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Abstract—Emerging economies around the world are often
characterized by governments and institutions struggling to
keep key demographic data streams up to date. A demographic
of interest particularly linked to social vulnerability is that of
poverty and socio-economic status. The combination of mass
call detail records (CDR) data with machine learning has
recently been proposed as a way to obtain this data without the
expense required by traditional census and household survey
methods. Based on a sample of 330k mobile phone subscribers
resident in Dar es Salaam, Tanzania (7.6m M-Money records,
450.2m call and SMS event logs) this paper demonstrates the
improvements that can be made via an alternate data stream:
M-Money transaction records. An alternative to traditional
banking services, particularly utilized by citizens unable to
obtain a bank account, M-Money transactions provide a
currently unexplored but potentially more powerful data set
held by the same telecommunication companies.

Comparing directly to CDR as used in prior work the results
show that M-Money provides an increase in socio-demographic
classification accuracy (average F1 score) from 65.9% (0.63)
to 71.3% (0.7) at much finer-grained spatial regions than
previously examined. Notably, the combined use of M-Money
and CDR data only increases prediction accuracy (average F1
score) from 71.3% (0.7) to 72.3% (0.71), providing evidence
that M-Money is informationally subsuming CDR data. The
reasons for this and the importance/contributions of individual
features are subsequently investigated.
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I. INTRODUCTION

More than 330 million people in Africa are still living in
extreme poverty. This generates increased risk not only of
disease and malnutrition, but to humanitarian abuses such
as modern slavery and female genital mutilation (FGM).
A lack of good-quality, fine-grained data for assessment
of such vulnerability lies at the heart of dealing with this
problem; a relentless challenge for intergovernmental orga-
nizations trying to design effective, targeted interventions
to tackle the issue [1, 2]. Traditionally, the most reliable
way to estimate poverty and socio-economic status has been
through censuses or household surveys. Yet this pathway
has proven impractically expensive and time-consuming.
Household surveys only provide data for extremely small
sub-samples of the population; censuses are coarse and
rapidly out-of-date, often conducted but once a decade.

The situation is worsened by the fact that over 2 billion
people lack access to traditional ‘brick and mortar’ banking
infrastructure in emerging economies. This lack of access
forces them to rely on typically unsafe, inconvenient and
costly informal financial services or cash. A solution, how-
ever, exists in the proliferation of cheap mobile phones.
The financial service offerings now being provided by
telecommunication providers is allowing a rapidly growing
proportion of those people access to “financial services such
as payments, transfers, insurance, savings and credit” [3, 4].

Mobile phones were first introduced in Tanzania in the
mid-1990s with a single network offering by TiGo. Similar
to many other emerging economies, mobile phone adoption
in Tanzania grew rapidly and is now very high with over
73% of adults in Tanzania owning at least one feature phone
or smart phone [5]. Thus, recent work in the literature
has sought to use Call Detail Records (CDR) as a Big
Data solution for producing socio-demographic insights, and
acting as a viable, remote proxy to fine-grained surveys.

Another data stream promises to achieve significant
improvements on prediction models underpinned by Call
Record Data - anonymized Mobile Money transaction logs
themselves. The uptake in M-Money services has been
extremely high in regions such as East Africa, with a growth
of over 5.5 million users in the first four years since the
introduction of M-Pesa by Vodacom in 2008 and TiGo Pesa
in 2010. By 2013 M-Money agents and outlets significantly
outnumbered traditional ATM’s in the region with 17,000
compared to only 1,117 ATM’s in Tanzania alone [6].

This reflects a wider trend within emerging markets,
where at least nine other countries have recently been found
to have more M-Money accounts than bank accounts [3].
By now, over 50% of Tanzanian telecommunication users
have registered for M-Money with over 35% of households
having at least one M-Money user compared to only 2%
having active bank accounts [6, 7, 8]. These developments
highlight the vast potential for such data streams to provide
alternative methods for generating demographic data in
emerging economies, to identify vulnerability, and to support
policy initiatives in environments undergoing rapid structural
changes.



In this paper, we demonstrate the superiority of features
extracted from M-Money versus CDR data in predicting
socio-demographic status for Dar es Salaam, Tanzania. Our
analysis leverages a range of regularity, diversity, activity
and spatial features derived from 450.2m call and SMS
event logs and 7.6m M-Money records to generate insight
into area-level socio-economic status. Results show that
performance of models derived from M-Money data far
exceeds that of state-of-the-art CDR-based models.

II. BACKGROUND

The majority of previous work on estimating poverty
using non-traditional survey and census data has been con-
ducted using satellite imagery. Such imagery allows for the
collection of a range of derived data such as Night Time
Lights (NTL), vegetation cover [9], proximity to important
services (e.g. hospitals and schools) and infrastructure (e.g.
density, proximity to paved roads). Advantages of satellite
imagery include global coverage, a high revisiting capability
and relative ease of access. NTL, in particular, has received
a lot of attention, showing a good correlation with a coun-
try’s GDP [10, 11]. Recent work in Bangladesh, however,
suggests that as urban areas are nearing saturation levels of
NTL and consequently the value of NTL as an indicator
is beginning to decrease [12]. Moreover, analysis of earth
observation imagery is both expensive and static, contrasting
sharply with dynamic and digitally logged behavioural data
streams such as Call Record Data.

A. Poverty mapping using CDR data

A number of previous studies have consequently utilized
aggregate CDR data for poverty prediction. One of the
first was [13], which combined a Support Vector Machine
(SVM) predictor and CDR data for 500k users to analyze
socio-economic levels within an urban area in a Latin
American city. Follow on studies have analyzed CDR data
in conjunction with data from phone surveys using linear
regression [14] or in conjunction with environmental data
using Gaussian Process Regression [16]. The spatial reso-
lution varied from sub-prefecture and lower administration
level in Cote d’Ivoire [12], Democratic and Health Survey
(DHS) clusters1 in Rwanda [14], and regions and communes
in Senegal [15, 16]. An annotated bibliography is provided
in table I, summarizing details and results of the key research
papers on poverty mapping using CDR data.

Two issues arise in the prior literature: (1) a gap in con-
ducting poverty prediction in small geographic areas such as
wards or Lower Super Output Areas (LSOA) in part due to
a lack in socio-economic data at such a fine granularity;
and (2) a reliance on communication rather than mobile
financial service data. To date, no previous studies exist that
use features extracted from M-Money transaction logs, a data

1a geographic unit designed to be comparable to a village

stream that one would expect to provide significant insight
into a fine-grained socio-economic analysis.

B. M-Money

Existing research on M-Money has mostly been limited
to interview and survey-based work that broadly falls under
three areas. First, research has examined the impact of M-
money introduction, exploring people’s usage patterns and
the benefits they accrued. It was found, that M-Money
has security advantages over traditional ‘hiding places’ for
financial resources [7] and a reduced time commitment, costs
and paperwork for initiating transfers compared to traditional
banking services [17]. There has also been work looking
at M-Money adoption among dedicated user groups such
as Mpogole et al. (2016) [17] who studied the adoption
among students and attitude of businesses owners towards
M-Money in Iringa, Tanzania.

Second, research has investigated the impact of M-Money
services on rural and agricultural areas in terms of inclusive
development [18, 19]. It was found, that the proliferation
of M-Money services enhances financial inclusion for those
living in poverty by providing them with access to faster
transfers and more secure ways of transporting and storing
money [20]. Transporting money in a more secure way is
particularly important in remote areas, where households
often rely on remittances from family members that have
traditionally been transported by paying bus drivers or
through other risky means [21].

Finally, work has been undertaken to examine the safety
and security of M-Money services [22]. Compared to tra-
ditional hiding places, which are susceptible to theft or
loss, M-Money allows significantly safer storage and savings
options [6]. At the same time, however, insufficient trust and
technical sophistication for both sender and receiver are non-
price related barriers to increased service adoption [23, 8].

In summary, while the research has looked in detail at the
impact and barriers to adoption of M-Money services, such
analysis has been limited to ethnographic studies - rather
than the analysis of raw M-Money data streams themselves.

III. DATA DESCRIPTION

To address this research gap, this study leverages three
disparate data sets: mass CDR and M-Money datasets for
the generation of regularity, diversity, activity and spatial
features, and ground reference survey data for validation of
classification performance. The following subsections will
provide an overview of the three data sets used as part of
the study.

A. CDR data

CDRs are generated as part of a telecommunication
operator’s day to day operations for billing and network
optimization purposes. A CDR is logged every time a
network event such as sending an SMS, making a phone



Table I: List of studies on poverty prediction using mobile phone data

Ref Data
Source

Model
(# of features)

Sample
size

Time
period

Results,
Pearsons R

Spatial
resolution

Poverty
measure Region

[13] CDR Support vector machine (279) 500k 6 months 0.8 - Socio-economic levels Urban area in a Latin American city

[12] CDR Linear regression (OLS) (10) 5M and 928k 5 months and 6 weeks - 255 sub-prefectures — 176 areas at
the next administrative level down IMF and census Cote d’Ivoire and

undisclosed region

[14] CDR and phone
survey Linear regression (5088) 1.5M (CDR) and

856 (survey) 9 months 0.68 492 DHS Clusters DHS composite
wealth index Rwanda

[15] CDR Linear regression (5) 9M and 150k 12 months 0.82 14 regions MPI (OPHI) Senegal

[16] CDR and environmental
data Gaussian Process Regression 9.54M 12 months 0.91 552 communes MPI Senegal

call or using mobile data occurs. As such, they allow insight
into both micro- and macro-patterns of human interaction,
while allowing for the preservation of individual anonymity
through spatial and temporal aggregation. The data used as
part of this study covers a total of 450.2m call and SMS
events for 330k mobile phone subscribers taking place across
the Dar es Salaam region of Tanzania over a period of 122
days in the autumn of 2014 2. Each record used as part of
this study includes a range of attributes including:

• SIM identifier: anonymized identifier for the SIM card
• Timestamp: when the network event occurred
• Location ID: identifies the base transceiver station

(BTS), which was used to service the network event
Residential behaviour was deduced from these records,

through calculation of the mode Base Transceiver Station
(BTS) favoured by users between 10 pm and 6 am. By geo-
referencing the locations of these mode BTS, an anonymized
dataset corresponding to users located in the Dar Es Salaam
region was extracted. Features pertaining to residents at each
BTS were then aggregated, ensuring both strict privacy and
for analysis purposes. By undertaking a Voronoi tessellation
of each BTS, a set of irregularly shaped cells can be
generated at an average size of 6.23km2. The subset of
areas classed as predominantly Urban averaged at 2.77km2,
making them significantly smaller than sub-prefectures or
DHS clusters used in other studies discussed in Table I.

B. M-Money data

M-Money is an umbrella term for a range of services
offered by network operators, which include “sending and
receiving money, making savings deposits, bill payments,
making non-cash payments and transferring money from
ones mobile phone account to bank accounts and vice versa”
[17, p.4]. Similar to the CDR data, the M-Money data has
been made available to us for research by a large Tanzanian
telecommunications provider. The data set contains a sample
of the company’s M-Money transaction records for regular
mobile phone users (subscribers), businesses (agents) and
the network operator itself. Specifically, we extracted 47.6m
M-Money records of approximately 147k customers for the
same 122 day period as covered by the CDR data in 2014.

2Due to both individual and commercial privacy, the anonymized data
used as part of this study is not publicly available, and was provided to us
through a partnership with a telecommunications provider in Tanzania with
a high market penetration in the case study area of Dar Es Salaam

Each record contained a number of attributes collected by
the network operator as part of the day-to-day M-Money
provision. Those attributes include:

• SIM identifier: anonymized identifier for the handset
• Date: timestamp of when the transaction occurred
• Transaction amount: total monetary amount for the

transaction, including service charge
• Event type: the category of the good/ service purchased

via the transaction
• Subtype: a categorization of the business which pro-

vided the good/service featured in the transaction
• Error code: indicator of transaction success/failure,

denoting the cause if the latter
• User type: account type of the individual invoking the

transaction (e.g. subscriber/agent)
We further augmented the extracted M-Money features

with home locations extracted from the CDR data set de-
scribed in the previous section. Only users based in Dar es
Salaam, who also made use of CDR services were included
in the study.

C. Ground Reference Data

Accurate and fine-grained ground reference data necessary
for supervised machine learning is extremely hard to find
in East Africa. Additionally, most ground reference data
sets are dictated by zoning, which does not correspond
to the shape of capture areas for data streams generated
through mobile phone usage. In order to overcome this
limitation, we made use of a custom ground reference survey
conducted over a 2 month period between late 2015 and
early 2016 as part of the EPSRC Neodemographics project3

and in collaboration with the Ramani Huria program [24].
That study surveyed a range of social and demographic
attributes for over 500 areas across Tanzania’s largest city,
Dar es Salaam. The labelled areas are contiguous, irregular
and cover the city’s whole extent, having been derived via
a Voronoi tesselation of WGS84 locations of each BTS.
Surveying was undertaken by local inhabitants, with areas
being surveyed at least twice. The “overall socio-economic
status” was chosen as the focus of our study, with each
area being labelled as either ‘very poor’, ‘poor’, ‘average’,
‘wealthy’ or ‘very wealthy’. This covariate served as the key
target variable for our modelling and evaluation process.

3“Neo-demographics: Opening Developing World Markets by Using
Personal Data and Collaboration”, EPSRC Reference: EP/L021080/1, 2015



IV. EXPERIMENTAL METHOD

In order to investigate the utility of M-Money versus
CDR transaction logs for remote socio-economic analysis,
a core prediction task was formulated. A core dataset of
517 regions from Dar es Salaam, Tanzania was identified,
each area being labelled with a ground-truth socioeconomic
status. Competing models were generated from either M-
Money, CDR or combined data, and the performance of each
model in predicting socioeconomic status was tested via a
strict cross-validation methodology. Two testing scenarios
were formed, one considering prediction for all areas from
the survey (n=517), and the second considering only areas
labelled as being predominantly residential (n=384). Initial
exploratory analysis over a range of model classes indicated
Random Forest as performing highly effectively for the given
scenario. Given the ability or Random Forests to directly
model multi-class classification problems, handle non-linear
relationships, and their association with well understood
and tractable variable importance measures [25], subsequent
evaluation focused on this class of model.

To allow direct statistical comparison of the effectiveness
of M-Money versus CDR features, 3 models were con-
structed for each scenario (producing six in total). For each
scenario, Model 1 was trained using an input feature set
drawn from CDR data, with features fastidiously engineered
to correspond directly to those used in the most recent
literature (see §IV-A for more details of this process). Model
2 was trained using an M-Money derived feature set. Many
features in Model 2 echo those in Model 1 (to provide a
fair comparison), despite being seeded by transactional logs
denoting mobile financial service events rather than call or
SMS events. A final predictor, Model 3, was trained using a
combination of all features used in the previous models. The
features derived in each model vary in capturing different
regularity, diversity, activity and spatial patterns of behaviour
across the population.

The performance of each model was then assessed using a
regime of repeated random (stratified) sampling, to generate
30 training and test sets. In each case, stratified five-fold
cross-validation was used in conjunction with the training
set to determine the optimal hyper-parameters before the
performance was measured on the held out test set. Finally,
an extensive variable importance analysis was performed,
via rigorous investigation of permutation importance and
partial dependency plots. The three parts to our experimental
evaluation are discussed in more detail below, with overall
results detailed in §V.

A. Feature engineering

The prediction task underpinning our models was formu-
lated as a ternary classification problem in order to overcome
the uneven distribution of class memberships in the raw
survey data. Output feature labels ‘very poor’ and ‘poor’
were merged, as were labels ‘wealthy’ and ‘very wealthy’,

resulting in a relatively balanced dataset (with 202/143 areas
labelled as poor, 153/102 as average and 163/140 as wealthy
classes for all/residential scenarios respectively).

To populate the input feature space of each model, 17
features were extracted from the CDR data (based on prior
work), and 22 from the M-Money data. Each feature cor-
responds to the usage patterns of a specific BTS, with data
being aggregated using the mode BTS locations of accounts
between 10 pm and 6 am. Features were engineered in a
strict privacy-preserving fashion, with data not only being
rigorously anonymized but aggregated to a BTS level. Such
aggregation provides the analysis with an additional layer of
privacy provision (recent estimates indicate over 4.3m Dar
residents, so the average number of people living in each of
our analysis areas is >8000).

We omit traditional per-feature correlation analysis (nor
were feature spaces subsequently compression/factorization
prior to modelling), given that we are primarily concerned
with the analysis of feature utility and all features were
based on pre-collected and re-purposed data with negligible
acquisition cost.

While features in each set are broadly comparable with
each other, a number of features unique to each data set were
generated. Examples for Model 1 are items such as ratio of
text and calls and response delay in SMS conversations;
for Model 2 items such as average M-Money in/out, per-
centage defaulted and percentage balance checks. A closer
examination of feature breakdown is supplied below, with
an overview of all features used provided in table II.

CDR derived features:
Features for Model 1 were derived from transactions gen-
erated by 330k users acting over the sampling period and
classed as living in Dar Es Salaam. They include a range
of features identified as important for poverty prediction
as identified by Pokhriyal et al. [16]. The features can be
broadly classified as falling under five different domains:

• basic activity: the total number of SMS, the number
of active days and the ratio between call and text
interactions.

• regularity: the mean and standard deviation of time
between call interactions.

• diversity: the mean balance of contacts for text in-
teractions; the mean interactions per contact for call
interactions; the percentage Pareto interactions for call
interactions, and the entropy of contacts for call inter-
actions

• activity: the mean and standard deviation in response
delay for text interactions; the percentage of initiated
interactions for call, and the percentage of initiated
interactions for call and text interactions

• spatial: the frequently used antennas; the total number
of used antennas; and the entropy of antennas



Table II: List of features generated from CDR and M-Money data for area-level socioeconomic prediction

Feature (total no. of features) Data source Description

Basic Use
Number of interactions (2) CDR, M-Money The total number of incoming and outgoing SMS events and M-Money transactions for a user.
Number of users (2) CDR, M-Money The total number of users within the area
Average transaction size (1) M-Money Size of an average M-Money transaction across both incoming or outgoing transactions.
Average M-Money in/out (2) M-Money Average monthly inflow and outflow over the study period.
Total M-Money in/out (2) M-Money Total inflow and outflow over the study period.
Active Days (2) CDR, M-Money The number of days during which the user was active.
Ratio of text and call interactions (1) CDR The ratio of text and call interactions.

Spending uptake (1) M-Money The total spend in an area divided by the M-Money uptake (number of M-Money users divided by
the number of CDR users in an area).

Ratio of incoming and outgoing
transactions (1) M-Money The ratio of incoming and outgoing M-Money transactions.

Regularity

Inter event time (4) CDR, M-Money The inter event time between two records of the user. This feature is calculated as mean
and SD for M-Money, mean for calls and SD for calls and SMS.

Monthly events (1) M-Money Average number of transactions per month.

Diversity

Balance of contacts (2) CDR, M-Money
The balance of interactions per contact. This feature is calculated-each for text and M-Money.
For every contact, the balance is the number of outgoing interactions divided by the total
number of interactions (in + out).

Interactions per contact (2) CDR, M-Money The number of interactions a user had with each of his or her contacts via call or M-Money
Percentage Pareto interactions (2) CDR, M-Money The percentage of user’s contacts that account for 80 of his or her call or M-Money interactions
Entropy of contacts (2) CDR, M-Money The entropy of the user’s contacts for calls or M-Money

Activity

Response delay (2) CDR The response delay of the user within a conversation (in seconds). Calculated for text
(SD and mean of the response delay).

Percentage initiated (3) CDR, M-Money The percentage of network events initiated by the user for calls, call and SMS, or M-Money.
Percentage defaulted (1) M-Money The percentage of transactions that failed due to insufficient account funds.
Percentage balance checks (1) M-Money The percentage of transactions representing balance checks.

Spatial
Number of BTS (3) CDR, M-Money The number of unique cells or BTS visited.
Frequent BTS (1) CDR The number of BTS that accounts for 80 of locations where the user was.
Entropy of BTS (1) CDR The entropy of visited BTS.

M-Money derived features:
Features for Model 2 were derived from transactions cov-
ering 147k users with both incoming and outgoing M-
Money transactions occurring in every month of the sam-
pling period, and who were classed as likely living in
Dar Es Salaam. Average M-Money in/out represents the
amount of money, which was received or spent during an
average month. Only transactions conducted by ‘subscribers’
were taken into account to calculate those features. Users
with an average of more than 40 incoming events or 100
outgoing events per month were excluded from the analysis,
as these most likely represented unlicensed businesses or
informal street traders operating as regular subscribers. As
error codes were changing over the course of the year,
only transactions without error codes or those indicating
success were included. Similarly, transaction amounts equal
to or under 50TZS were excluded from the analysis, as
they mostly referred to balance inquiries or pin changes,
which involved minuscule service charges, that introduced
significant noise into the M-Money feature calculation.

Additionally, we captured the percentage of defaulted
transactions, and percentage of balance checks. Defaulted
transactions were identified as having failed due to error

codes indicating an insufficient account balance to complete
out a particular transaction. Balance checks are identified as
transactions with an event type for ‘Balance inquiries’.

B. Evaluation setup

To evaluate the comparative utility of the CDR vs M-
Money features in real-world applications we consider two
predictive tasks (1) predicting the economic status of only
residential regions populations and (2) predicting the eco-
nomic status of all regions populations. The first represents
the more focused task of interest and is based on the
collected ground-reference survey (see §III-C), while the
second represents the task if there is no knowledge as to the
residential/non-residential status of regions. In each case, a
combined model with all features (CDR + M-Money) and
two models per data source (one only containing CDR fea-
tures, one only containing M-Money features) was evaluated.
Output labels were generated based on the ground-reference
data set discussed in §III-C, with each region labelled as
either ‘poor’, ‘average’ or ‘wealthy’.

For each model, the data was split via stratified random
sampling into a training (66%) and test set (33%) and the
parameters for the Random Forest (number of trees, max-



imum depth and the minimum samples per split) selected
via a grid search underpinned by stratified five-fold cross-
validation using only the training set and the model finally
trained with the best parameters. The performance of each
model was then tested on the held out test set. This was
repeated 30 times arriving at 30 performance scores for each
of the six models.

C. Evaluation criteria

The performance of each model was measured via the
precision, recall and the F1 score (harmonic mean of the
precision and recall) for each of the 30 runs per model. The
average results over all runs are shown in Table III, along
with classification accuracy. Box-plots showing the per-class
distribution of the overall F1 scores per model are shown in
Fig 1a for all areas and Fig 1b for residential areas only.

D. Analysis of Variable Importance

Of equal, if not greater importance than overall model
accuracy, is the ability to break apart our models to investi-
gate the work being done by individual CDR and M-Money
features. To achieve this, the final step in our investigation
was a variable importance analysis, consisting of three
stages. First, and due to a large number of features proposed
in the literature (and included in this work), our candidate
set was filtered to exclude those features shown to have
minimal impact on model performance. Such features were
identified using the Boruta algorithm [26, 27], which only
considers variables as important if they provide a statistically
significant increase in prediction strength compared to a
permuted (i.e. randomized) version of the feature. We set
the level required to achieve statistical significance low
(p = 0.1) to minimize the probability of inadvertently
discarding relevant features.

Second, surviving features were used to fit optimized
Random Forest models for the whole data-set, selecting opti-
mized parameters via a grid search. The out-of-bag4 (OOB)
F1 score was then checked to ensure the reduction in features
did not cause a significant decrease in overall generalized
performance. This then allowed a full permutation impor-
tance analysis to be undertaken. Permutation importance was
used due to both its interpretability (illustrating the mean
decrease in performance of omitting each feature) as well
as its ability to attribute variance in the case of non-linear
interactions. With important features thus identified, their
behaviour within the model and across sub-populations of
the data was further examined using partial dependence plots
in §V-C [29, 30].

4Out-of-bag refers to the use of only the trees in the forest for which
the sample being predicted was not part of during training. In this way,
the resulting performance measure can be considered to represent the
generalized error [28].

V. RESULTS AND DISCUSSION

A. Model Performance Results
Table III reports all results for our experiments, detailing

the F1, precision and recall scores averaged over each of
the 30 experimental runs, accompanied by an overarching
classification accuracy score. As can be seen, in all scenarios
those models containing M-Money features strongly outper-
form those that use CDR features alone. The final column,
indicating per-class F1 scores for each model, illustrates that
this improvement is not due to one class being favoured,
but occurs across the board - and in particular improves
prediction of average, middle-income areas.

Of note is the improvement in F1 scores of Model 1
against Model 2, with an increase in accuracy of ∼9.7%
for all areas, and ∼9.2% for residential areas. In both
cases, while we can observe an increase in the performance
of models containing M-Money features, there are only
marginal differences in using combined data sets. These re-
sults indicate that the M-Money features appear to be a better
indicator of underlying socio-economic trends compared to
baseline CDR features. Further, it provides evidence that M-
Money features are subsuming the information contained in
CDR features when it comes to poverty/socio-demographic
classification, and CDR is likely capturing only a subset of
the variance covered by the M-Money feature set.

Models trained on residential-only data clearly function
more effectively than those also attempting to predict the
level of poverty in non-residential areas (improving by 1.4%,
2.1% and 1.1% for Models 1-3 respectively), highlighting
the difficulty in categorizing non-residential areas with a
socio-demographic label.

The scope of improvements made by models leveraging
M-Money features is illustrated in Figures 1a and 1b, which
show box plots of per-class F1 scores for all 3 feature sets in
both scenarios. We can observe in Figure 1a that F1 scores
for middle-income areas (0.51) are on average ∼39% lower
than scores for poor (0.76) and ∼42% for wealthy (0.78)
areas. A similar, albeit even more pronounced trend, can be
observed in the residential scenario with a low F1 score for
average (0.46) and a difference in ∼50% to poor (0.77) and
∼54% to wealthy (0.8) areas. Predicting average areas is
tricky, with most model features apparently only supporting
a binary poor/not-poor decision boundary.

Nevertheless, it is for middle-income areas that M-Money
features appear to make the most gains over CDR, with a
large gap between Model 1 (0.43) and Model 2’s perfor-
mance (0.54) across all areas. It is clear from the box plot
that the variance of CDR features in middle-income areas
is extremely wide, rendering them ineffective in delineating
‘average’ areas from any other.

B. Variable Importance
Given the advantage that experiments indicate M-Money

features have over CDR, consideration turns to why this



(a) Per-class F1 scores across all
BTS areas in the dataset

(b) Per-class F1 scores across all
Residential areas in the dataset

(c) Variable importance for combined
(best performing) residential model

Figure 1: Subfigures (a) and (b) illustrate the significant improvements made across all 3 classes (poor, average, wealthy)
using M-Money rather than CDR features. Variable importances in (c) are for a combined CDR/M-Money model.

Table III: Accuracy Results for random forest prediction
using different feature sets over 30 randomly seeded

experimental runs

Model
Feature Set

Model
Performance

Classification
Accuracy

Per-class
F1 score

CDR features
f1 score: 0.63
precision: 0.64
recall: 0.64

65.9%
Poor: 0.74
Average: 0.43
Wealthy: 0.74

M-Money features
f1 score: 0.7
precision: 0.71
recall: 0.7

71.3%
Poor: 0.77
Average: 0.54
Wealthy: 0.8

Combined
(CDR + M-Money)

f1 score: 0.71
precision: 0.72
recall: 0.71

72.3%
Poor: 0.78
Average: 0.55
Wealthy: 0.8

CDR features
residential

f1 score: 0.63
precision: 0.64
recall: 0.64

67.2%
Poor: 0.74
Average: 0.38
Wealthy: 0.77

M-Money features
residential

f1 score: 0.71
precision: 0.71
recall: 0.71

73.4%
Poor: 0.79
Average: 0.51
Wealthy: 0.82

Combined
residential

f1 score: 0.7
precision: 0.71
recall: 0.71

73.4%
Poor: 0.79
Average: 0.49
Wealthy: 0.82

is occurring. To this end, permutation importance was in-
vestigated as per the methodology described in §IV-D. For
each model 1 feature within the test set (OOB samples)
at a time is permuted (simulating holding out that feature
without requiring a full model training) and the performance
(F1 score) compared to the performance obtained with the
full model. Note that the use of OOB samples provides the
variable importance of the generalized predictor, rather than
fitted (potentially overfit) model. Results for the combined

feature set model are shown in Figure 1c, with the x-axis
being interpreted as the mean increase in F1 score that
the inclusion of the variable provides (assuming all other
features are kept in the model). Six out of the seven most
predictive features are generated via M-Money data (in fact
the only useful CDR feature relates to number of users,
which is likely to reflect the population density in an area
and can be drawn from other sources). The top 4 M-Money
features overall are: average M-Money in; active M-Money
users; percentage balance checks; and average M-Money
spend. The average M-Money received by residents across
an area clearly explains the most variance, contributing a
0.18 increase in F1 score. This is followed by the number
of M-Money users in second at 0.11; the percentage balance
checks at 0.03; and the average M-Money out at 0.01.

C. Understanding M-Money Feature Effects

To break down the feature effects further we use Partial
Dependence Plots (PDPs) to visualize the increase/decrease
of the probability of predicting a given output class (i.e.
wealthy) when a factor is varied while all others are
kept fixed. PDPs are highly effective in showing us the
model’s sensitivity to the feature in question and how its
predictions will respond as the variable’s value changes. In
each diagram, the heavily weighted line shows the mean
change in the probability of a data-point being assigned
to a particular class, as the variable increases. Considered
in conjunction with the permutation importance scores, the
PDPs highlight the nature of the relationship between the
M-Money variables and socio-economic class.

As one might expect, the model clearly identifies that
as the amount of M-Money incoming to residents of a
BTS increases the likelihood of that area being affluent also



Figure 2: Partial Dependence Graphs for Average M-Money received by residents in each area of Dar es Salaam

increases (as denoted by the large areas under the curve for
Figure 3a and c). However, the feature provides minimal
information to the model for categorization for ‘average’
areas. There is, in fact, a relatively wide variance of avg
money in in average areas (which can be both middle-
income areas or zones with combined informal/residential
housing). Thus, we are left with a feature which provides
binary classification - figure 1a and 1c being mirror images
of each other. There is a plateau to the informativeness
of this effect, however, and as a predictor, its partitioning
effectiveness peaks at ∼35,000 TZS (which thus might well
define a heuristic boundary between poor/wealthy users).

The number of residents who use mobile financial ser-
vices in an area is negatively correlated with affluence, as
illustrated in Figure 3c, where higher uptake of M-Money
increases the probability of a wealthy classification. This
may initially seem counter-intuitive, but it is the unbanked
that have the highest propensity to need an alternative to tra-
ditional financial services. While the poor remain disengaged
from credit card usage, mobile phone usage is ubiquitous,
even in slum areas, resulting in this effect.

The most important feature to the model in classifying
middle-income towers is average M-Money spend. It is this
feature, which is likely improving the most over CDR data
in the assessment of such areas. Figure 4 shows that while
the model broadly associates an average M-Money spend
of ∼25,000 TZS as the cut off line for poorer areas, it is
only at ∼29,000 TZS where the likelihood of assignment as
a rich area begins to jump. In between, the likelihood of a
middle-income area being assigned increases. However, the
feature is not decisive, and the true situation remains blurry
to the model with two broad trends visible in figure 4b. Half
of the blue lines form a hump in the middle of the graph
(reflecting a strict middle-income sub-population perhaps)
dropping once spend gets over a certain threshold, while the
other half remain high (and thus will not be distinguished
from residents of a wealthy area). Such fuzziness is likely
due to the different types of average areas that occur in
reality - true middle-income areas, and those with distinct
mixtures of wealthy and less affluent communities.

A further useful feature identified by the model is the
average of balance checks users make to their mobile money
accounts. As balance checks increase there is more likeli-
hood of an area correctly being assigned as poor (although
this is not a monotonic relationship). This is likely to be
reflecting the fact, those living closer to the breadline need
to assess their exact financial situation far more regularly
than those who are more affluent.

VI. STUDY LIMITATIONS

1) User selection: The study includes only individuals
using basic network services (M-money, SMS, calls). Geo-
graphic indicators were not present in M-Money logs (al-
though this is a symptom of our sample, rather than the raw
data). Furthermore, user types (see Figure 1a) were provided
by the telco company, and accuracy was assumed - on the
ground analysis, however, has indicated a large informal
economy of street traders operating under the auspice of
being regular subscribers across the region, and this ought
be remembered when considering feature importance.

There are also potential issues around selection bias aris-
ing from mobile phone ownership among different groups of
society. In urban spaces in Tanzania, however, mobile phone
penetration has been reported to be close to 92% resulting
in a negligible uptake bias. Furthermore, the telco providing
the study’s datasets has a 28% per cent market share, with
over 70% of overall customers reporting that they had not
used another network [7].

2) Validation data: Supervised machine learning tech-
niques require accurate training and validation samples. As
part of this study, we made use of a custom ground reference
survey collected by volunteers within Dar Es Salaam over
a 2-month long period. While the sampled areas conformed
to the same BTS derived Voronoi tessellation, assignment
of these areas into clear socio-demographic categories is
often difficult (as shown in a sample satellite image in figure
5). There remains the potential for errors in surveyed data,
and this issue is exacerbated in 1. the rural and peri-urban
outskirts of Dar Es Salaam, where large coverage areas of
individual BTS are encompassing a mixture of affluence



Figure 3: Partial Dependence Graphs for the number of M-Money users in each area of Dar es Salaam

Figure 4: Partial Dependence Graphs for Average M-Money spend by residents in each area of Dar es Salaam

Figure 5: Sample area within Dar. A slum occurs in the
centre with affluent housing left and right of the corridor

levels, and 2. the dense makeup of the city, where slums
and formal residential areas can sometimes be found in
extremely close proximity.

3) Data accessibility: Continuing, rigorous care must
be taken in examination of CDR data and Mobile Money
data. While such datasets are generated and curated by
commercial telcos, they contain extensive personal data.
While initial guidelines for best-practice engagement with
third-party organizations to analyze CDR data have been
developed by the GSMA [31] (in the wake of the recent
Ebola crisis), overarching policies are yet to be established
in regions where research can be of the most benefit. This
remains key to ensure the strict preservation of both indi-

vidual and commercial privacy while allowing the potential
of leveraging ‘big data’ for social good to be fully realized.

VII. CONCLUSION

Using ground reference, CDR and M-Money data, we
identified and quantified features with the aim of accurately
classifying which small-scale areas across the Tanzanian
port city of Dar Es Salaam fall within different socioeco-
nomic categories. Our approach compared baseline metrics
extracted from CDR data in line with previous approaches
on harnessing CDR data for area-level poverty assessment
discussed in table I with features extracted from M-Money
data, combinations of those feature sets, and feature sets
incorporating a differentiation in underlying land-use.

This study demonstrates that mass M-Money datasets can
provide sizable improvements in socio-demographic classi-
fication accuracy over recent CDR approaches. However,
limitations still remain, largely due to a need for more high-
quality ground reference data for training. At the same time,
we believe this work will provide useful information to
empower policymakers and local municipalities to identify
areas requiring interventions and revitalization programs, as
according to the UNFPA, “any indicative estimates would
provide in certain situations where none are currently avail-
able; even if they carried with them a significant level
of uncertainty such estimates would still represent a large
improvement in many cases” [12, p. 519].
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