
dynamicMF: A Matrix Factorization Approach to Monitor
Resource Usage in High Performance Computing Systems

Niyazi Sorkunlu
Computer Science and Engineering

University at Buffalo,
State University of New York

Buffalo, New York 14260
niyaziso@buffalo.edu

Duc Thanh Anh Luong
Computer Science and Engineering

University at Buffalo,
State University of New York

Buffalo, New York 14260
ducthanh@buffalo.edu

Varun Chandola
Computer Science and Engineering

University at Buffalo,
State University of New York

Buffalo, New York 14260
chandola@buffalo.edu

September 28, 2018

Abstract

High performance computing (HPC) facilities consist of
a large number of interconnected computing units (or
nodes) that execute highly complex scientific simulations
to support scientific research. Monitoring such facilities,
in real-time, is essential to ensure that the system operates
at peak efficiency. Such systems are typically monitored
using a variety of measurement and log data which cap-
ture the state of the various components within the system
at regular intervals of time. As modern HPC systems grow
in capacity and complexity, the data produced by current
resource monitoring tools is at a scale that it is no longer
feasible to be visually monitored by analysts. We propose
a method that transforms the multi-dimensional output of
resource monitoring tools to a low dimensional represen-
tation that facilitates the understanding of the behavior of
a High Performance Computing (HPC) system. The pro-
posed method automatically extracts the low-dimensional
signal in the data which can be used to track the system ef-

ficiency and identify performance anomalies. The method
models the resource usage data as a three dimensional ten-
sor (capturing resource usage of all compute nodes for dif-
ference resources over time). A dynamic matrix factoriza-
tion algorithm, called dynamicMF, is proposed to extract
a low-dimensional temporal signal for each node, which
is subsequently fed into an anomaly detector. Results on
resource usage data collected from the Lonestar 4 system
at the Texas Advanced Computing Center show that the
identified anomalies are correlated with actual anomalous
events reported in the system log messages.

1 Introduction
High performance computing (HPC) is at the forefront
of scientific discovery and engineering innovation. To
support the growing computing demands in these areas,
modern HPC systems have seen a rapid transformation in
terms of compute capacity and the underlying complexity.
To ensure that an HPC system is operating at its peak effi-

1

ar
X

iv
:1

80
9.

10
62

4v
1 

 [
cs

.D
C

] 
 2

6 
Se

p 
20

18



ciency, analysts typically rely on system monitoring tools
to monitor the system performance and identify anoma-
lies.

Several tools exist for collecting and visualizing re-
source usage data from large scale HPC installations (e.g.
Texas Advanced Computing Center TACC Stats [10],
XSEDE Metrics on Demand or XDMoD [17], etc.). Such
tools can produce large amounts of high dimensional re-
source usage data at a high temporal frequency for each
computational node in the system. The data collected by
such tools provides a real-time view of the performance
of the system which is typically fed into a visual interface
(e.g., XDMoD [17], OVIS [3], Bright Cluster [4], etc.).
However, such data is typically large and unwieldy, and
visual monitoring is often challenging and inefficient.

Existing automated methods typically monitor each
system resource or state for every compute node inde-
pendently for potential deviations or anomalies [18], re-
lying on a pre-defined threshold. Such methods can iden-
tify only those anomalous scenarios in which an individ-
ual node exhibits significant deviation for individual re-
sources. These methods often miss anomalies that are
under the threshold. Such anomalies, are weakly mani-
fested across several nodes and multiple system resources
and can be potentially detected by understanding the in-
teractions between the different aspects of the system. A
tensor decomposition based method [21] jointly models
the interactions across the nodes, resources, and time, and
produces a single time varying signal that can be used for
tracking the overall system performance. However, the
output does not allow for finer resolution analysis, for in-
stance, identifying the specific nodes that are performing
anomalously.

In this paper, we propose a method for understand-
ing the system behavior at the node resolution. The key
assumption here is that the observed system behavior,
captured as resource usage information by tools such as
TACC Stats, can be decoupled into node and metric spe-
cific behaviors. Further, the node behavior can be decou-
pled into time-invariant (or static) and time-dependent (or
dynamic) terms. This “decoupling” is achieved using a
dynamic matrix factorization method which operates on
the sequence of node-usage matrices, collected over time
(See Figure 1). The output of the proposed algorithm is a
set of low-dimensional representations for the metrics and
the nodes that facilitate understanding of the system in

multiple ways. In particular, the dynamic node represen-
tation allows for tracking the performance of each node.
Additionally, we use the proposed algorithm to produce a
node level anomaly statistic and show that many perfor-
mance anomalies, identified from message logs, co-occur
with the identified anomalies.

Figure 1: Typical resource usage data collected by tools
such as TACC Stats. Each panel corresponds to a
compute node and consists of time-varying usage metrics
for a variety of system resources.

The paper is organized as follows. The key problem
addressed in this paper is outlined in Section 2, along with

2



the proposed model, dynamicMF. Results on a week long
TACC Stats data for the Lonestar 4 system in the Texas
Advanced Computing Center are discussed in Section 3.
Section 4 provides a brief overview of related works in
this area and conclusion is presented in Section 5.

2 Proposed Methodology
We describe the proposed dynamicMF algorithm in this
section. The algorithm is motivated by the fact that, while
the performance of an HPC system is captured for many
nodes and in the context of several resources, the met-
rics and the nodes exhibit a clustering pattern: several re-
sources produce correlated usage metrics and many nodes
behave similarly, either due to their computing specifica-
tions or the workload.

2.1 Problem Setting
We consider an HPC system consisting of N compute
nodes. A resource usage monitoring program, such as
TACC Stats periodically reports usage data correspond-
ing toM different resource usage metrics (CPU consump-
tion, memory usage, network usage are three typical ex-
amples). At a given time t, the variable znmt denotes the
mth resource’s usage for node n in the time interval end-
ing at time t. We collect all of these variables at time t in
a matrix Zt ∈ RN×M , such that Zt[n,m] = znmt.

2.2 Proposed Model
The proposed model assumes that the nodes and the met-
rics can be represented as vectors in two distinct (and un-
observed/latent) K-dimensional spaces (K � N,M ),
respectively. Thus each metric is represented as a K-
dimensional vector, vm ∈ RK , where each of the K
dimensions denote a canonical characteristic of the cor-
responding metric. For the nodes, we assume two rep-
resentations. The first representation is static over time,
denoted as ūn ∈ RK , and characterizes the base behavior
of the node. The second representation is time-dependent,
denoted as ûnt ∈ RK , and captures the dynamic behavior
of the node.

Assuming that the above representations, including
{vm}Mm=1, {ūn}Nn=1, {ûnt}N,T

n=1,t=1, are known, the ob-

served behavior for each node and metric combination,
i.e., znmt, is generated by a functional interaction between
the three representations. In this paper, we assume a linear
interaction of the following form:

znmt = (ūn � ûnt)
>vm (1)

where � is an element-wise product. For the entire re-
source usage matrix, the interaction can be written as:

Zt = (Ū� Ût)V
> (2)

V ∈ RM×K consists of the latent representations of the
M metrics, i.e., V = [v1,v2, . . .vM ]>. Ū ∈ RN×K

consists of the static latent representations of theN nodes,
i.e, Ū = [ū1, ū2, . . . ūN]>. Ût ∈ RN×K consists of the
dynamic latent representations of the N nodes at time t,
i.e, Ût = [û1t, û2t, . . . ûNt]

>. Figure 2 illustrates the
interaction between components of the proposed model
to generate the observation for each metric and node pair
in a given time window.

2.3 Inference Problem
The proposed generative model (See Figure 2) shows how
the observations are generated through interactions be-
tween the three low-dimensional representations. How-
ever, given that these representations are unknown, the
actual problem here is that of inference, i.e., given the ob-
served resource usage data, {Zt}Tt=1, estimate V, Ū, and
{Ût}Tt=1.

Each of the inferred entities provides a distinct insight
into the system performance. The latent metric character-
istics (vm) map the metrics into a common space, where
one can understand the similarity between the various
metrics as inferred from the data. For instance, one would
expect all metrics pertaining to the network resource ap-
pear similar in the latent space. However, how would in-
put/output related metrics compare with the network met-
rics? Such relations are quantifiable using the latent space
representation. Similar insights can be derived for the
nodes using the static node characteristics (ūn). However,
the dynamic node characteristics (ûnt) is the key output of
the proposed model that allows for tracking the behavior
of each node over time using a few latent characteristics.
The information in matrices {Ût}Tt=1 is obtained from the
observed resource usage data after “explaining away” the

3



znmt

ûntūn

vm

M

T

N

Figure 2: Illustration of the assumed interactions
between the observed data (znmt) and the latent variables
(ûnt, ūn,vm) at a given time t for node n and metric m
in the proposed dynamicMF model.

static node and metric behavior. Thus, the residual K-
dimensional signal is expected to better provide informa-
tion about the true dynamic behavior of each node.

2.4 Estimating Latent Representations
We pose the problem of estimating the latent entities,
V, Ū, and {Ût}Tt=1, as an optimization problem that min-
imizes the error between the observed data ({Zt}Tt=1) and
reconstruction obtained in (2). The optimization problem
can be written as:

min

T∑
t=1

∥∥∥Zt − (Ū� Ût)V
T
∥∥∥2
F

(3)

with respect to Ū,V, {Ût}Tt=1

where ‖·‖F represents the Frobenius norm.

2.5 Optimization
In order to solve the optimization problem as stated in (3),
we use Adam algorithm [15] as the main building block to

jointly optimize over the entire set of variables. The Adam
algorithm performs first-order gradient-based optimiza-
tion of stochastic objective functions, based on adaptive
estimates of lower-order moments, and has been highly
successful in the training of deep neural networks. Typ-
ically, as a gradient-based method, one step of Adam al-
gorithm only requires one pass over the data. In addition,
its optimization with momentum allows the algorithm to
work well for mini-batches of data instead of the entire
dataset. Beside its fast computation, this algorithm is also
efficient in terms of memory usage and well-suited for
training model with many parameters. Algorithm 1 pro-
vides the pseudo-code for our approach.

Algorithm 1 Adam Optimizer
Initialization: initialize the values of Ū, V and
{Û}Tt=1

for iter ∈ {1, · · · ,max iter} do
Update Ū,V, {Ût}Tt=1 simultaneously using one

step of Adam optimizer
end for

For the experiments conducted in this paper, we im-
plement the dynamicMF algorithm using TensorFlow [1].
The hyper-parameters of the Adam optimizer are set by
following the suggestion in the original paper [15], i.e.
α = 0.001 (step size), β1 = 0.9, β2 = 0.999 (decay rate
in exponential moving average).

2.6 Anomaly Detection
By using the resulting latent values Ū, {Ût}Tt=1 and V,
we can derive an anomaly score for node n at time step t
which can be defined as a discrepancy between model and
observation, i.e.:

ant =
1

m

M∑
m

∣∣znmt − (ūn � ûnt)
>vm

∣∣ (4)

3 Experimental Results
In this section, we present the experimental results by ap-
plying the dynamicMFalgorithm to analyze real resource
usage logs for a large HPC system, and identify potential
system anomalies.

4



3.1 Dataset

The dataset used in the experiments is a subset of data
obtained from Lonestar 4 cluster located at the Texas Ad-
vanced Computing Center (TACC)1. This cluster consists
of 1888 computing nodes from which the records of 1709
nodes are used in this study. The resource usage data
is collected using the TACC Stats system monitor [10]
which records various resources usage statistics at each
computational node every 10 minutes. In our experi-
ments, we use a set of 86 resource usage statistics with
a resolution of 10 minutes from 1:10:01 March 1st 2013
to 23:40:01 March 7th 2013. Totally, we have data of
1000 timesteps that will be used for analysis in our ex-
periments. See table 1 for the complete list of resource
usage statistics used in this paper. As different statistics
have different scale and units, we have normalized them
to have zero mean and unit variance.

In addition to resource usage statistics, we also have in-
formation of computing jobs that performed in Lonestar
4. In particular, for each computing node that the job was
assigned to, the system records its start time and end time.
There is also the set of system log messages that outputs
log traces from programs running on the HPC system, in-
cluding the messages from the applications running on the
nodes.

3.2 Optimization performance and effect of
different K

The performance of the optimization algorithm (See Al-
gorithm 1) in estimating the latent representations is
shown in Figure 3. Results are shown for K = 3, 5, and
10. For each K, the objective function decays with each
optimization step and eventually converges.

As expected, using a larger number of latent dimen-
sions results in a better fit. However, larger K also results
in a larger number of latent variables to monitor. In this
paper, we choose K = 10 to report the subsequent find-
ings. Note that the average error between the model and
observations is approximately 0.57 for K = 10 (See Fig-
ure 3 inset).

1https://portal.tacc.utexas.edu/archives/
lonestar4

Component Resource usage metrics
CPU user, nice, system, idle, iowait, irq,

softirq
I/O rd ios, rd merges, rd sectors,

rd ticks, wr ios, wr merges,
wr sectors, wr ticks

Lustre /scratch,
/work

read bytes, write bytes,
dirty pages hits,
dirty pages misses, ioctl, open,
close, mmap, seek, fsync, setattr,
truncate, getattr, statfs, alloc inode,
setxattr, getxattr, listxattr, in-
ode permission, readdir, lookup,
link, unlink, rename

Lustre network tx msgs, rx msgs, tx bytes,
rx bytes,

Virtual Memory pgpgin, pgpgout, pgalloc normal,
pgfree, pgactivate, pgdeactivate,
pgfault, pgmajfault, pgrefill normal,
pgsteal normal, pgscan kswapd,
pgscan direct, pginodesteal,
slabs scanned, kswapd steal,
kswapd inodesteal, pageoutrun,
allocstall, pgrotated

Table 1: List of resource usage metrics used for
experiments.

3.3 Analyzing latent representations

In this section we illustrate how the latent representations
obtained using dynamicMF can be used to gain insights
about the underlying system. The first latent represen-
tation (V) provides a characterization of the metrics. A
two-dimensional visualization of the metric representa-
tion is shown in Figure 4. We use Principal Component
Analysis (PCA) [14] to reduce the K-dimensional data to
two dimensions for visualization.

Figure 4 reveals several interesting insights regard-
ing the characteristics of various metrics. While met-
rics within most coarse categories appear to cluster to-
gether in the latent space (e.g., llite, vm), there are
some clear outliers (e.g., llite work listxattr,
vm pgmajfault).

In the same way, the static latent representations for

5

https://portal.tacc.utexas.edu/archives/lonestar4
https://portal.tacc.utexas.edu/archives/lonestar4


Figure 3: Objective function (See (3)) optimization for
different number of latent dimensions (K). Inset shows
the average final objective function value (or error) for
znmt. (Best viewed in color.)

Figure 4: 2-dimensional view of the latent representation
for metrics estimated by dynamicMFwith K = 10. The
K-dimensional data was reduced to two dimensions
using PCA. Metrics belonging to a single coarse
grouping (llite, vm, cpu, cpu, lnet, block sda)
are displayed in the same way. (Best viewed in color.)

the nodes in the matrix Ū can be used to visualize the
nodes. Figure 5 shows the two-dimensional plot for the
static node behavior. An interesting pattern with two dis-
tinct and equal sized clusters is revealed. While a thor-
ough post-analysis of the node specifications is needed to
explain the patterns, we distinguish between the regular
compute nodes with 24 GB memory and the large mem-
ory nodes with 1 TB memory. The large memory nodes
are mapped in the periphery of two clusters, indicating
that dynamicMF is able to capture the specification re-
lated characteristics of the nodes.

Figure 5: 2-dimensional view of the static latent
representation for the compute nodes estimated by
dynamicMF with K = 10, using PCA for reduction to
two dimensions. Large memory nodes are displayed in a
different way. (Best viewed in color.)

As mentioned earlier, the key output that is produced
by dynamicMF is the dynamic latent representation for
each node. An important point here is that each latent
dimension contains unique information about the nodes.
While we do not explicitly enforce orthogonality in the
optimization formulation, the results show that the latent
dimensions are not significantly correlated (See Figure 6).

6



Figure 6: Pearson R correlation among the 10 latent node
representations. (Best viewed in color.)

Figure 7 shows the K components of the time-varying
ûnt for two different nodes in the system. For both nodes,
the different latent dimensions reveal a unique behavior
of the node. Moreover, the output for the two nodes is
significantly different. This is due to the fact that the two
nodes had significantly different workloads during the tar-
get week (obtained from the job information present in the
TACC Stats data). Node c325-312 (blue plot) had a sig-
nificantly light workload with 9 executed jobs, and conse-
quently the latent dynamic behavior has low variance. On
the other hand, node c336-203 (red plot) had a heavy
workload with 60 executed jobs, which is reflected in the
high variance for the latent dimensions. Figure 7 shows
10 latent dimensions of the time-varying component ûnt
for two different nodes with two different workloads in
the system. In particular, node c325-312 (blue plot)
had a significantly light workload with seven jobs receiv-
ing from users. On the other extreme, node c336-203
(red plot) had the most active jobs during the target week
with 60 jobs in total. In Figure 7, these two nodes exhibit
similar patterns of having sporadic spikes at some certain
time steps. Although it looks counterintuitive to have sim-
ilar patterns for nodes with two different workloads, one
may note that even for node with zero job submitted from
users in HPC system, it still has system-level jobs running

in the background which make the node have different re-
source usage at different time, causing sporadic spikes in
the temporal behavior as seen in the figure. In addition,
what we observe in Figure 7 is the latent temporal rep-
resentation of nodes after “explaining away” the overall
time-independent component ūn. For this reason, spikes
appear in the temporal representation as a result of un-
usual resource consumptions in each node.

3.4 Finding anomalies using dynamicMF

In this section, we analyze the association of our result-
ing hidden values and common errors obtained from sys-
tem log messages. In particular, there are three frequent
error types that we extracted from system log messages:
(1) write error, (2) segmentation fault and (3) inode error.
Write error is a type of error that happens in the system log
with the format “ost write operation failed with −122”.
This is a linux error that happens when disk quota is ex-
ceeded2. Segmentation fault is a common error type when
a program tries to write or read in an invalid memory loca-
tion. Inode error happens when ll inode revalidate fini()
fails and returns with error code−43. We associate the er-
ror types from system log with our resource usage statis-
tics by assigning the error that occurs within 10 minutes
of the occurence of the present time window.

In our analysis, we use the anomaly score defined in
section 2.6 and analyze its correspondence to the frequent
system log error types mentioned above. To compare,
we also show results using an adapted anomaly detection
method that constructs a three-way tensor using the re-
source usage data and then uses tensor reconstruction er-
ror as the anomaly score for the entire system [21]. While
the original method provides a single score for the whole
system, we adapt the method to produce a score for each
node individually.

Figure 8 shows three typical examples of three com-
puting nodes for each system log error type. In this fig-
ure, for write error, we do not observe any association be-
tween write error and anomaly score. As the write error
happens as a result of exceeding disk quota, this kind of
erratic behavior does not reflect in resource consumption
and therefore it does not reveal any association with our

2https://github.com/torvalds/linux/blob/
master/include/uapi/asm-generic/errno.h

7

https://github.com/torvalds/linux/blob/master/include/uapi/asm-generic/errno.h
https://github.com/torvalds/linux/blob/master/include/uapi/asm-generic/errno.h


3

2

1

0

1

2

3

va
lu

e1

dim = 0 dim = 1 dim = 2 dim = 3 dim = 4

0 200 400 600 800 1000
time

3

2

1

0

1

2

3

va
lu

e1

dim = 5

0 200 400 600 800 1000
time

dim = 6

0 200 400 600 800 1000
time

dim = 7

0 200 400 600 800 1000
time

dim = 8

0 200 400 600 800 1000
time

dim = 9

Figure 7: Temporal 10-dimensional representation estimated by dynamicMFfor two selected nodes. Node
c325-312 was inactive during the target week with seven executed jobs, shown in blue plot. Node c336-203 was
the most active during the target week with 60 executed jobs, shown in red plot.. (Best viewed in color.)

residual values, as can be seen in Figure 8a. On the other
hand, the segmentation faults in Figure 8b and inode er-
rors in Figure 8c occur very close and even identical to the
peaks of the anomaly score. As segmentation fault and in-
ode errors are typical examples of buggy programs, these
errors are usually results of faulty programming practice.
This can lead to the programs with inefficient resource us-
age, which can be subsequently observed by our resource
usage statistics. Therefore, in Figure 8b and 8c, the spikes
in anomaly score values often appear roughly around the
errors in terms of time.

The tensor based method (red plot in Figure 8) pro-
duces a metric shows high anomaly values that are tem-
porally close to some of the errors. However, the method
also produces a large number of false alarms, which can
make such a method practically unusable.

4 Related Work
The dynamic matrix factorization algorithm proposed
here falls under the general purview of unsupervised rep-
resentation learning [2], that includes a variety of tasks
such as dictionary learning, independent component anal-
ysis, autoencoders, matrix factorization and various forms

of clustering. In particular, a relevant topic is sparse cod-
ing [7], where the objective is to learn over-complete and
sparse bases for a given data set. However, methods in
these categories primarily focus on a static representa-
tion (typically as a matrix) and do not handle temporally
evolving data.

The idea of dynamic matrix factorization has been used
in designing the recommendation system. In particular,
dynamic Poisson factorization (dPF) model works effec-
tively when we assume each observation follows a Pois-
son distribution [6]. In this model, because of their prob-
abilistic setting, variational inference has been used to
perform inference. After that, they use the block coor-
dinate approach to solve the optimization problem yield
as a result of variational inference. Although our model is
similar to dPF in the design of shared components and
local components, our model is different from dPF in
several ways: (1) we do not assume the temporal rela-
tionship between consecutive timestep as in dPF, (2) be-
cause of our non-probabilistic formulation, we can avoid
the problem of non-conjugacy in dPF and use more ef-
fective gradient-based optimization such as Adam algo-
rithm instead of using block coordinate optimization with
L-BFGS (a more computationally intensive optimization

8



0 200 400 600 800 1000
timestep

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

dy
na

m
icM

F 
An

om
al

y 
Sc

or
es

0

5

10

15

20

25

30

35

Te
ns

or
 fa

ct
or

iza
tio

n

c305-208

0 200 400 600 800 1000
timestep

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

dy
na

m
icM

F 
An

om
al

y 
Sc

or
es

0

2

4

6

8

10

12

14

Te
ns

or
 fa

ct
or

iza
tio

n

c303-305

0 200 400 600 800 1000
timestep

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

dy
na

m
icM

F 
An

om
al

y 
Sc

or
es

0

5

10

15

20

25

30

35

Te
ns

or
 fa

ct
or

iza
tio

n

c307-306

(a) write error

0 200 400 600 800 1000
timestep

1.0

0.8

0.6

0.4

0.2

0.0

dy
na

m
icM

F 
An

om
al

y 
Sc

or
es

0

2

4

6

8

10

12

14

Te
ns

or
 fa

ct
or

iza
tio

n

c307-303

0 200 400 600 800 1000
timestep

1.0

0.8

0.6

0.4

0.2

0.0

dy
na

m
icM

F 
An

om
al

y 
Sc

or
es

0

2

4

6

8

10

12

14

Te
ns

or
 fa

ct
or

iza
tio

n

c307-214

0 200 400 600 800 1000
timestep

1.0

0.8

0.6

0.4

0.2

0.0

dy
na

m
icM

F 
An

om
al

y 
Sc

or
es

0

2

4

6

8

10

12

14

Te
ns

or
 fa

ct
or

iza
tio

n

c332-114

(b) segmentation fault

0 200 400 600 800 1000
timestep

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

dy
na

m
icM

F 
An

om
al

y 
Sc

or
es

1

0

1

2

3

4

5

6

7

Te
ns

or
 fa

ct
or

iza
tio

n

c321-115

0 200 400 600 800 1000
timestep

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

dy
na

m
icM

F 
An

om
al

y 
Sc

or
es

0

2

4

6

8

10

12

14

Te
ns

or
 fa

ct
or

iza
tio

n

c335-303

0 200 400 600 800 1000
timestep

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

dy
na

m
icM

F 
An

om
al

y 
Sc

or
es

0

5

10

15

20

25

30

35

Te
ns

or
 fa

ct
or

iza
tio

n

c321-116

(c) inode error

Figure 8: Association between anomaly scores computed using (4) and errors in system log messages. Anomaly
scores produced by dynamicMFare shown in blue and the anomaly score produced by the state of art tensor
reconstruction method is shown in red. Vertical gray lines indicate where the errors happen. The node name is shown
above each figure. (Best viewed in color.)

9



method) as a building block.
Solutions for detecting, diagnosing, and predicting

faults and failures in large high performance computing
installations have typically relied on message logs [22,
16, 11, 20, 19] or resource usage data [12, 5], or both [9,
13, 8]. Since this paper focuses on the detection task, we
present a brief overview of related methods that deal with
detecting faults. Methods operating on message logs typi-
cally aggregate message logs by an entity of interest, e.g.,
a computational node/block [16, 22] or a job [11], and
identify anomalous entities using different data represen-
tations, such as message arrival statistics [16], vector rep-
resentation derived from the message content [22] or a
state machine that models the dynamic behavior of the
entity [11]. However, message logs are typically noisy
and often incomplete, which has led to methods that an-
alyze alternate data sources such as resource usage met-
rics or performance counter data [12, 5]. However, these
solutions perform a node-specific or job-specific analy-
sis of resource usage to identify anomalous nodes [12]
or jobs [5]. Recently, solutions that combine resource us-
age data and message logs to improve fault detection have
been proposed [13, 8]. The Crude system uses resource
usage data to improve the performance of a PCA driven
anomaly detection method [22] that operates at node and
job level. However, none of the existing methods model
the temporal dimension to better identify faults. In a re-
cent work, a tensor based representation of the resource
usage data was used to identify anomalies at the system
level [21]. The method relies on low rank approximation
of a three way tensor that captures interactions between
nodes, metrics, and time, to establish an anomaly score
for the entire system at every time instance. However, the
method does not provide a node level estimate of system
behavior and anomalies.

5 Conclusions and Future Direc-
tions

In this study, we propose dynamicMF - a dynamic matrix
factorization method which takes both global and local
behaviors of the system into account to analyze for varia-
tions. This method is applied to a list of time-varying re-
source usage matrices. In our experiments with real data

from Lonestar 4 system, dynamicMF helps reduce the di-
mension of resource usage statistics and provide visual-
ization at a node-specific level. The proposed anomaly
statistic allows for an easy identification of performance
anomalies. Future direction of our research will be on
developing a fully-automated anomaly detection method
to detect failure in HPC system by using the low dimen-
sional latent space obtained from dynamicMF.

Future direction of our research will be to leverage job
information for analysis and incorporate it into our model.
Successfully modeling the interaction between jobs and
nodes can help us better explain the data and obtain a
more accurate model to detect inefficiencies in resource
usage.

References
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,

J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Is-
ard, et al. Tensorflow: A system for large-scale ma-
chine learning. In OSDI, volume 16, pages 265–283,
2016.

[2] Y. Bengio, A. C. Courville, and P. Vincent. Unsuper-
vised feature learning and deep learning: A review
and new perspectives. CoRR, abs/1206.5538, 2012.

[3] J. Brandt, A. Gentile, J. Mayo, P. Pebay, D. Roe,
D. Thompson, and M. Wong. Resource monitoring
and management with ovis to enable hpc in cloud
computing environments. In 2009 IEEE Interna-
tional Symposium on Parallel Distributed Process-
ing, pages 1–8, 2009.

[4] https://www.microway.com/download/
datasheet/Bright_Cluster_Manager_
Brochure.pdf, 2017.

[5] G. Bronevetsky, I. Laguna, B. R. de Supinski, and
S. Bagchi. Automatic fault characterization via
abnormality-enhanced classification. In Proceed-
ings of the 2012 42Nd Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Net-
works (DSN), pages 1–12, 2012.

[6] L. Charlin, R. Ranganath, J. McInerney, and D. M.
Blei. Dynamic poisson factorization. In Proceed-

10

https://www.microway.com/download/datasheet/Bright_Cluster_Manager_Brochure.pdf
https://www.microway.com/download/datasheet/Bright_Cluster_Manager_Brochure.pdf
https://www.microway.com/download/datasheet/Bright_Cluster_Manager_Brochure.pdf


ings of the 9th ACM Conference on Recommender
Systems, pages 155–162. ACM, 2015.

[7] S. S. Chen, D. L. Donoho, and M. A. Saunders.
Atomic decomposition by basis pursuit. SIAM Rev.,
43(1):129–159, 2001.

[8] E. Chuah, A. Jhumka, J. C. Browne, N. Gu-
rumdimma, S. Narasimhamurthy, and B. Barth. Us-
ing message logs and resource use data for cluster
failure diagnosis. In 23rd annual IEEE International
Conference on High Performance Computing, Data,
and Analytics (HiPC 2016), 2016.

[9] E. Chuah, A. Jhumka, S. Narasimhamurthy, J. Ham-
mond, J. C. Browne, and B. Barth. Linking resource
usage anomalies with system failures from cluster
log data. In Proceedings of the 2013 IEEE 32Nd In-
ternational Symposium on Reliable Distributed Sys-
tems, SRDS ’13, pages 111–120, Washington, DC,
USA, 2013. IEEE Computer Society.

[10] T. Evans, W. Barth, J. Browne, R. DeLeon,
T. Furlani, S. Gallo, M. Jones, and A. Patra. Com-
prehensive resource use monitoring for HPC sys-
tems with TACC stats. In International Workshop
on HPC User Support Tools, pages 13–21, 2014.

[11] Q. Fu, J.-G. Lou, Y. Wang, and J. Li. Execution
anomaly detection in distributed systems through
unstructured log analysis. In International confer-
ence on Data Mining, 2009.

[12] Q. Guan, D. Smith, and S. Fu. Anomaly detection
in large-scale coalition clusters for dependability as-
surance. In 2010 International Conference on High
Performance Computing, pages 1–10, 2010.

[13] N. Gurumdimma, A. Jhumka, M. Liakata, E. Chuah,
and J. Browne. Crude: Combining resource us-
age data and error logs for accurate error detection
in large-scale distributed systems. In 2016 IEEE
35th Symposium on Reliable Distributed Systems
(SRDS), pages 51–60, 2016.

[14] I. Jolliffe. Principal Component Analysis. Springer
Verlag, 1986.

[15] D. Kingma and J. Ba. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980,
2014.

[16] A. J. Oliner, A. Aiken, and J. Stearley. Alert detec-
tion in system logs. In 2008 Eighth IEEE Interna-
tional Conference on Data Mining, pages 959–964,
Dec 2008.

[17] J. Palmer, S. Gallo, T. Furlani, M. Jones, R. DeLeon,
J. White, N. Simakov, A. Patra, J. Sperhac,
T. Yearke, R. Rathsam, M. Innus, C. Cornelius,
J. Browne, W. Barth, and R. Evans. Open XDMoD:
A tool for the comprehensive management of high-
performance computing resources. Computing in
Science Engineering, 17(4):52–62, 2015.

[18] M. Peiris, J. H. Hill, J. Thelin, S. Bykov, G. Kliot,
and C. Konig. Pad: Performance anomaly detec-
tion in multi-server distributed systems. In Proceed-
ings of the 2014 IEEE International Conference on
Cloud Computing, pages 769–776, 2014.

[19] A. Pelaez, A. Quiroz, J. C. Browne, E. Chuah,
and M. Parashar. Online failure prediction for hpc
resources using decentralized clustering. In 2014
21st International Conference on High Performance
Computing (HiPC), pages 1–9, 2014.

[20] T. Reidemeister, M. A. Munawar, M. Jiang, and
P. A. S. Ward. Diagnosis of recurrent faults using
log files. In Proceedings of the 2009 Conference of
the Center for Advanced Studies on Collaborative
Research, pages 12–23, 2009.

[21] N. Sorkunlu, V. Chandola, and A. K. Patra. Tracking
system behavior from resource usage data. In 2017
IEEE International Conference on Cluster Comput-
ing, CLUSTER 2017, Honolulu, HI, USA, Septem-
ber 5-8, 2017, pages 410–418, 2017.

[22] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jor-
dan. Mining console logs for large-scale system
problem detection. In Proceedings of the Third Con-
ference on Tackling Computer Systems Problems
with Machine Learning Techniques, SysML’08,
pages 4–4, Berkeley, CA, USA, 2008. USENIX As-
sociation.

11


	1 Introduction
	2 Proposed Methodology
	2.1 Problem Setting
	2.2 Proposed Model
	2.3 Inference Problem
	2.4 Estimating Latent Representations
	2.5 Optimization
	2.6 Anomaly Detection

	3 Experimental Results
	3.1 Dataset
	3.2 Optimization performance and effect of different K
	3.3 Analyzing latent representations
	3.4 Finding anomalies using dynamicMF

	4 Related Work
	5 Conclusions and Future Directions

