
Detecting Anomalies in the LCLS Workflow
Tal Shachaf

Dept. of Mathematics and Dept. of Computer Science
University of California, Berkeley

Berkeley, California
tsshachaf@berkeley.edu

Alexander Sim
Computational Research Division

Lawrence Berkeley National Laboratory
Berkeley, California

asim@lbl.gov

Kesheng Wu
Computational Research Division

Lawrence Berkeley National Laboratory
Berkeley, California

kwu@lbl.gov

Wilko Kroeger
SLAC National Accelerator Laboratory

Stanford University
Menlo Park, California

wilko@slac.stanford.edu

Abstract—The Linac Coherent Light Source (LCLS) located
at SLAC National Accelerator Laboratory has been essential
to over 1023 publications since 2009. The LCLS produces vast
quantities of data - thousands of gigabytes per experiment. The
data must be analyzed and stored at large data centers to be
available to the world-wide user community. Due to the vast
quantities of data flowing through the network, many abnormal
data transfers remain unnoticed. This work focuses on identifying
network failures that could slow down the data transfer process.
This work aims to develop a diagnostic tool to detect when
network transfers become anomalously slow. The tool uses an
algorithm based on the hampel filter to detect poor performance
and alert SLAC administrators to bottlenecks in each phase of the
workflow. We will describe our experience of preparing the data
and modifying the hampel filter to enhance its effectiveness. We
found that applying a heuristic to the algorithm in conjunction
with parsing the data along key features improved performance.

Index Terms—LCLS, Linac Coherent Light Source, Hampel
Filter, Network Anomaly Detection, Data Transfers

I. INTRODUCTION

The Linac Coherent Light Source (LCLS) is a linear ac-
celerator at SLAC National Accelerator Laboratory that has
been essential to over 1023 publications since 2009. Each
experiment produces thousands of gigabytes, and SLAC ex-
pects the upgraded LCLS-II will produce 10000 times as much
data in the same time frame, reaching exascale workflow1.
LCLS data must be transferred to NERSC supercomputers
for analysis before it can be used by the PI and world-
wide community. Network failure can bottleneck the workflow,

This work was prepared in partial fulfillment of the requirements of the
Berkeley Lab Undergraduate Research (BLUR) Program, managed by Work-
force Development & Education at Berkeley Lab. This work was supported
by the Office of Science, of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231. This research used resources of the National
Energy Research Scientific Computing Center. Use of the Linac Coherent
Light Source (LCLS), SLAC National Accelerator Laboratory, is supported
by the U.S. Department of Energy, Office of Science, Office of Basic Energy
Sciences under Contract No. DE-AC02-76SF00515.

1An exascale workflow is computationally intensive enough to make
effective use of exascale computers, which will compute 1018 floating point
operations per second.

decreasing data quantity and quality. Data shows that LCLS
network transfers slow to as much as 1/30th of their peak rates,
significantly affecting processing times. Without analyzed data
for feedback, PIs cannot adjust initial laser settings, which
can be inaccurate and result in undesired measurements. The
vast quantity of data makes failure difficult to detect through
human monitoring, and with the LCLS-IIs increased data flow
network limitations will have more severe impacts on the
workflow. Therefore, we are researching a scalable diagnostic
tool based on the hampel filter to send alerts of anomalously
slow transfers in the LCLS workflow.

A typical LCLS data goes through three phases we call
FFB, ANA and NERSC. First, during the FFB phase, the
seven LCLS instruments record images in fast feedback (FFB)
storage. Data movers then transfer the images to one of four
analysis (ANA) file systems. Lastly, in the NERSC phase, the
images are uploaded through ESnet to NERSC storage for a
more thorough analysis.

For each phase, we study the attributes that affect the data
transfer rate. This allows us to contextualize our anomaly
detection algorithm and enhance its precision. For the algo-
rithm we investigated approaches based on the z-score [2],
interquartile range [3], and hampel filter [4]. To account for
performance shifts over time, we applied a sliding window
over the average data transfer rates. However, we found that
under equivalent parameters, the z-score and interquartile
range schemes had difficulty detecting anomalies in the highly-
varying FFB dataset.

To alter the hampel filter’s analysis for a specific dataset, at
least half of the data must be altered. The interquartile range
is only half as robust, while one alteration will affect the z-
score. Therefore, we focused on the more robust hampel filter
for further investigation. Furthermore, we began researching
an adaptive anomaly detection algorithm that heuristically
determines the parameters for the hampel filter. Our goal is
to make the algorithm flexible against future alterations in
data procurement methods or LCLS performance with minimal
human adjustment. We design a tool to detect the most severe

anomalies, so as to prevent major bottlenecks and ensure
SLAC has the resources to respond to the algorithm’s alerts.

Previous work [1] investigated errors in the LCLS data and
identified the slowest 1% of all transfers. We furthered the
work by studying data characteristics and applying statistical
techniques to detect anomalies. Preparing the data and modi-
fying the technique according to correlated features enhanced
the alert system’s precision. Improving the algorithm mini-
mizes usage of human resources while improving detection of
workflow bottlenecks resulting from network failure.

II. MATERIALS & METHODS

SLAC provided statistics on data transfers from June, 2017
to January, 2018 spanning the FFB, ANA and NERSC phases.
The FFB and ANA datasets include information on the LCLS
instrument, ANA filesystem, data mover, time began, time
elapsed and byte size per entry. The NERSC transfers note
the time began, time elapsed and data quantity per entry.
The transfer length includes checksum timing, which skews
transfer rates to be slower, as we will discuss further in the
results section of the paper. Each experiment is assigned a
LCLS instrument and linked to an ANA filesystem. For each
data transfer, the total time elapsed and data quantity allows
us to calculate the average transfer rate. We isolated transfers
from 1 GB to 100 GB in size, as smaller files are relatively
insignificant and configuration settings limit files to less than
100 GB. [1]

We focused on the hampel filter because its robustness
makes it more effective. The hampel filter, the pseudocode
for which is depicted in Alg. 1, utilizes the median of a
dataset to estimate the standard deviation. It relates the median
distance from the median to the standard deviation through
a scalar proposed by its developer, Ronald K. Pearson. Due
to making estimates from medians, its breakdown point [6] is
0.5, a quantification indicating half of a dataset must be altered
to alter the filter’s calculations. The z-score and interquartile
range methods have respective breakdown points of 0 and 0.25,
indicating they are less robust. We attribute the robustness to
why the hampel filter managed to detect anomalies in the FFB
data, which was too scattered for the other methods to detect
anomalies. Accordingly, we chose to focus on the hampel filter
for our research.

As seen in Alg. 1, the anomaly detection schemes make
use of 2 parameters: an integer window length, half-window,
and an aggressiveness value. The window size determines
how many data points in either direction to compare each
data transfer with, while the aggressiveness determines how
many standard deviations from the median a transfer must
be to be considered anomalous. The lower the aggressiveness
parameter, the higher the minimum threshold for transfer rates
will be and more data will be detected.

The algorithm iterates through the data, and for each data
entry it examines the half-window data points before and
after it. For each such window of data points, the algorithm
calculates the median and median absolute deviation from the

Algorithm 1 Pseudocode for calculating anomaly thresholds
with the hampel filter.
Precondition: dataframe data with column transfer rate,

positive integer half window

1: function HAMPEL(data, half window, aggressiveness)
2: file ← data.transfer rate.copy()
3: initialize threshold
4: for i← 1 to length(file) do
5: initial ← i− half window
6: terminal ← i+ half window
7: win ← file[initial : terminal]
8: median ← median(win)
9: deviations ← [|rate−median| for rate in win]

10: MAD ← median(deviations)
11: standard dev ← MAD ∗ 1.4826
12: tolerance ← standard dev ∗ aggressiveness
13: threshold{i} ← median− tolerance
14: if |median− file{i}| >= tolerance then
15: file{i} ← median

16: return threshold

median (MAD). The MAD is multiplied by 1.4826 to estimate
the standard deviation.

To improve scalability, we implement the hampel filter to
internally store its sliding window as a sorted list [5]. Doing so
allows for constant median lookup, linear threshold calculation
and linear value replacement.

The aggressiveness parameter specifies the number of stan-
dard deviations from the median that will be considered
acceptable. If the transfer is slower than expected, then it is
detected as an anomaly. Additionally, if it is faster or slower
than the normal range, then it is substituted by the median
for sliding windows of other file transfers. Doing so prevents
outliers from affecting calculations, further making the hampel
filter more robust than alternative techniques.

However, despite the hampel filter’s robustness, its param-
eters must still be adjusted for different datasets, hinder-
ing autonomous anomaly detection. Adjusting parameters to
maintain anomaly alerts within meaningful yet manageable
levels requires human intervention. Therefore, we investigated
the effect of applying heuristics to adapt to the datasets.
Heuristically determining the aggressiveness parameter allows
the algorithm to parse datasets by correlated variables and
run separate analyses. We expect contextualizing datasets in
such a fashion to lower the volume of alerts while preserving
precision.

III. RESULTS

A. Data Characteristics

To prepare the data, we began investigating the character-
istics of the FFB, ANA and NERSC datasets for correlations.
We began by investigating the FFB dataset, as the hampel
filter showed significant difficulty detecting anomalies in the
FFB transfers. The FFB data showed much higher standard

deviation estimates than the ANA data even though its range
was lower. While investigating the FFB dataset, we coalesced
each data point by average transfer rate and measured its
frequency of occurrence, as can be seen in Fig. 1. We observed
that, as we anticipated from having distinct LCLS instruments,
the dataset concentrates at a couple frequent transfer rates.
However, the transfer rates were not concentrated temporally,
(Fig. 2) as they ought to be if the instruments were the
bottlenecks. Typically, only a few of the seven LCLS instru-
ments are run simultaneously, so the data should have shown
horizontal strips. Indeed, preparing the data by instrument
preserved multiple frequent transfer rates, such as instrument
CXI’s data transfers in Fig. 3. The frequent transfer rates were
preserved, indicating the bottlenecks are independent of the
instrument in use. Therefore, We hypothesize the FFB transfers
are bottlenecked by an unrecorded feature. Specifically, we
suspect that swappable detectors used in conjunction with
the instruments are creating bottlenecks at different average
transfer rates.

To verify our hypothesis, we need data on any correlations
between the average transfer rate and detector. Otherwise, we
cannot properly distinguish slow transfers caused by network
failure from transfers limited by slower detectors. Thus, we
cannot effectively apply the algorithm to create an alert system
for FFB transfers.

The ANA dataset contains multiple features, of which we
concluded the ANA filesystem to be most meaningful. On
the other hand, the NERSC dataset records fewer features,
so we could not prepare the dataset by a correlated feature.
Instead, we prepared the data to more accurately depict the
network transfer rate. NERSC data transfers are fast enough
that checksums significantly affected average transfer rates, so
we extrapolated a function to estimate checksum timing from
the data files size. We anticipated removing the time spent
checksumming would result in a more accurate distribution
of the transfer rates. Indeed, the change can be observed in
Fig. 4. Originally, 99.9% of the data transfers were slower than
500 MB/s. After removing checksums though, only 45.8%
of transfers were slower than 500 MB/s. The range must
be extended as high as 1 GB/s to encompass 96% of data
transfers. And since slower transfers rates were less affected by
checksums2 the data distribution is noticeably more scattered
than before. As a result, the hampel filters standard deviation
estimates significantly increased, demonstrating the difficulty
in optimizing the anomaly detection algorithms parameters for
different data distributions.

B. Anomaly Detection Algorithm

As seen from the effect checksums had on the NERSC
dataset, the algorithm can be significantly affected by changes
to data collection procedures. Investigation showed that differ-
ent LCLS datasets have different optimal aggressiveness pa-
rameter values.3 For an incorrectly set parameter, the algorithm

2The longer total time elapsed made the checksum times less significant.
3We use optimal to refer to the integer parameter value that will only detect

the most significant anomalies in the dataset.

Fig. 1. Shows the FFB dataset plotted by average transfer rate versus number
of occurrences. The data shows multiple peaks, indicating there are distinct
transfer rates at which FFB transfers bottleneck.

Fig. 2. Shows the FFB dataset graphed by average transfer rate against time.
The data is scattered with no clear grouping or correlation, resulting in high
standard deviations in the hampel filter.

will detect extended periods of transfers as anomalies. For the
4 ANA filesystems, the optimal parameter value ranges from 4
to 7, while for the NERSC dataset it is as low as 2. Applying a
heuristic to estimate this optimal value allows the algorithm to
detect only the most statistically significant anomalies of each
dataset, thus decreasing alerts while maintaining precision. We
applied a rudimentary heuristic, with pseudocode in Alg. 2,
to determine the aggressiveness parameter for each of the 4
ANA filesystems separately, with the results shown in Fig. 5.
In comparison to analyzing the 4 filesystems’ dataset with the
same parameters, the heuristic detects a group of previously
missed slow transfers in August and ignores a high-performing
group of transfers in September. Additionally, when there is
sustained network failure, the heuristic picks a smaller subset
of the transfers, resulting in fewer yet more precise alerts.

Fig. 3. Depicts the portion of the FFB dataset from instrument CXI. The
dataset plotted by average transfer rate versus number of occurrences. The
data still shows multiple peaks, indicating the FFB instruments are not the
cause of the bottleneck when transferring data from the LCLS to FFB storage.

Fig. 4. The left graph shows the results of running the hampel filter on
the NERSC data with aggressiveness value 2. The black points are transfers
that were detected as anomalously slow. In the right graph, the NERSC
data’s average transfer rates were recalculated to exclude the time spent
checksumming the transfer. Under identical parameters, no anomalously slow
transfers were detected due to the change in the distribution.

Fig. 5. Contrasts analyzing the ANA dataset with the adaptive algorithm,
depicted on the left, and the hampel filter depicted on the right. The heuristic
results in fewer total detections and detects slower data transfers.

Algorithm 2 Rudimentary heuristic to calculate aggressive-
ness parameter
Precondition: dataframe data with column transfer rate,

positive integer half window. Can duplicate data to
include the half window earliest and latest points.

1: function HEURISTIC(data, half window)
2: file ← data.transfer rate.copy()
3: aggressiveness ← 0
4: for i← 1 to length(file) do
5: initial ← i− half window
6: terminal ← i+ half window
7: win ← file[initial : terminal]
8: median ← median(win)
9: deviations ← [|rate−median| for rate in win]

10: MAD ← median(deviations)
11: standard dev ← MAD ∗ 1.4826
12: tol ← |median− file{i}|/standard dev
13: aggressiveness ← dmax(aggressiveness, tol)e
14: return aggressiveness− 1.5

IV. DISCUSSION

Enhancing anomaly detection will improve the quantity and
quality of data produced and released by principal investiga-
tors. Applying statistical techniques makes anomaly detection
less dependent on human input for qualitatively determining
what transfer rates qualify as network failure. Additionally,
it ignores fast network transfers, as opposed to alternative
schemes such as detecting the slowest 1% of transfers.

Two areas for future research are the datasets and heuristic.
If data collection incorporates more features, such as the FFB
instruments’ detectors, then one might find other prominent
features. Preparing the data using those features can enhance
analysis. Furthermore, the current heuristic iterates over the ag-
gressiveness parameter to choose the most deviated anomalies.
Improving the heuristic and applying it to the other parameter,
the length of the data window, may enhance the algorithm

V. CONCLUSION

Currently, network failure often remains undetected in the
LCLS workflow. The parallel dataflows will bury the bottle-
neck and hinder human detection. The hampel filter-based
algorithm described in the paper is meant to alert SLAC
administrators to network failure so they can diagnose and fix
bottlenecks, thus speeding up the workflow. Currently, we plan
to periodically run the algorithm on newly generated LCLS
data and generate alerts for anomalous transfers.

REFERENCES

[1] M. Yang, X. Liu, W. Kroeger, A. Sim, K. Wu. 2018. Identi-
fying Anomalous File Transfer Events in LCLS Workflow. 1-4.
10.1145/3217197.3217203.

[2] C. Aggarwal. Outlier Analysis. Second ed., Springer, 2017.
[3] J. Peat, B. Barton. 2014. Medical statistics : a guide to spss, data analysis

and critical appraisal. Retrieved from https://ebookcentral.proquest.com

[4] R. K. Pearson, Y. Neuvo, J. Astola, M. Gabbouj. EURASIP J. Adv.
Signal Process. (2016) 2016: 87. https://doi.org/10.1186/s13634-016-
0383-6

[5] M. Suomela. Median Filtering is Equivalent to Sorting. arXiv:1406.1717
[cs.DS]

[6] F. Hampel. 1974. The Influence Curve and Its Role in Robust Estimation.
Journal of the American Statistical Association, 69(346), 383-393.
doi:10.2307/2285666

