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Abstract

Support vector machine (SVM) is a popular classification method for the analysis of wide range of 

data including big data. Many SVM methods with feature selection have been developed under 

frequentist regularization or Bayesian shrinkage frameworks. On the other hand, the importance of 

incorporating a priori known biological knowledge, such as gene pathway information which 

stems from the gene regulatory network, into the statistical analysis of genomic data has been 

recognized in recent years. In this article, we propose a new Bayesian SVM approach that enables 

the feature selection to be guided by the knowledge on the graphical structure among predictors. 

The proposed method uses the spike-and-slab prior for feature selection, combined with the Ising 

prior that encourages group-wise selection of the predictors adjacent to each other on the known 

graph. Gibbs sampling algorithm is used for Bayesian inference. The performance of our method 

is evaluated and compared with existing SVM methods in terms of prediction and feature selection 

in extensive simulation settings. In addition, our method is illustrated in the analysis of genomic 

data from a cancer study, demonstrating its advantage in generating biologically meaningful 

results and identifying potentially important features.
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I. INTRODUCTION

The support vector machine (SVM) [1] is a popular classification method in data mining and 

machine learning. It has achieved great successes in various data mining tasks such as image 

classification, pattern recognition and forecasting [2], [3]. Many SVM approaches with 

feature selection have been introduced in the literature, among which the ones that use a 

specific penalty on the coefficients (normal vector) are popular. The L1 norm penalized 

SVM (L1SVM) [4]–[6] applies the LASSO penalty [7] into SVM. The SVM with a non-
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convex penalty [8], [9] (SCADSVM) adopts the smoothly clipped absolute deviation penalty 

[10] to alleviate the bias in estimating nonzero coefficients. Double regularization SVM 

(DrSVM) [11] combines the L1 and L2 norm to encourage the selection of correlated 

features. L∞ penalized SVM [12] encourages all the features in the same group to be 

selected simultaneously. These approaches and their variants have proven their superiority 

during the past two decades. In this era of big data, however, where the multi-omics data 

need to be analyzed beyond the GWAS or genomic studies, it is imperative that new 

innovation is required.

In some real world applications, some prior knowledge on data may be available, which can 

be integrated into the analysis and improve the power of detecting important signals. For 

example, a comprehensive review [13] summarizes the methods that incorporate such prior 

knowledge into SVM, while classifying the prior knowledge into two categories: class-

invariance and knowledge on the data. The class-invariance stands for the invariance of the 

class to a transformation of the input pattern, and the knowledge on the data refers to such 

knowledge as the information in unlabeled samples, the imbalance of the training set, and 

the quality of the data. This article aims to consider the prior biological knowledge that is 

represented by the pathway graph information. Enormous genomic studies have revealed 

that the genes influence phenotypes through a complex regulatory network represented by a 

directed acyclic graph, where each gene is expressed by a node and the promotion/inhibition 

relationships between the genes are indicated by the edges. The network is composed of 

multiple gene pathways and the knowledge on the pathway graphs is publicly available [14] 

and still growing. Recent works [15]–[18] have attempted to incorporate the pathway graph 

information, motivated from its biological interpretation, by encouraging group-wise 

selection of adjacent predictors. They demonstrate that the incorporation of such prior 

knowledge offers a great promise toward the improved predictive accuracy and the increased 

power of detecting key molecular signatures and acting pathways. In addition, the resulting 

prediction models become more interpretable as they help select key biological pathways 

and likely lead to idenfication of potential molecular targets for treatments [19].

However, only very few works [20] in the SVM framework can incorporate the prior 

knowledge on the correlation structure among features. At the same time, most penalization 

based SVM methods [4]–[6], [8]–[12], [20] provide point estimates, failing to systematically 

quantify the uncertainty of the estimates. Therefore, we propose a knowledge-guided 

Bayesian SVM (KBSVM), which is a Bayesian approach capable of incorporating the 

graphical structure of features. As a Bayesian method, our approach can provide not only the 

uncertainty information but also the ensemble inference, which leads to more accurate and 

reliable performance in both classification and feature selection. Some Bayesian approaches 

[21]–[23] have been proposed to perform feature selection by introducing shrinkage priors 

on the normal vector, but to the best of our knowledge, none of them utilizes the graph 

structure among the features. Also, note that the exising frequentist approaches [11], [12], 

[20] either force the coefficients to have similar values or apply smoothing between all the 

member coefficients in a pathway group, which may cause bias. Unlike those works, our 

approach uses the pathway graph information, which is more refined than the pathway 

membership information, and encourages only the joint selection among the adjacent 
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features rather than smoothing their coefficient estimates. This helps achieve enhanced 

performance without the expense of bias.

In the proposed model, we employ the spike-and-slab prior [24] for feature selection. The 

selection status of each feature is represented by a latent binary variable. The gaussian prior 

with small variance (spike) is assigned for the inactive coefficient, and the gaussian prior 

with large variance (slab) is assigned for the active coefficient. This prior shrinks the inactive 

coefficients toward zero and reduces the bias for the active coefficients. In addition to the 

spike-and-slab prior, we assign the Ising prior [25] to the latent indicator variables to reflect 

the graphical structure of the predictors. This prior encourages any pair of predictors which 

are adjacent on the graph to have the same selection status. Note that [16] uses the Markov 

random field (MRF) prior for the latent indicator variables, which is similar to the Ising 

prior. The difference is that, while the MRF prior only has the selected features encourage 

the selection of the adjacent features, the Ising prior also has the unselected features 

encourage the deselection of the neignboring features. Therefore, our model prefers both 

group-wise inclusion and exclusion of adjacent features, which further improves the 

prediction performance.

We present the Gibbs sampling algorithm [26] that performs the Bayesian prediction and 

feature selection. We employ the the state-of-the-art data augmentation techniques [27] to 

make our algorithm efficient and easy to implement. Another contribution to the Bayesian 

SVM literature is that we propose the corrected pseudo-likelihood. Having the proper form 

of likelihood allows other model parameter to have a better interpretation, which will be 

elaborated in Section II-A. The performance of the proposed method is evaluated in 

comparison with other existing SVM methods in terms of prediction and feature selection 

under extensive simulation scenarios. In addition, we illustrate an application of our method 

to the analysis of genomic data from a cancer study, further demonstrating its advantage in 

identifying important features and yielding biologically meaningful results.

The rest of the article is organized as follows. In Sections II and III, we describe the 

proposed models and the computing algorithms. In Section IV, we conduct simulation to 

evaluate our approach in comparison with several existing approaches. In Section V, we 

apply our approach to a TCGA glioblastoma dataset. We conclude with a brief discussion in 

Section VI.

II. MODEL

A. Likelihood

Suppose there are n samples in the training set of data where yi ϵ {−1, 1} are the binary 

outcome variables and xi are the (p + 1) dimensional feature vector including the intercept. 

The classical SVM seeks to find a classification function f to separate the two classes by 

minimizing

Θ(β) = κ
i = 1

N
max 1 − yi f (xi), 0 + R( f ), (1)
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where ∑i = 1
N max 1 − yi f (xi), 0  is the hinge loss function and R is a regularization function 

controlling the complexity of f. The tuning parameter κ can be seen as part of the 

regularization parameters. For the linear classifier f = xi′β, minimizing the objective function 

(1) is equivalent to find the mode of the following pseudo-posterior density [28].

p(β X, y, κ) ∝ p(β)L(y X, β, κ)

∝ p(β)
i = 1

n
κe

−2κmax 1 − yixi′β, 0
.

Note that κe
−2κmax 1 − yixi′β, 0

 is the pseudo-likelihood contribution from the i-th observation 

(as it does not sum to a constant) and obviously prefers the coefficients that reduces the 

hinge loss. Note that this pseudo-likelihood is not exactly same as the one that has been 

widely used in the Bayesian SVM literature. We correct the one used in [27], [28] by 

multiplying it by κ. This newly proposed pseudo-likelihood gives a plausible interpretation 

for the parameter κ; the parameter κ learns the overall (average) scale of the errors. In fact, 

the posterior distribution of κ converges to a degenerate distribution concentrated at 0 under 

the previous pseudo-likelihood, as the sample size increases. Note also that another 

important role of the parameter κ is to allow the normal vector β to explore its parameter 

space more freely in MCMC.

We use the Gamma prior for κ 𝒢 aκ, bκ , where aκ and bκ are hyperparameters representing 

the shape and the rate parameters of the Gamma distribution, the values of which can be 

chosen in an uninformative or data-driven manner.

B. Spike-and-Slab and Ising Prior

As aforementioned, we use the spike-and slab prior [24] for β to perform the feature 

selection. We introduce the latent binary variables γj indicating the inclusion of the j-th 

feature into the model, and assume β j | γ j ∝ N(0, v j
2)

p(β | γ) = C
j = 1

p + 1
v j
− 1

2e
−

β j
2

2v j ,

where v j = γ jσ1
2 + 1 − γ j σ0

2 with σ0
2 < σ1

2 and C is the normalizing constant. If γj = 0, then 

the prior of βj has the spike variance v j = σ0
2 and βj is shrunk toward 0. If γj = 1, then the 

prior of βj has the slab variance v j = σ1
2 and βj is less biased.

Let 𝒢 = V , E  be a pathway graph where V = {1,…,p + 1} is the set of genes and E ⊂ {(j, 
k) : j, k ϵ V, j ≠ k } be the set of edges representing (partial) correlations among the genes. 
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Let G be the adjacency matrix of 𝒢. To incorporate the graph structure between predictors, 

we use the Ising prior for γ given as follows.

p(γ) = Cμ, ηe
−μ∑ jγ j + η∑ j ≠ k G jk𝕀(γ j = γk)

, (2)

where Cμ,η is the normalizing constant and 𝕀( ⋅ ) indicator function. The tuning parameters μ 
controls the sparsity of γ and η controls the smoothness of γ over E. Note that (2) 

encourages γk = 1 if γj = 1 and Gjk = 1 and promotes γk = 0 if γj = 0 and Gjk = 1. 

Therefore, the group-wise selection of the j-th and the k-th genes are encouraged if there is 

an edge between them.

The Ising prior is slightly different from the Markov random field prior proposed in the 

literature earlier [16], [29].

p(γ) = Cμ, ηe
−μ∑ jγ j + η∑ j ≠ k G jkγ j γk . (3)

Note that (3) only encourages γk = 1 if γj = 1 and Gjk = 1. However, there is little difference 

from the computational point of view because 𝕀(γ j = γk) = 2γ jγk − γ j − γk + 1.

III. POSTERIOR INFERENCE AND COMPUTATION

Let zi = yixi and Z = [z1,…,zn]′. To facilitate the Bayesian compututation, we use the 

variable augmentation technique; see, for example, [27], [28].

e
−2κ max 1 − zi′β, 0

=
0

∞ κ
2πρi

e
−

κ ρi + 1 − zi′β
2

2ρi dρi . (4)

Note that (4) makes the conditional distribution of β become the multivariate Gaussian 

distribution, which leads to a straightforward Gibbs sampler.

A. Gibbs Sampling Algorithm

We sample (κ, ρ) jointly, by first sampling κ with ρ marginalized out and then sampling ρ 
conditioning on κ (and other parameters). The conditional distribution of κ is given by

κ β, Z 𝒢 ak + n, bk + 2
i

max 1 − zi′β, 0 .

The conditional distribution of ρi is given by
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ρi β, zi, κ 𝒢ℐ𝒩(1/2, κ, κ 1 − zi′β)2 ,

where 𝒢ℐ𝒩(p, a, b) stands for the generalized inverse Gaussian distribution. Alternatively, 

the conditional distribution of ρi
−1 given (β, zi, κ) is an inverse Gaussian distribution, 

denoted by ℐ𝒩.

ρi
−1|β, zi, κ ℐ𝒩 1 − zi′β

−1, κ ,

where the density function of ℐ𝒩(μ, λ) is given by

f (x; μ, λ) = λ
2πx3e

−λ(x − μ)2

2μ2x .

The conditional distribution of γj is given by

p(γ j | β j, γ− j) ∝ v j
−1/2e

−
β j

2

2v j
− μγ j + η∑k G jkI(γ j = γk)

,

where γ−j = (γ1,…,γj−1, γj+1,…,γp+1).

Finally, let 1 be the vector of 1’s, Dρ = diag(ρ1,…,ρn), and Dυ = diag(υ1,…,υp+1). The 

conditional distribution of β follows a multivariate Gaussian:

β Z, κ, ρ 𝒩(μβ, Σβ),

where μβ = κ Dv
−1 + κZ′Dρ

−1Z
−1

Z′Dρ
−1 1 + ρ  and Σβ = Dv

−1 + κZ′Dρ
−1Z

−1
.

Algorithm 1 summarizes the Gibbs sampling algorithm for KBSVM. Note that the most 

time consuming step is to sample β, which requires an O(p3) operation. For the probit model 

simulation in Section IV-D, which includes 500 predictors, it takes less than an hour to run 

10,000 MCMC iterations in MATLAB with a 2.6 GHz Intel Core with 24 GB of RAM on 

64-bit Windows 10. When p is large, one can consider sampling each individual βj one at a 

time. It requires an O(p min(n; p)) operation.
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IV. SIMULATIONS

A. Design of Experiment

We use both the linear discrimination analysis (LDA) model and the probit model to 

generate correlated data to evaluate the performance of our KBSVM method and make 

comparisons with other existing methods such as the standard SVM (L2SVM), L1SVM, 

DrSVM and SCADSVM. We generate m = 100 datasets, each with a training sample of size 

n = 200, a validation sample of size n = 200 and an independent test sample of size n = 

10000. We specify different combinations of the feature dimension p and the nonzero feature 

dimension q for different models. To assess the performance of the predictive model, we 

compute the prediction error (PE), prediction sensitivity (PSEN), prediction specificity 

(PSPEC), Matthews Correlation Coefficients (MCC), feature selection true positive (FSTP) 

and feature selection false positive (FSFP) averaged across the m = 100 datasets. The 

approach for obtaining PE is described in the following section. PSEN is calculated as the 

proportion of positives (yi = 1) that are correctly identified and PSPEC is calculated as the 

proportion of negatives (yi = −1) that are correctly identified. MCC is defined as 
TP × TN − FP × FN

TP + FP TP + FN TN + FP TN + FN , where TP is the number of true positives, TN is the 

number of true negatives, FP is the number of false positives and FN is the number of false 

negatives. FSTP and FSFP are the average number of selected relevant and irrelevant 

features in the training samples.

B. Parameter Tuning

For each of the existing methods, we use the penalizedSVM R-package [30] to fit the model 

on the training datasets, tune the parameters in the validation datasets and obtain the results 

from the testing datasets. σ1
2 is set to 100 to account for large variances for the slab. η is set 

to 1 or 0, to account for the prior knowledge used or not.σ0
2, μ need to be tuned to achieve the 

best performance. To tune the parameters σ0
2 and μ, we apply our algorithm on each training 

data and draw 1000 samples from the joint posterior distribution of β and γ. Each sample of 

β and the corresponding γ values are plugged into the model to make predictions on the 

validation sample. If γj = 1, the corresponding βj is selected. If γj = 0, the corresponding βj 
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is set to zero. Then the prediction can be obtained by ŷ = sign(Xβ), where X is the 

observation matrix of the validation sample. PE can be calculated as the number of non-zero 

elements of y−y  divided by the number of observations of the validation sample (n = 200). 

Then the averaged PE across the 1000 posterior samples will be acquired and used for 

choosing the optimal parameters, and the corresponding 1000 samples are plugged into the 

model again to make predictions on the independent test sample. We repeat this procedure 

on the m = 100 datasets to obtain the average PE and the corresponding standard errors.

C. Simulation I: LDA model in the absence of the graph

The LDA model is used to evaluate the prediction and variable selection performance of our 

KBSVM method without incorporating the prior graph information. We adapt the same 

setting of (ρ = −0.2, p = 400, q = 5) as in [31]. The similar results for the existing methods 

such as L2SVM, L1SVM and SCADSVM are obtained. Furthermore, the cases for ρ = 0 and 

0.2 is also included to investigate the impact of different correlation structure of X on the 

performance of our method and other methods.

Model: P (y = ±1) = 0.5, X |y 𝒩 sign(y)μ, Σ , µ = (0.1, 0.2, 0.3, 0.4, 0.5, 0, …, 0) and

Σ =

1 ρ
⋱

ρ 1 q × q

0

0 I p × p

,

where ρ = ±0.2 or 0, q = 5 and p = 400.

Table I compares different methods for the LDA model with the negative correlation, 

independent or positive correlation between genes. The numbers in the parentheses are the 

corresponding standard errors over the 50 datasets. It is not surprising to see that the 

performance deteriorates when ρ increases from −0.2 to 0.2 for all the methods, because in 

general, the variance of β is proportional to the inverse of the covariance matrix Σ. When ρ = 

−0.2,

Σ−1 =

1.67 0.83
⋱

0.83 1.67 5 × 5
0

0 I 400 × 400

and when ρ = 0.2,

Σ−1 =

1.11 −0.14
⋱

−0.14 1.11 5 × 5
0

0 I 400 × 400

Therefore, β learned from the training set with positive correlation will have smaller 

variance and may not be particularly stable when making predictions for the testing set. 
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When ρ = −0.2, DrSVM has similar performance as L2SVM and also a very high FSTP 

because it tends to select more variables. SCADSM and KBSVM achieve significantly lower 

PE and greater MCC, which may be due to the negative correlation structure, while our 

method KBSVM has the least PE, largest MCC and highest FSTP. When ρ = 0, genes in X 
are independent, DrSVM still has the highest FSTP, as well as the highest FSFP. PE for 

SCADSVM and KBSVM are close, while KBSVM has significantly lower FSFP than the 

other methods. When ρ = 0.2, PE and MCC for L1SVM, SCADSVM and KBSVM are 

similar, while L1SVM has the highest FSTP, SCADSVM has the highest FSFP and KBSVM 

has the moderate FSTP and the lowest FSFP. In sum, Our KBSVM method outperforms the 

presented methods in terms of PE, PSEN, MCC and FSFP. Even without the guidance of 

prior knowledge, the performance of our method doesn’t degrade.

D. Simulation II: Probit model in the presence of the graph

This section is to illustrate how to model the prior structure information and how to 

incorporate it in our method.

1) Graph simulation: Note that the true correlation structure of the genes is unknown in 

practice. As mentioned, we use the undirected graph 𝒢 to represent the relationship between 

genes. In our simulation, we distinguish the underlying true graph 𝒢 which is used for 

generating the data, and the working graph 𝒢 ∗ which is providing the guidance to KBSVM 

algorithms.

In our simulation examples, the true graph 𝒢 is predefined. Let 

X = (x1, x2, …, xp) 𝒩(0, Ω−1), where the precision matrix Ω = (ωij) is such that (i, j) −∉ E 

implies ωij = 0. We then say that X follows a Gaussian graphical model (GMM) with respect 

to the graph 𝒢. In order to convert the graph 𝒢 to the precision matrix Ω, the Gaussian 

graphical model is adopted and several steps are performed. First, a matrix is created by 

assigning uniformly distributed random numbers over an interval of [−1, 1] to the off 

diagonal elements corresponding to the edges in the graph 𝒢; second, the absolute value of 

the lowest eigen-value of the resulting matrix in the first step is obtained and added to a 

small positive number, denoted as |λ| + Δ; third, the elements on the diagonal of the matrix 

are reset to |λ| + Δ, and therefore, all the eigenvalues of the resulting matrix are positive. 

Then the precision matrix can be obtained through scaling the resulting matrix by making 

the diagonal elements equal to 1’s. Correspondingly, the covariance matrix Σ can be 

obtained by normalizing the inverse of the precision matrix. An example of the three 

matrices are illustrated in Figure 1(b, c, d).

The working graph 𝒢 ∗ represents the prior knowledge we now have to incorporate into our 

algorithm, thus it could be the true graph 𝒢 indicating that the truth is known, a partial graph 

indicating that the truth is partially known or a noisy graph indicating that the prior 

knowledge is wrong. To simulation the partial graph, we adopt the Gaussian graphical model 

and set a threshold value on the precision matrix to remove some weak correlations. We first 

define a threshold value t, then compare the absolute values of each element of the precision 

matrix to t: if less than t, the element is set to zero; if equal or greater than t, the element 

remains the same value. Then the adjacency matrix of the partial graph is acquired by setting 

Sun et al. Page 9

Proc IEEE Int Conf Big Data. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



all the off-diagonal nonzero values of the resulting matrix to 1’s, indicating the connection 

between nodes, while setting the diagonal elements to 0’s. A pair of the adjacency matrices 

of the true graph and partial graph are shown in Figure 2.

To simulate the noisy graph, we can directly work on the lower triangle part of the 

corresponding adjacency matrix. First, we create a dimension 0(p+1)×(p+1) matrix, define a 

maximum number of connections n and generate a uniformly distributed random integer k 
over the interval of [0, n]. Second, we count the total number of the elements of the lower 

triangle part without including the diagonal elements, denoted as m, then generate m 
standard uniformly distributed random numbers and sort them. Third, the first k elements in 

the ordered m samples are assigned 1’s and the left elements are assigned 0’s. Then we 

apply some transformations to create a symmetric adjacency matrix from the lower part.

2) Probit model: The probit model is used to demonstrate the benefits of incorporating 

prior knowledge into our KBSVM method. The model can be written as : X 𝒩(0, Σ), 
Σ = f (𝒢), P (y = 1 X) = Φ(Xβ + β0). 𝒢 is the true underlying true structure among 

predictors. The covariance structure of Σ should have a similar pattern to the adjacency 

matrix of 𝒢, in other words, a function of 𝒢. Φ is the CDF of the standard normal 

distribution. β0 is the intercept set to 0.5 and β = (0.8, 0.8, .., 0.8, 0.8, 0, , 0) is the p-

dimension coefficient with the first q non-zero elements.

We specify four settings for our model and compare them to L2SVM, L1SVM, DrSVM and 

SCADSVM. The four settings are: no working graph incorporated (η = 0), the working 

graph 𝒢 ∗ is assigned by a noisy graph (noisy 𝒢), a partial graph (partial 𝒢) and the true 

underlying graph (𝒢). Table 2 summarizes the simulation results for both n > p and n < p 
cases. Clearly, for all the cases, when the working graph 𝒢 ∗ is assigned by the true graph 𝒢, 

our model KBSVM performs the best among the other settings as well as other existing 

methods. When p = 20 and q = 10, L2SVM gives the largest PE and the lowest MCC, the 

prediction performance for L1SVM, DrSVM, SCADSVM, KBSVM (η = 0) and KBSVM 

(𝒢 ∗ = noisy𝒢) are similar, while L1SVM has a very high FSFP, and tends to select a larger 

model. When p = 100 and q = 20, PE for KBSVM(𝒢 ∗ = 𝒢) is significantly decreasing 

comparing to the other settings and other existing methods. When η = 0, the performance is 

the worst, among the four settings, but still outperforms L2SVM, DrSVM and SCADSVM. 

We also note that L1SVM still has the highest FSFP, and DrSVM has the second highest 

FSFP, which case is a little different from the case with p = 20. When p = 500, the prediction 

errors of L2SVM and DrSVM are similar, L1SVM and KBSVM (𝒢 ∗ = partial𝒢) are similar, 

while L1SVM has the much higher high FSTP and FSFP. SCADSVM and KBSVM 𝒢 ∗ = 𝒢
achieve the best results in terms of PE. In general, our method gives the smallest PE, the 

greatest MCC, a very low FSFP and BS. Even when 𝒢 ∗ is assigned by noisy𝒢, the 

performance of our method doesn’t deteriorate too much.

In addition, we generate a new set of data from the independent correlation structure and 

thus we only need specify two settings for our model: η = 0 and 𝒢 ∗ = noisy𝒢. The results 

are summarized in Table III. When p = 20 and 100, KBSVM(η = 0) outperforms the other 

methods in terms of PE and MCC. L1SVM, DrSVM, SCADSVM tend to select more 
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variables with a very high FSFP. Both of two settings for KBSVM give a significantly lower 

FSFP but keep the relatively high FSTP, showing the consistent ability of feature selection. 

When p = 500, L1SVM gives the best performance in terms of PE, MCC and FSTP, while 

our model with η = 0 achieves satisfactory performance and also agrees with the findings in 

the LDA model.

In this simulation section, we consider two models under two conditions which are absence 

of the graph and presence of the graph. We observe that if the graphical network information 

is associate with the outcome and we utilize the true network information in the model, our 

KBSVM model outperforms other methods in terms of both prediction and selection 

accuracy. If the prior graph is not available, the performance doesn’t degrade. Such stability 

is desirable and the results demonstrate encouraging gene selection ability and prediction 

power for our method.

V. DATA ANALYSIS

In this section, we apply our methods as well as other existing methods to classify a 

glioblastoma data set obtained from the Cancer Genome Atlas Network. Glioblastoma is a 

highly malignant brain tumor, also related to other cancer. This data set includes survival 

times (Y) and the gene expression levels for p = 12, 999 genes (X) and 303 glioblastoma 

patients. For the purpose of classification, we define a new indicator variable Z to account 

for the one year survival outcome by setting

Z = 1, Y < 365, Δ = 0,
0, Y > 365,

where ∆ represents censoring. Those subjects with Y < 365, ∆ = 1 are removed so the total 

number of subjects is 286 with P (Z = 1) = 45%, P (Z = 0) = 55%. First, we use the gene-

ranking methods to select important genes. For each gene, the p value is acquired from the 

logistic regression and the top 1000 genes corresponding to the smallest 1000 p values are 

selected. Second, we obtain the network 𝒢 for all the 12, 999 genes from the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database, use an algorithm to search the 

connections within the top 1000 genes, and then map them to the working graph 𝒢 ∗. We 

specify two settings (η = 0 and 1) for our model to compare with other methods. The 

optimal tuning parameters for each methods are chosen by the minimum 20-fold cross-

validation error. The average cross-validation error and the number of selected genes are 

summarized in Table IV.

As can be seen, L1SVM selects most of the 1000 genes and has a similar performance to 

L2SVM. DrSVM and SCADSVM give the very close CV errors while DrSVM select fewer 

number of genes. Our method KBSVM (η = 1) achieves the lowest CV error and BS and 

identifies a moderate number of genes. KBSVM(η = 0) imposes more sparsity on the model 

and select only 69 genes, yet provides the satisfactory cross-validation error. In addition, all 

the genes selected by KBSVM (η = 0) are contained in the set of genes selected by KBSVM 

(η = 1), which confirms the stability.
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We also conduct the pathway enrichment analysis for the selected genes for our method via 

ToppGene Suite [32]. When η = 0, our method doesn’t encourage the inclusion of the 

connected genes, therefore, fewer genes and pathways are detected. However, several 

important genes are still selected, such as PICK1, IL22, BHLHE40 and NTN1, which are 

the members of the glioma pathways. When η = 1, the pathways detected by our method are 

highly enriched, such as protein processing in endoplasmic reticulum (1.16 × 10−6), 

asparagine N-linked glycosylation (6.69 × 10−3), ATF6 (ATF6-alpha) activates chaperone 

genes (7.86 × 10−3), and unfolded protein response (1.08 × 10−2). The numbers in the 

parentheses are the Bonferroni-adjusted p values. These pathways were found to be linked 

with the cancer cell proliferation and survival [33]–[36]. Moreover, the most highly enriched 

diseases are glioblastoma, mammary neoplasms and malignant tumor of colon. Therefore, 

the detected pathways and diseases further confirm our method can offer great promises of 

improved power in detection of key molecular signatures and provide valuable insights on 

biological bases of diseases.

In sum, for our method KBSVM, when the prior network incorporated, the cross-validation 

error is reduced and the related pathways are significantly enriched, yielding biologically 

meaningful results. Therefore, we believe that our method KBSVM enjoys the benefits of 

incorporating prior knowledge to improve predictive performance.

VI. DISCUSSION

In this article we have developed a knowledge-guided Bayesian SVM approach, which 

enables feature selection and incorporation of the prior structural information. The 

numerical results confirm the performance of our method in terms of the improved 

prediction and variable selection accuracy. Our method yields significant performance when 

the working graph is correctly specified, and is fairly robust when the working graph is mis-

specified. One limitation of our model is that it can be computationally expensive to tune the 

hyper-parameters, especially in high-dimensional settings. Future work may extend our 

approach to the non-linear Bayesian SVM model.
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Figure 1. 
The true graph 𝒢 and its corresponding adjacency matrix G, precision matrix Ω and 

covariance matrix Σ.
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Figure 2. 
The simulation steps of the partial graph G∗.
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Table IV

RESULTS OF THE ANALYSIS OF TCGA DATA. n = 286, p = 1000.

CV error (%) # selected genes

L2SVM 30.45 1000

L1SVM 29.85 957

DrSVM 27.52 399

SCADSVM 27.31 864

KBSVM, η = 0 28.92 69

KBSVM, η = 1 26.49 821
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