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Abstract—Open Science is key to future scientific research
and promotes a deep transformation in the whole scientific
research process encouraging the adoption of transparent and
collaborative scientific approaches aimed at knowledge sharing.
Open Science is increasingly gaining attention in the current
and future research agenda worldwide. To effectively address
Open Science goals, besides Open Access to results and data, it
is also paramount to provide tools or environments to support the
whole research process, in particular the design, execution and
sharing of transparent and reproducible experiments, including
data provenance (or lineage) tracking. This work introduces the
Climate Analytics-Hub, a new component on top of the Earth
System Grid Federation (ESGF), which joins big data approaches
and parallel computing paradigms to provide an Open Science
environment for reproducible multi-model climate change data
analytics experiments at scale. An operational implementation
has been set up at the SuperComputing Centre of the Euro-
Mediterranean Center on Climate Change, with the main goal of
becoming a reference Open Science hub in the climate community
regarding the multi-model analysis based on the Coupled Model
Intercomparison Project (CMIP).

Index Terms—Open Science, provenance, analytics-hub, repro-
ducibility, data analytics

I. INTRODUCTION

Open science is becoming increasingly crucial for scientific
research and can have a significant impact on the whole
research cycle. It leverages new ways to perform research
and share the results through open digital technologies and
collaborative tools [1]. There is no clear definition of Open
Science; it can actually be considered as an umbrella term cov-
ering a broad range of aspects related to scientific knowledge
sharing and research collaboration, embracing other terms
such as Open Access, Open Data, Open Source software
and Open reproducible research [2] [3]. In [4] review, the
following definition of Open Science is proposed: ”Open
Science is transparent and accessible knowledge that is shared
and developed through collaborative networks”. From this
review it emerges, hence, that the key aspect of Open Science
is transparent, accessible, shared and collaborative developed
knowledge. Transparency, openness and reproducibility are

also mentioned as key factors for an Open (Science) research
culture [5].

In the European landscape, Open Science is considered
strategic for future research programmes. In 2015, the EU
Commission actually set Open Science, Open Innovation and
Open to the world as three main goals for future research
and innovation in the EU [6]. From this perspective, research,
data, and dissemination represent three key dimensions for
Open Science in Europe. Several initiatives and projects have
therefore been funded by the EU commission to promote open
science and innovation. A very important initiative in this di-
rection is OpenAIRE (Open Access Infrastructure for Research
in Europe), that has been supported since 2006 by a series of
EU projects to ease the adoption of Open Access in Europe,
by providing open access to the research outputs funded by
the EU [7]. Another example is the FOSTER portal, which has
been supported by the FP7 FOSTER (Facilitate Open Science
Training for European Research) and H2020 FOSTER Plus
(Fostering the practical implementation of Open Science in
Horizon 2020 and beyond) EU projects and provides training
resources to aid researchers and other stakeholders in the
development of Open Science practices [8].

Currently, one of the most important initiatives carried out
by the EU is the European Open Science Cloud (EOSC),
which ”aims to create a trusted environment for hosting and
processing research data to support EU science in its global
leading role” [9].

One of the key aspects in Open Science is the FAIR
Reproducibility principle [10] [11]. Several efforts have been
made towards addressing computational reproducibility, as
seen in literature [12] [13] [14].

This work introduces the Climate Analytics-Hub, a new
component built on top of the Earth System Grid Federation
(ESGF), which joins big data approaches and parallel com-
puting paradigms with the aim of providing an Open Science-
ready environment for reproducible multi-model climate an-
alytics experiments at scale based on the Coupled Model
Intercomparison Project (CMIP).

The rest of this paper is organized as follows: Section II



describes multi-model climate data analytics, along with the
key concepts and main challenges, in the context of the CMIP
experiments and the ESGF federation, whereas Section III
introduces the architecture of the Climate Analytics-Hub to-
gether with the main requirements it addresses. Section IV
describes the internal design of the Climate Analytics-Hub,
its infrastructural view and implementation details as well
as Open Science aspects related to analytics workflows and
applications, such as, in particular, reproducibility. Then, Sec-
tion V describes the implementation of multi-model climate
data analysis, emphasizing the analytics workflow runtime
execution and the available provenance support. Finally, Sec-
tion VI draws the main conclusions and hints at future work.

II. MULTI-MODEL CLIMATE DATA ANALYTICS IN THE
CMIP CONTEXT

This section describes multi-model climate data analytics in
the CMIP context, introducing the CMIP experiment and the
ESGF infrastructure, as well as presenting the key concepts,
main challenges and issues of these analyses.

A. The CMIP experiments and Earth System Grid Federation

The increased models resolution in the development of
comprehensive Earth System Models is rapidly leading to a
very large climate simulations output that poses significant
scientific data management challenges in terms of data sharing,
processing, analysis, visualization, preservation, curation, and
archiving [15] [16] [17].

In this domain, large-scale global experiments for climate
model intercomparison (CMIP* [18]) have led to the devel-
opment of the Earth System Grid Federation (ESGF [19]).
It is a federated data infrastructure that involves a large
set of data providers/modelling centres around the globe
and includes the European contribution through the IS-ENES
project (by the European Network for Earth System Modelling
(ENES) community). The Coupled Model Intercomparison
Project (CMIP) has been established by the Working Group on
Coupled Modelling [20] (WGCM) under the World Climate
Research Programme (WCRP).

From an infrastructural standpoint, ESGF provides
production-level support for search & discovery, browsing
and access to climate simulation data and observational data
products. It should be noted that:

• ESGF has been serving the Coupled Model Intercom-
parison Project Phase 5 (CMIP5) experiment, providing
access to about 2PB of data produced around the globe
by 26 institutes (groups) and 60 models.

• ESGF is supporting the CMIP6 experiments, which are
expected to publish around 20PB of data (a 10X factor
with respect to CMIP5).

It is also important to point out that, today, ESGF primarily
provides a large-scale, federated data sharing infrastructure.
Nevertheless, several efforts are currently being made to
include analytics and computing capabilities in production as
future plan for 2019 onward. In such a context, CMIP-based
multi-model analyses are clearly one of the most relevant

exercises that can be run by scientists on top of the ESGF
data archive.

B. Multi-model climate data analysis: key concepts

Multi-model data analysis requires access to data produced
by large-scale inter-comparison experiments (e.g. CMIP) and
made available through the ESGF federated data archive,
as well as running workflows with tens/hundreds of data
analytics operators. Examples of multi-model analysis are,
among others: anomaly analysis, trend analysis and climate
change signal analysis.

In the context of the H2020 INDIGO-Datacloud project
[21], the Precipitation Trend Analysis (PTA) was selected as
a pilot case [22] [23] since it is scientifically relevant and also
general enough to validate the infrastructural aspects that also
apply to other classes of data analysis (e.g. outlier analysis).
Fig. 1 shows the workflow designed for the PTA in the CMIP5
context.

The proposed analysis consists of two main stages:
• the first part includes a number of identical sub-

workflows, each associated with a specific climate model
involved in the CMIP experiment and independent of the
others; a future climate scenario must also be defined as
input for this step;

• the second part considers a final workflow to perform
statistical analysis on the set of output provided at the
end of each sub-workflow at the first stage.

In Fig. 1, the sub-workflows are shown within cyan rectan-
gles. The tasks related to historical data process are in green
rectangles, whereas the tasks that process data resulting from
the model are in red rectangles. It should be noted that the
time domain related to historical data is fixed; for instance,
the 1976-2005 range is adopted for the experiment. The time
domain related to models shall have the same duration (e.g.
30 years) though it clearly refers to a future time range, like
2071-2100.

Each sub-workflow performs the following tasks in the first
phase of the experiment: (i) discovery of the two input datasets
(historical and future scenario data), (ii) spatio/temporal sub-
setting based on the user’s input, (iii) evaluation of the pre-
cipitation trend for both datasets, (iv) trends comparison over
the considered domain, and (v) 2D map generation (output).

In the second phase of the experiment, the multi-model
statistical analysis includes the following four steps: (i) data
gathering from the first phase (NetCDF files [24]), (ii) data re-
gridding, (iii) statistical analysis, and (iv) final 2D maps related
to the inferred statistical indicators. The final data or maps can
then be published or shared with the whole experiment flow
definition.

C. Multi-model climate analysis: challenges and issues

To fully understand some key challenges and very practical
issues related to multi-model climate analysis, it is important
to analyse the entire user’s scientific workflow behind it. To
perform multi-model climate analysis, the end-users must:



2006…2010

2091…2100

1850…1859

2000…2005

…

…

CMIP5

Federated Archive

.nc

CMCC-CM 
RCP8.5
Atmos
TAS

CMCC-CM 
RCP8.5
Atmos
TAS

CMCC-CM 

RCP8.5

Atmos, pr

(daily, 6 hourly, 

3 hourly)

CMCC-CM 
RCP8.5
Atmos
TAS

CMCC-CM 
RCP8.5
Atmos
TAS

CMCC-CM 

Historical

Atmos, pr

(daily, 6 hourly, 

3 hourly)

IMPORT SUBSETTING

[ time ]

(2071…2100)

SUBSETTING

[ time ]

(JJA)

APPLY

[ time ] percentile

(90th percentile, JJA)

IMPORT SUBSETTING

[ time ]

(1976…2005)

SUBSETTING

[ time ]

(JJA)

APPLY

[ time ] percentile

(90th percentile, JJA)

INTERCUBE

Intercomparison

(%, abs)

EXPORT
APPLY

[ time ] linear regression

(trend coefficient)

APPLY

[ time ] linear regression

(trend coefficient)

2006…2010

2091…2100

1850…1859

2000…2005

…

…

.nc

CMCC-CM 
RCP8.5
Atmos
TAS

CMCC-CM 
RCP8.5
Atmos
TAS

Other Model 1 

RCP8.5

Atmos, pr

(daily, 6 hourly, 

3 hourly)

CMCC-CM 
RCP8.5
Atmos
TAS

CMCC-CM 
RCP8.5
Atmos
TAS

Other Model 1

Historical

Atmos, pr

(daily, 6 hourly, 

3 hourly)

IMPORT SUBSETTING

[ time ]

(2071…2100)

SUBSETTING

[ time ]

(JJA)

APPLY

[ time ] percentile

(90th percentile, JJA)

IMPORT SUBSETTING

[ time ]

(1976…2005)

SUBSETTING

[ time ]

(JJA)

APPLY

[ time ] percentile

(90th percentile, JJA)

INTERCUBE

Intercomparison

(%, abs)

EXPORT
APPLY

[ time ] linear regression

(trend coefficient)

APPLY

[ time ] linear regression

(trend coefficient)

2006…2010

2091…2100

1850…1859

2000…2005

…

…

.nc

CMCC-CM 
RCP8.5
Atmos
TAS

CMCC-CM 
RCP8.5
Atmos
TAS

Other Model N

RCP8.5

Atmos, pr

(daily, 6 hourly, 

3 hourly)

CMCC-CM 
RCP8.5
Atmos
TAS

CMCC-CM 
RCP8.5
Atmos
TAS

Other Model N

Historical

Atmos, pr

(daily, 6 hourly, 

3 hourly)

IMPORT SUBSETTING

[ time ]

(2071…2100)

SUBSETTING

[ time ]

(JJA)

APPLY

[ time ] percentile

(90th percentile, JJA)

IMPORT SUBSETTING

[ time ]

(1976…2005)

SUBSETTING

[ time ]

(JJA)

APPLY

[ time ] percentile

(90th percentile, JJA)

INTERCUBE

Intercomparison

(%, abs)

EXPORT
APPLY

[ time ] linear regression

(trend coefficient)

APPLY

[ time ] linear regression

(trend coefficient)

MULTICUBE

merge

APPLY

ensemble analysis

.nc

EXPORT

Fig. 1. Definition of the Precipitation Trend Analysis workflows.

1) download all the needed input datasets from the dis-
tributed ESGF data nodes to their local machines (lo-
cal could mean the scientist’s workstation or the user
account on a HPC facility). Such a preparatory step
represents a strong barrier for climate scientists, as
the data download can take a significant amount of
time (depending on the amount of data required by the
analysis). Moreover, downloads can suffer from network
instability, dropped connections, etc. which make the
entire process even more painful.

2) prepare a set of batch scripts that can properly process
all the collected data. To this end, analyzing large
datasets involves running multiple data operators, from
a set of domain-oriented command line interface (CLI)
tools (mostly sequential). This is usually done via scripts
on the client side and requires climate scientists to take
care of, implement and replicate workflow-like control
logic aspects in their scripts, along with the expected
application-level part. At this level, re-usability of scripts
has never (or very poorly) been addressed.

3) install and update all the required data analysis
tools/libraries on their local machines. To this end, the
proper setup of the ICT environment (which requires
system management and technical skills) is key to run
the analysis, as the user generally leverages a wide set
of tools and the compatibility at ecosystem level (e.g.
libraries), mainly related to software versions, can raise
several issues.

4) run the analysis taking into account the available com-
putational and storage resources. This could lead to
user-specific solutions about how to split the analysis,
exploit parallelism, use the available resources, etc. In

this regard, the large volume of data and the strong
I/O requirements pose additional challenges related to
performance as well as data handling.

In such a context, the reproducibility of the multi-model
analyses has never been fully addressed from an Open Science
perspective. Indeed, it can be easily argued that the client-
side nature of the workflow is a major barrier towards the
implementation of an Open Science driven climate analytics
environment. The next section provides a detailed description
of the approach inspired by Open Science principles (e.g. re-
producibility) and useful to address the mentioned challenges
and issues.

III. CLIMATE ANALYTICS-HUB: ARCHITECTURAL VIEW
AND KEY REQUIREMENTS

This section presents the architectural view of the Climate
Analytics-Hub in the large as well as its role with respect to
the legacy ESGF infrastructure, as well as its key requirements
to address the multi-model analytics challenges described in
the previous section.

A. Architectural view in the large

The proposed architecture (Fig. 2) implements a Climate
Analytics-Hub (hereafter Analytics-Hub) level on top of the
existing ESGF data nodes backbone to allow the execution
of multi-model climate analyses on a single location. The
Analytics-Hub is responsible for providing Open Science
oriented computing and analytics capabilities on top of a data
collection layer which both (i) pre-stages and caches the data
relevant to the analyses from the different ESGF data nodes
and (ii) keeps the local copy of data synchronised with the
remote copy available in the ESGF infrastructure.



Of course, a centralized storage location, like in the
Analytics-Hub, cannot represent a scalable solution for the
whole CMIP data archive (approximately 20PB expected for
CMIP6), but it can be considered as a suitable approach for
the analysis of one or more selected variables (depending on
storage availability). As a consequence, multiple, distributed
Analytics-Hubs could serve the entire community by address-
ing the full spectrum of variables. Such scenario provides a
centralised, variable-centric and Analytics-Hub-based infras-
tructural paradigm for multi-model climate analysis, on top of
the distributed, model-centric and data nodes-based paradigm
available through the ESGF infrastructure, mostly serving data
access needs.

In previous work [22] [23], a distributed solution based on
a two-level workflow approach was proposed. That was the
first step towards the Analytics-Hub concept, which was not
mature enough at that time. The design was mainly driven by
the data distribution requirement inherently coming from the
legacy of the ESGF infrastructure as well as by the need to
avoid large-scale data movement simply through the adoption
of server-side analytics solutions. While the solution proved to
be effective with regard to the time-to-solution dimension of
the multi-model climate analysis, it was noted that it could not
be the proper solution in production environments, since they
suffer from network instability, sites unavailability, services
downtime, and non-uniform service release deployment across
sites. Such elements were key to move towards a more
centralised, single-level workflow, Analytics-Hub concept.
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Fig. 2. Analytics-Hub architecture in the large.

B. Analytics-Hub requirements

To tackle and address the large-scale multi-model climate
data analysis challenges and issues described in Section II-C,
the envisioned Analytics-Hub component has to fulfil some
key requirements, such as: server-side analytics, parallel/big
data approaches, workflow analytics support, data consistency,
metadata management, provenance and reproducibility, social
and cultural implications, and, finally, Open (Data) Science-
ready environments.

a) Server-side analytics: As described in Section II-C,
the workflow for multi-model climate analysis is still based
on a server-side data management (data access) and client-side
(desktop-based) data analysis. This workflow is not feasible
at large-scale, since the ever-larger scientific datasets that
are going to be produced by experiments/simulations (e.g.
CMIP6):

• (i) make data download no longer a viable option for
users to collect all the data;

• (ii) cannot be properly handled with the available client-
side data management tools due to the critical volume
dimension of the analysis.

Using a server-side paradigm, data (input, output, and
intermediate products), provenance and even sessions can be
managed on the remote side and only the final results of
the analysis (typically megabytes or even kilobytes) can be
downloaded by the end-users. Such an approach reduces (i)
the downloaded data, (ii) the makespan for the analysis task,
and (iii) the complexity related to the analysis software to
be installed on the end-users machines, thus fully address-
ing several issues mentioned in Section II-C. Additionally,
the server-side paradigm can straightforwardly enable Open
Science principles, leading, for instance, to a better re-use of
data (e.g. intermediate/final products), improved analyses (e.g.
server-side jobs) and user’s sessions, etc. Still, the provenance
management can represent the proper foundation to fully
support reproducibility. Finally, storing all the information on
the server-side, knowledge-driven features (e.g. based on data
mining algorithms) can be added to the analytics system with
the aim of suggesting, recommending and predicting.

b) Big data and HPC-based analytics: Big data and
HPC approaches (e.g. High Performance Data Analytics -
HPDA) can represent the proper answer to deal with the
big data nature of the multi-model analysis. Presently, the
big data and HPC convergence is an open, challenging and
vibrant research topic under discussion by the HPC scientific
community (e.g. Big Data and Extreme-scale Computing ini-
tiative [25]). With respect to the user’s workflow described in
Section II-C, HPDA frameworks allow the implementation of
a new approach, based on a server-side analysis paradigm and
data-intensive facilities close to the data storage. Performance
is a key challenge addressed by HPDA solutions.

c) Data consistency: Data consistency arises when a
data replication scenario comes into play. The Analytics-Hub
downloads the data relevant to the multi-model climate anal-
ysis from ESGF and caches it into a local storage. However,
since new versions of a dataset can be published into the ESGF
data archive, it is of paramount importance that the Analytics-
Hub cache should not get into an inconsistency status. To
address that, the local cache must reflect the new status of
the ESGF federated repository, by downloading new datasets
versions as soon as they are published and made available in
ESGF.

d) Workflow-enabled analytics: To manage large-scale
multi-model climate analysis, end-users need to deal with
tens/hundreds of analytics operators. Workflow support is then



key to both (i) mapping a climate analysis onto a Direct
Acyclic Graph and (ii) properly managing its run time ex-
ecution (dependencies, failures, etc.). From an Open Science
perspective, FAIR principles [10] can be applied to workflows;
indeed, workflow documents can be shared among scientists
(re-usability), described using standards/recommendations (in-
teroperability), as well as published on well-structured (find-
ability) and public (openness and accessibility) repositories
(e.g. GitHub, MyExperiment [26]).

e) Metadata management, provenance and reproducibil-
ity : Metadata is a key point for scientific data management
systems in general and server-side analytics systems in par-
ticular, due to the potential scale of data, experiments and
users they target. Metadata can be scientific dataset attributes,
provenance information, storage mapping information, per-
sistent identifiers (e.g. DOIs), etc. Besides the well-known
data discovery, metadata is also key to addressing analysis
experiments reproducibility, thus strongly contributing to the
adoption of Open Science principles.

f) Social/cultural implications: The proposed Analytics-
Hub approach can help develop new community-oriented
tools towards much more open, multi-level and collabora-
tive scientific forms/approaches. From a social perspective,
scientists should actually move from isolated ways of con-
ducting their research towards new and more collaborative
approaches/environments for multi-model climate analysis, to
differently cope with the way scientists interact with each other
both inside (for research purposes) and outside (for dissem-
ination and scholarly communication purposes) the scientific
community. In this respect, the Analytics-Hub aims to support
a social and cultural shift moving from a single-user to a
(distributed) team-driven analysis approach, where multiple
users can share thoughts, exchange ideas and collaborate on
the same analysis experiment by working on several aspects
and branches of the full analysis workflow.

g) Open (Data) Science-ready environment: Open (Data)
Science requires systems capable of fostering collaboration
through scientists and sharing research results. In such a
context, Jupyter Notebooks represents a very valuable and
easy-to-use tool to share and replicate the code and results of
scientific experiments, jointly with the explanatory comments
in human-readable form [27].

IV. ANALYTICS-HUB: ARCHITECTURAL DESIGN,
INFRASTRUCTURAL VIEW AND IMPLEMENTATION DETAILS

This section provides a detailed description of the Analytics-
Hub by presenting its internal architectural design, the infras-
tructural view, some implementation details as well as Open
Science aspects related to analytics workflows and applications
such as, in particular, reproducibility.

A. Architectural design

Based on the above listed requirements, the internal design
of the Analytics-Hub consists of several components:

• (i) an interface/GUI providing an Open (data) Science-
ready environment where scientists can run their own

Data Science applications, perform interactive and ex-
ploratory data analysis, run analytics workflows, perform
data visualization, manage collaborative sessions, share
analysis experiments, etc.;

• (ii) a workflow-enabled, secure, and interoperable
Analytics-Hub front-end able to address the user’s re-
quests both in terms of single tasks and workflows;

• (iii) an analytics framework back-end able to perform
data analysis at scale and support metadata manage-
ment at different levels: datasets (e.g. data attributes),
infrastructure (e.g. data partitioning & mapping onto
the storage system, computational and data resources,
software ecosystem), and processing (e.g. provenance,
logging and bookkeeping);

• (iv) a data collector and its local storage to gather the
relevant datasets from ESGF and keep them in sync with
the remote repositories.

As shown in Fig. 3, the proposed Open (Data) Science
environment has relevant social implications; actually, it also
includes (i) publication services to enable shareability and re-
usability of results (open data) across the community, and (ii)
open development platforms to host, review, manage and share
code (e.g. workflows, applications) by means of an open and
community-oriented approach.
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Fig. 3. Analytics-Hub architecture in the small.

B. Infrastructural view

From an infrastructural standpoint, the proposed Analytics-
Hub integrates several open source software solutions. More
specifically (i) the Open (Data) Science environment is imple-
mented through JupyterHub [28]; (ii) the Analytics-Hub front-
end and back-end are based on the Ophidia HPDA framework
[29] [30]; and (iii) the data collector is based on Synda [31],
which allows the download of datasets and the (one-way)



synchronization of local data repositories with data hosted on
the ESGF data infrastructure.

In the proposed ecosystem, the deployed publication ser-
vices are mainly OPeNDAP/THREDDS and Apache HTTP
services, providing open access (e.g. based on creative com-
mons licenses). The open development platform selected to
share workflows and the applications code in the system is
GitHub; by its nature, it tracks workflow evolution provenance.

C. Implementation details

The Ophidia HPDA framework is the main component of
the Analytics-Hub. It is a complete open source solution [32],
released as open source software (under GPLv3 license) and
used to perform scientific data analytics by means of HPC
paradigms and in-memory based big data approaches [33].
The platform has been successfully used in several scientific
experiments (e.g. climate change and astronomy) as well as
smart cities applications [34]. It supports access, management,
analysis and mining of n-dimensional array-based data struc-
tures, leveraging the datacube abstraction. Relevant to this
paper is the collaborative session support provided by the
Ophidia server front-end, which enables a team-oriented ana-
lytics session management. Sessions are server-side managed
and they can be paused/resumed; they also support group-
based authorization to manage multiple roles in a team of
scientists participating in the same experiment.

The Ophidia workflow management system [35] is a core
component of the Ophidia platform. It allows coordinating and
orchestrating the execution of scientific experiments composed
of multiple data analytics, processing and visualization opera-
tors (e.g. operational processing/analysis chains). In terms of
execution, the Ophidia HPDA framework supports different
types of tasks: (i) single tasks of one operator; (ii) HTC
tasks (parameter sweep tasks), where a single operator is
executed multiple times on different input, according to user-
defined filters; and (iii) complex workflows (DAG) composed
of multiple, single or HTC tasks, jointly with flow control and
management tasks (i.e., iterations, conditionals). To simplify
the interface, all the three different types of tasks are actually
managed as workflows; they are coded in JavaScript Object
Notation (JSON) in compliance with a request schema [36].
The schema specifies how to describe tasks and dependencies
(both data and flow dependencies), input and output data,
metadata information and flow management operations; it is
used to validate workflow instances. Analysis experiments can
be designed according to this schema and can easily be shared
with other users (e.g. through GitHub), fostering experiment
reuse and inherently providing a means of experiment repro-
ducibility. In fact, given the JSON workflow and the input
data, it is possible to rerun the experiment through Ophidia
and reproduce the experiment outcome. Additionally, the
JSON schema allows creating easy-to-process, interoperable,
machine-readable documents.

Besides the workflow management support, Ophidia also
provides the Python bindings, called PyOphidia, which allow a
programmable integration of Ophidia operators and workflows

into more articulated and shareable Data Science applications.
Hence, PyOphidia can be used together with other Python
modules for the creation, execution and sharing of end-to-
end data analytics workflows within Python-based Jupyter
Notebooks.

D. Analytics-Hub workflows & applications reproducibility

From an Open Science principles perspective, the Ophidia
workflow document enables workflow replicability. Moreover,
due to the open source nature of the framework, Ophidia
workflows are also extendable and modifiable. Still, the more
detailed Ophidia analytics document enables analysis repro-
ducibility. It extends the Ophidia workflow document (whose
specific version is uniquely identified by its associated commit
in GitHub) with additional information on (i) the computing
environment (e.g. platform, compilers, libraries, etc.), (ii) the
analytics ecosystem (e.g. Ophidia release, NetCDF library
version, Python modules and related software dependencies,
etc.) and (iii) the input data (e.g. through DOIs). Indeed,
the first two points mentioned above capture system-level
provenance information, which is key to enabling portability,
as a pre-condition for reproducibility. Reproducibility in turn,
fosters and addresses re-usability, one of the FAIR guiding
data principles.

The information needed to reproduce an experiment can
be obtained from its provenance, that is the description of
the different stages data has undergone during the analysis
process, from its origin to the final outcome. As mentioned
in Section III-B, (tracking) provenance is a strong require-
ment for the Analytics-Hub. Besides the static prospective
provenance tracked by the workflow document, Ophidia also
supports the more dynamic retrospective provenance, which
means it tracks at run time the provenance of each datacube
imported or produced within the framework. In this respect,
each new datacube is linked to the set of input datacubes
(the multi-dimensional datasets) it has been generated from,
together with the applied operator; to identify a datacube, a
unique persistent identifier (PID) is automatically generated
by the framework and attached to it.

However, as the information about the compute environ-
ment and the analytics ecosystem is not captured by the
Analytics-Hub yet, the reproducibility can only be addressed
through the more complete Ophidia analytics document, which
may require human intervention/input to fully describe any
missing provenance information (e.g. computing ecosystem
and platform-level information). This shows the multifaceted
nature of provenance and the existence of several classes
of provenance information that must be taken into account.
Such variety of information enables spotting issues that may
not only be related to the application itself, but also to the
surrounding software ecosystem [37]. Whereas the complete
Ophidia analytics document is aimed at enabling reproducibil-
ity, its machine-readability (JSON format) represents a pre-
condition for the reproducible executability of the analysis.
Such concept is well-connected, from a technological perspec-
tive, to virtualized/cloud environments and automated deploy-



Fig. 4. A snapshot of single-site multi-model analysis workflow (runtime execution and output of the workflow experiment).

ment. Due to page-limit constraints, this topic will be further
discussed in a future work. Moreover, the analytics document
is stored and managed in versioned repositories (i.e. GitHub)
and its evolution is easily tracked through GitHub commits,
thus enabling the analytics document evolution provenance,
which is beyond reproducibility and leads directly to the
citability of the analysis for scientific publications.

It is worth mentioning that the retrospective provenance
support implemented in the Analytics-Hub also applies to
Python data analysis applications. Similarly to the workflow
approach, the provided provenance system is able to track the
complete analytics operators’ flow throughout the full appli-
cation execution, by storing all the relevant information in the
provenance database (provDB). From a technical standpoint,
the provDB is a knowledge graph for analytics experiments,
implemented as a graph database running on top of Neo4j
graphDB engine. Presently, the provDB is mainly explored
for retrospective provenance through the native, available
query support. More specifically, the current support allows
end-users to explore, navigate, reason, make inference, and,
if needed, manually change the workflow document or the
application code. Future work on this specific topic concerns
the development of graph mining algorithms with the ultimate
goal of addressing AI-enabled reproducibility scenarios.

V. MULTI-MODEL CLIMATE ANALYSIS IMPLEMENTATION

A real implementation of the PTA test case described in
Section II-B has been implemented as demonstrator on top
of the proposed Analytics-Hub as an Ophidia workflow; it

has been tested on the Analytics-Hub infrastructure set up at
the CMCC SuperComputing Centre, which aims to become
a reference Open Science hub in the climate community
regarding the CMIP-based multi-model analysis applied to
some key variables (e.g. precipitation).

The Analytics-Hub paradigm creates new, refined and
open variable-centric data stores, it eases and democratizes
the analysis process overcoming key barriers related to data
download & preparation, and promotes Open Science prin-
ciples; in particular, re-usability, openness and sharing of
data, workflows and source code, fostering new opportunities
for open research and collaborations.

The PTA multi-model workflow [38] has been executed on
11 models from the CMIP5 experiment (for a total of 181
tasks, as can be seen in Fig. 4, which shows the runtime of
the experiment). Additionally, the PTA workflow has been
generalized to support the implementation of a variety of
indicators in a multi-model fashion, thus addressing multi-
model climate data analyses more in general. The solution
includes a multi-model framework, where single-model indi-
cator workflows can be plugged in the overall workflow, as a
black-box, through a specific API.

From a provenance standpoint, the oph cubeio operator
can be used in the Ophidia framework to retrieve the whole
data lineage related to a particular PID (i.e. associated with
a datacube) from the provDB. Fig. 5 shows a graphical
representation of provenance (created from the Ophidia CLI)
for a datacube produced by the PTA workflow. In particular,
it refers to one of the identical single-model blocks executed



Fig. 5. Ophidia data provenance diagram related to the first stage (single-model block) of the PTA workflow.

during the first part of the workflow on each of the 11 models.
The first two nodes are related to the import of the input dataset
of the model, whereas the node at the bottom represents the
last datacube produced during this stage; the edges among
the nodes are labelled with the operator executed to run the
analytics.

From a reproducibility point of view, the Ophidia analytics
document of the performed PTA includes information about
the Analytics-Hub platform running at the CMCC SuperCom-
puting Centre, the Analytics-Hub software stack, the Ophidia
workflow document related to the PTA analysis, as well as all
the involved input data from the CMIP5 federated data archive.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents the Climate Analytics-Hub, a new com-
ponent built on top of the Earth System Grid Federation, which
joins big data approaches and parallel computing paradigms to
provide an Open Science environment for reproducible multi-
model climate change data analytics experiments at scale. The
paper highlights the rationale behind the Analytics-Hub as well
as its role on top of ESGF. Additionally, it delves into archi-
tectural aspects and infrastructural details to provide an in-
depth view of this component. The adoption of Open Science
principles (in particular reproducibility, but also openness and
reusability) with respect to the Analytics-Hub workflows and
applications is also extensively presented. A real multi-model
analytics use case related to the study of the precipitation trend
analysis in the CMIP5 is also thoroughly discussed in terms
of experiment design, implementation details and provenance
aspects.

Future work is mainly aimed at Open Science princi-
ples and in particular AI-enabled reproducibility with the
support of graph mining applied to the provDB, to enable
proactive knowledge-based approaches (e.g. recommendation
systems) for advanced data provenance exploitation scenarios.

Moreover, a larger-scale Analytics-Hub setup is planned at
the CMCC SuperComputing Centre, to support reproducible
multi-model analytics experiments in the CMIP6 context.
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