval.

At a high level, the PCS inference uses perturbation intervals
to identify the stable part of accurate models. If perturbation
results reveal instability among accurate models, PCS inference
can be used to interpret aspects that are shared (i.e. stable)
across these models. In this setting, PCS can be viewed as
an implicit application of Occam’s razor. That is, it draws
conclusions from the stable portion of predictive models to
simplify data results, making them more reliable and easier
to interpret. If perturbation intervals reveal that complex
models are both stable and accurate, PCS inference provides
justification for the added complexity.

B. PCS hypothesis testing. Hypothesis testing from tradi-
tional statistics is commonly used in decision making for sci-
ence and business alike. The heart of Fisherian testing (47)
lies in calculating the p-value, which represents the probability
of an event more extreme than in the observed data under a
null hypothesis or distribution. Smaller p-values correspond
to stronger evidence against the null hypothesis or (ideally)
the scientific theory embedded in the null hypothesis. For
example, we may want to determine whether a particular gene
is differentially expressed between breast cancer patients and a
control group. Given i.i.d. random samples from each popula-
tion, we could address this question in the classical hypothesis
testing framework using a t-test. The p-value describes the
probability of seeing a difference in means more extreme than
observed if the genes are not differentially expressed.

While hypothesis testing is valid philosophically, many of
the assumptions that it relies on are unrealistic in practice. For
instance, unmeasured confounding variables can bias estimates
of causal effects. These issues are particularly relevant in the
social sciences, where randomized trials are difficult or impos-
sible to conduct. Resource constraints can limit how data are
collected, resulting in samples that do not reflect the popula-
tion of interest, distorting the probabilistic interpretations of
traditional statistical inference. Moreover, hypothesis testing
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assumes empirical validity of probabilistic data generating
models.∗∗∗ When randomization is not carried out explicitly,
a particular null distribution must be justified from domain
knowledge of the data generating mechanism. Such issues are
seldom taken seriously in practice, resulting in settings where
the null distribution is far from the observed data. As a result,
p-values as small as 10−5 or 10−8 are now common to report,
despite the fact that there are rarely enough data to reliably
calculate these values, especially when multiple hypotheses
(e.g. thousands of genes) are evaluated. When results are
so far off on the tail of the null distribution, there is no em-
pirical evidence as to why the tail should follow a particular
parametric distribution. Moreover, hypothesis testing as prac-
ticed today often relies on analytical approximations or Monte
Carlo methods, where issues arise for such small probability
estimates. In fact, there is a specialized area of importance
sampling to deal with simulating small probabilities (49, 50),
but these ideas have not been widely adopted in practice.

PCS hypothesis testing builds on perturbation intervals
to address these practical issues and the cognitively mislead-
ing nature of small p-values. It uses the null hypothesis to
define constrained perturbations that represent a plausible
data generating process, which in the best case corresponds
to an existing scientific theory. This includes probabilistic
models, when they are well founded, as well as other data
and/or algorithm perturbations. For instance, generative mod-
els based on PDEs can be used to simulate data according to
established physical laws. Alternatively, a subset of data can
be selected as controls (as an example see (51)). By allowing
for a broad class of perturbations, PCS hypothesis testing
allows us to compare observed data with data that respects
some simple structure known to represent important character-
istics of the domain question. Of course, the appropriateness
of a perturbation is a human judgment call that should be
clearly communicated in PCS documentation and debated by
researchers. Much like scientists deliberate over appropriate
controls in an experiment, data scientists should debate the
appropriate perturbations in a PCS analysis.

B.1. Formalizing PCS hypothesis testing. Formally, we consider
settings with observable input features x ∈ X , prediction
target y ∈ Y, prediction functions {h(λ) : λ ∈ Λ}, and a null
hypothesis that qualitatively describes some aspect of the
domain question. PCS hypothesis testing translates the null
hypothesis into a constrained perturbation and generates data

D0 = {x0, y0} [7]

according to this perturbation.††† The particular choice of
constrained perturbation should be explicitly documented
and justified by domain knowledge. We use the constrained
perturbation to construct and compare perturbation intervals
for both D0 and D and evaluate whether the observed data is
consistent with the hypothesis embedded in D0.

C. PCS inference in neuroscience and biology. The work in
(52) considers the null hypothesis that population level struc-
ture in single neuron data is the expected byproduct of primary

∗∗∗Under conditions, Freedman (48) showed that some tests can be approximated by permutation
tests when data are not generated from a probabilistic model, but these results are not broadly
applicable.

†††A null hypothesis may correspond to multiple data or model/algorithm perturbations. We focus on
a single data perturbation here for simplicity.
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Fig. 2. ROC curves for feature selection in linear model setting with n = 250
observations. Each plot corresponds to a different generative model.

features (e.g. correlations across time). This can be viewed as
a form of PCS inference. The authors use a maximum entropy
approach, whose constraint is represented by the number of
moments, to generate data that share primary features with
the observed data but are otherwise random, and compare
population level findings between the observed and simulated
data. In the accompanying PCS documentation, we consider
the null hypothesis that genomic interactions appear with
equal frequency among different classes of genomic elements.
We use a sample splitting strategy which treats inactive ele-
ments (class-0 observations) as a baseline to determine whether
interactions appear with “unusual” frequency. Once again,
these comparisons rely on human judgment to determine when
results are sufficiently different. These choices depend on the
domain context and how the problem has been translated.
They should be transparently communicated by the researcher
in the PCS documentation.

D. PCS inference simulation studies in sparse linear models.
We tested PCS inference in an extensive set of data-inspired
simulation experiments in the sparse linear model setting that
has been widely studied by the statistics community over the
past two decades (SI Appendix). In total, we considered 6
distinct generative models intended to reflect some of the is-
sues that arise in practice. We compared our proposed PCS
inference procedure with selective inference and asymptotic
normality results using ROC curves. These provide a useful
criterion to assess false positives and true positives, which
are both important considerations in settings where resources
dictate how many findings can be evaluated in follow-up anal-
yses/experiments. Across all models, PCS inference compares
favorably to both selective inference and asymptotic normality
results (Fig. 4). However, we note that the principal advan-
tage of PCS inference is that it can be easily generalized to
more complex settings faced by data scientists today as in the
two examples described above.

4. PCS documentation

The PCS framework includes an accompanying R Markdown
or Jupyter (iPython) Notebook, which seamlessly integrates
narratives, codes, and analyses. These narratives are necessary
to describe the domain problem and support assumptions and
choices made by the data scientist regarding computational
platform, data cleaning and preprocessing, data visualization,
model/algorithm, prediction metric, prediction evaluation,
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Fig. 3. Assumptions made throughout the DSLC allow researchers to use models
as an approximation of reality. Narratives provided in PCS documentation can help
justify assumptions to connect these two worlds.

stability target, data and algorithm/model perturbations, sta-
bility metric, and data conclusions in the context of the domain
problem. These narratives should be based on referenced prior
knowledge and an understanding of the data collection pro-
cess, including design principles or rationales. The narratives
in the PCS documentation help bridge or connect the two
parallel universes of reality and models/algorithms that exist
in the mathematical world (Fig. 3). In addition to narratives
justifying human judgment calls (possibly with data evidence),
PCS documentation should include all codes used to generate
data results with links to sources of data and metadata.

We propose the following steps in a notebook‡‡‡:
1. Domain problem formulation (narrative). Clearly state

the real-world question and describe prior work related to
this question. Indicate how this question can be answered
in the context of a model or analysis.

2. Data collection and storage (narrative). Describe how
the data were generated, including experimental design
principles, and reasons why data is relevant to answer the
domain question. Describe where data is stored and how
it can be accessed by others.

3. Data cleaning and preprocessing (narrative, code, visual-
ization). Describe steps taken to convert raw data into
data used for analysis, and why these preprocessing steps
are justified. Ask whether more than one preprocessing
methods should be used and examine their impacts on
the final data results.

4. Exploratory data analysis (narrative, code, visualization).
Describe any preliminary analyses that influenced model-
ing decisions or conclusions along with code and visual-
izations to support these decisions.

5. Modeling and Post-hoc analysis (narrative, code, visual-
ization). Carry out PCS inference in the context of the
domain question. Specify appropriate model and data
perturbations. If necessary, specify null hypotheses and
associated perturbations.

6. Interpretation of results (narrative and visualization).
Translate the data results to draw conclusions and/or
make recommendations in the context of domain problem.

This documentation gives the reader as much information
as possible to make informed judgments regarding the evidence
and process for drawing a data conclusion in the DSLC. A
case study of the PCS framework in the genomics problem
discussed earlier is documented on Zenodo.

‡‡‡This list is reminiscent of the list in the “data wisdom for data science" blog that one of the authors
wrote at http://www.odbms.org/2015/04/data-wisdom-for-data-science/

5. PCS recommendation system for scientific hypothe-
sis generation

In general, causality implies predictability and stability over
many experimental conditions; but not vice versa. The causal
inference community has long acknowledged connections be-
tween stability and estimates of causal effects. For instance,
many researchers have studied paradoxes surrounding associa-
tions that lead to unstable estimates of causal effects (53–55).
Estimates in the Neyman-Rubin potential outcomes framework
rely on a stable treatment across observational units (56, 57).
Sensitivity analyses test the stability of a causal effect relative
to unmeasured confounding (58, 59). Stability, particularly
with respect to predictions across experimental interventions,
has even been proposed as a criteria to establish certain causal
relationships under the name “invariance” (40, 60–63).

PCS inference builds on these ideas, using stability and pre-
dictability to rank target estimates for further studies, includ-
ing follow-up experiments. In our recent works on DeepTune
(33), iterative random forests (iRF) (34), and signed iterative
random forests (siRF) (44), we use PCS inference to make
recommendations as inputs to downstream human decisions.
For example, PCS inference suggested potential relationships
between neurons in the visual cortex and visual stimuli as well
as 3rd and 4th order interactions among biomolecules that are
candidates for regulating gene expression. Predictability and
stability do not replace physical experiments to prove or dis-
prove causality. However, we hope computationally tractable
analyses that demonstrate high predictability and stability sug-
gest hypotheses or intervention experiments that have higher
yields than otherwise. This hope is supported by the fact that
80% of the 2nd order interactions identified by iRF (34) had
been verified in the literature through physical experiments.

6. Conclusion

In this paper, we unified the principles of predictability, com-
putability and stability (PCS) into a framework for veridical
data science, comprised of both a workflow and documenta-
tion. The PCS framework aims to provide responsible, reliable,
reproducible, and transparent results across the DSLC. It is a
step towards systematic and unbiased inquiry in data science,
similar to strong inference (64). Prediction serves a reality
check, evaluating how well a model/algorithm captures the
natural phenomena that generated the data. Computabil-
ity concerns with respect to algorithm efficiency determine
the tractability of the DSLC and point to the importance of
data-inspired simulations in the design of useful algorithms.
Stability relative to data and model perturbations was ad-
vocated in (16) as a minimum requirement for data results’
reproducibility and interpretability.

We made important conceptual progress on stability by ex-
tending it to the entire DSLC, including problem formulation,
data collection, data cleaning, and EDA. In addition, we devel-
oped PCS inference to evaluate the variability of data results
with respect to a broad range of perturbations encountered in
modern data science. Specifically, we proposed PCS pertur-
bation intervals to evaluate the reliability of data results and
hypothesis testing to draw comparisons with simple structure
in the data. We demonstrated that PCS inference performs
favorably in a feature selection problem through data-inspired
sparse linear model simulation studies and in a genomics case
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study. To communicate the many human judgment calls in
the DSLC, we proposed PCS documentation, which integrates
narratives justifying judgment calls with reproducible codes
and visualizations. This documentation makes data-driven de-
cisions as transparent as possible so that users of data results
can determine whether they are reliable.

In summary, we have offered a new conceptual and practi-
cal framework to guide the DSLC, but many open problems
remain. The basic PCS inference needs to be expanded into
multi-translations of the same domain question and vetted in
practice well beyond the case studies in this paper and in our
previous works, especially by other researchers. Additional
case studies will help unpack subjective human judgment calls
in the context of specific domain problems. The knowledge
gained from these studies can be shared and critiqued through
transparent documentation. Based on feedback from practice,
theoretical studies of PCS procedures in the modeling stage
are also called for to gain further insights under stylized models
after sufficient empirical vetting. Finally, although there have
been some theoretical studies on the connections between the
three principles (see (65, 66) and references therein), much
more work is necessary.
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8. Supporting Information: Simulation studies of PCS
inference in the linear model setting

In this section, we consider the proposed PCS perturbation
intervals through data-inspired simulation studies. We focus
on feature selection in sparse linear models to demonstrate
that PCS inference provides favorable results, in terms of ROC
analysis, in a setting that has been intensively investigated by
the statistics community in recent years. Despite its favorable
performance in this simple setting, we note that the princi-
pal advantage of PCS inference is its generalizability to new
situations faced by data scientists today. That is, PCS can
be applied to any algorithm or analysis where one can define
appropriate perturbations. In the accompanying PCS case
study, we demonstrate the ease of applying PCS inference in
the problem of selecting high-order, rule-based interactions
from a random forest in a high-throughput genomics problem
(whose data the simulation studies below are based upon).

To evaluate feature selection in the context of linear mod-
els, we considered data for 35 genomic assays measuring
the binding enrichment of 23 unique TFs along 7809 seg-
ments of the genome (67–69). That is, for an observation
xi = (xi1, . . . , xip), i = 1 . . . , n, xij measured the enrichment
of the jth TF at the ith segment of the genome. We augmented
this data with 2nd order polynomial terms for all pairwise in-
teractions (excluding quadratic terms x2

i ), resulting in a total
of p = 35 +

(35
2

)
= 630 features. For a complete description of

the data, see the accompanying PCS documentation. We stan-
dardized each feature and randomly selected s = b√pc = 25
active features to generate responses

y = xTβ + ε [8]

where x ∈ R7809×630 denotes the normalized matrix of fea-
tures, βj = 1 for any active feature j and 0 otherwise, and
ε ∈ Rn represents mean 0 noise drawn from a variety of dis-
tributions. In total, we considered 6 distinct settings with 4
noise distributions: i.i.d. Gaussian, Students t with 3 degrees
of freedom, multivariate Gaussian with block covariance struc-
ture, Gaussian with variance σ2

i ∝ ‖xi‖22 and two misspecified
models: i.i.d. Gaussian noise with 12 active features removed
prior to fitting the model, i.i.d. Gaussian noise with responses
generated as

y =
∑
Sj∈S

βSj

∏
k∈Sj

1(xk > tk) + ε [9]

where S denotes a set of randomly sampled pairs of active
features.

A. Simple PCS perturbation intervals. We evaluated selected
features using the PCS perturbation intervals. Below we
outline each step for constructing such intervals in the context
of linear model feature selection.

1. Our prediction target was the simulated responses y and
our stability target T ⊆ {1, . . . , p} the features selected
by lasso when regressing y on x. To evaluate prediction
accuracy, we randomly sampled 50% of observations as
a held-out test set. Our model/algorithm perturbatiosn
were given by the default values of lasso penalty parameter
in the R package glmnet and B = 100 bootstrap replicates
respectively.

2. We formed a set of filtered models Λ∗ by taking λ cor-
responding to the 10 most accurate models in terms of
`2 prediction error (Fig. 4). Pre-specified prediction
thresholds achieved qualitatively similar results and are
reported in Fig. 5. Since the goal of our analysis was
feature selection, we evaluated prediction accuracy on the
held-out test data. We repeated the steps below on each
half of the data and averaged the final results.

3. For each λ ∈ Λ∗ and b = 1, . . . , 100 we let T (x(b), λ)
denote the features selected for bootstrap sample b with
penalty parameter λ.

4. The distribution of T across data and model perturba-
tions can be summarized into a range of stability intervals.
Since our goal was to compare PCS with classical statis-
tical inference, which produces a single p-value for each
feature, we computed a single stability score for each
feature j = 1 . . . , p:

sta(j) = 1
B · |Λ∗|

100∑
b=1

∑
λ∈Λ∗

1(j ∈ T (x(b), λ))

Intuitively, stability scores reflect our degree of belief that a
given feature is active in the model, with higher scores implying
a higher degree of certainty. In practice, these scores could be
used to rank features and identify the most reliable collection
for further consideration (e.g. experimental validation). We
note that the stability selection proposed in (42) is similar,
but without the prediction error screening.

B. Results. We compared the above PCS stability scores with
asymptotic normality results applied to features selected by
lasso and selective inference (70). We note that asymptotic
normality and selective inference both produce p-values for
each feature, while PCS produces stability scores.

Figs. 4 and 5 show ROC curves for feature selection av-
eraged across 100 replicates of the above experiments. The
ROC curve is a useful evaluation criterion to assess both false
positive and true positive rates when experimental resources
dictate how many selected features can be evaluated in further
studies. In particular, ROC curves provide a balanced evalua-
tion of each method’s ability to identify active features while
limiting false discoveries. Across all settings, PCS compares
favorably to the other methods. The difference is particularly
pronounced in settings where other methods fail to recover a
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Fig. 4. ROC curves for feature selection in linear model setting, using 10 most accurate models, with n = 1000 observations. Each plot corresponds to a different generative
model. Prediction accuracy screening for PCS inference was conducted using a pre-specified threshold.

large portion of active features (n < p, heteroskedastic, and
misspecified model). In such settings, stability analyses allow
PCS to recover more active features while still distinguish-
ing them from inactive features. While its performance in
this setting is promising, the principal advantage of PCS is
its conceptual simplicity and generalizability. That is, the
PCS perturbation intervals described above can be applied
in any setting where data or model/algorithm perturbations
can be defined, as illustrated in the genomics case study in
the accompanying PCS documentation. Traditional inference
procedures cannot typically handle multiple models easily.
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Fig. 5. ROC curves for feature selection in linear model setting, using pre-spcified threshold, with n = 250 (top two rows) and n = 1000 (bottom two rows) observations.
Each plot corresponds to a different generative model. Prediction accuracy screening for PCS inference was conducted using a pre-specified threshold.
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