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Abstract—The global data movement over Internet has an
estimated energy footprint of 100 terawatt hours per year, costing
the world economy billions of dollars. The networking infras-
tructure together with source and destination nodes involved
in the data transfer contribute to overall energy consumption.
Although considerable amount of research has rendered power
management techniques for the networking infrastructure, there
has not been much prior work focusing on energy-aware data
transfer solutions for minimizing the power consumed at the
end-systems. In this paper, we introduce a novel application-
layer solution based on historical analysis and real-time tuning
called GreenDataFlow, which aims to achieve high data transfer
throughput while keeping the energy consumption at the minimal
levels. GreenDataFlow supports service level agreements (SLAs)
which give the service providers and the consumers the ability to
fine tune their goals and priorities in this optimization process.
Our experimental results show that GreenDataFlow outperforms
the closest competing state-of-the art solution in this area 50% for
energy saving and 2.5× for the achieved end-to-end performance.

I. INTRODUCTION

The era of artificial intelligence (AI) has made data the
most important resource, in turn the efficient data handling
is the key to use compute, network, and storage resources
more effectively. Not like compute and storage resources,
the network resource needs more sophisticated control as it
involves the end-to-end efficiency. The annual data transfer
rate over global IP networks has already exceeded zettabyte
scale [51]. The energy footprint of this global data movement
is estimated at more than 100 terawatt hours per year at the
current rate, costing more than 20 billion US dollars annually
to the world economy in addition to the environmental side
effects [27], [44], [41], [51], [22]. This fact has resulted in
considerable amount of work focusing on power management
and energy efficiency in hardware and software systems [12],
[47], [59], [28], [16], [17], [49], [36], [30], [52], [46] as well
as on power-aware networking [6], [41], [24], [31], [23], [21].

Majority of the existing work on power-aware networking
focuses on reducing the power consumption on networking
devices (i.e., routers, switches, and hubs). Gupta et al. [27]
were amongst the earliest researchers to advocate conserving
energy in the networking infrastructure. They suggested dif-
ferent techniques such as putting idle sub-components (i.e.,
line cards, etc.) to sleep [26], which were later extended by
other researchers. Nedevshi et al. proposed adapting the rate at
which switches forward packets depending on the traffic [43].

IEEE Energy Efficient Ethernet Task Force proposed the
802.3az standards [1] for making Ethernet cards more energy
efficient. They defined a new power state called Low-Power
Idle (LPI) that puts the Ethernet card to low power mode
when there is no network traffic. Other related research in
power-aware networking has focused on architectures with
programmable switches [25], switching layers that can in-
corporate different policies [33], and power-aware network
protocols for energy efficiency in network routing [13].

The existing approaches suffer from the following draw-
backs: (1) the solution is too costly (i.e., replacing all switches
with energy efficient ones); (2) the solution is unpractical in
the short term (i.e., replacing TCP with a more energy-efficient
version); (3) the solution penalizes performance while increas-
ing energy efficiency (i.e., sleeping some components while
not in use). In this paper, we propose an application-layer
solution called GreenDataFlow which is low cost, very easy
and practical to deploy, and does not penalize the performance
while increasing energy efficiency. With the added benefits
and simplicity to adopt, service providers can directly benefit
from GreenDataFlow as they can offer it as-a-service offering
in their cloud platforms, while making sure that the SLA
requirements of customers are satisfied using GreenDataFlow’s
SLA-based algorithms.

GreenDataFlow provides novel two-phase dynamic opti-
mization models to minimize energy and increase throughput
at the same time. It is based on mathematical modeling
with offline knowledge discovery and adaptive online decision
making. During the offline analysis phase, we analyze histor-
ical transfer logs to perform knowledge discovery about the
characteristics of the past transfers with similar requirements.
During the online phase, we use the discovered knowledge
from the offline analysis along with real-time investigation
of the network condition to optimize the protocol parameters
for both minimal energy consumption and maximum transfer
throughput. Our models use historical knowledge about the
network and data to reduce the real-time investigation over-
head while ensuring near optimal results for each transfer.
Specifically our contributions in this paper are as follows:

1) GreenDataFlow achieves minimizing the energy foot-
print of an end-to-end big data transfer by operating
in the application-layer, without any need to change
the existing infrastructure nor the low-level networking
stack, which makes integration of GreenDataFlow to
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Figure 1: Achieved throughput and energy consumption of a single transfer under different parameter combination. Surface
interpolation is perform using piece-wise cubic spline.

existing applications easier.
2) GreenDataFlow integrates knowledge-based offline anal-

ysis with real-time tuning to achieve close-to-optimal
end-to-end data transfer throughput while reducing en-
ergy consumption.

3) GreenDataFlow applies adaptive tuning in real-time and
uses pre-computed mathematical optimization based de-
cisions to provide faster convergence toward maximally
achievable throughput.

4) GreenDataFlow outperforms state-of-the-art solutions in
this area in terms of accuracy, convergence speed, energy
efficiency, and achieved throughput. Our experimental
results show that GreenDataFlow outperforms the clos-
est competing state-of-the art solution in this area up to
50% for energy saving and up to 2.5× for the achieved
end-to-end performance. When we compare it with
baseline cases (without any optimization), the energy
savings go up to 80% and performance improvement
reaches 10×.

The rest of the paper is organized as follows: Section II
gives a formal definition of the problem; Section III discusses
the challenges in optimization; Section IV presents our novel
two-phase dynamic optimization model; Section V evaluates
our model; Section VI describes the related work in this field;
and Section VII concludes the paper.

II. PROBLEM FORMULATION

Large-scale data transfers can get suboptimal performance
and high energy footprint in a long RTT WAN network
due to the protocol inefficiency introduced in different lay-
ers. Changing the protocol stack requires low-level updates
(e.g., modifications to TCP), and its adaptation by large-scale
needs considerable time and effort. Therefore, application
level solutions are more lucrative and easy to deploy in
the user space which makes the adaptation of the solution
hassle-free. Application level data transfer protocol parameters
(i.e., concurrency, parallelism, pipelining, and buffer-size) can

have different impacts on transfer throughput and energy
consumption of files with different sizes under certain network
conditions. These parameters can be tuned to increase the data
transfer throughput and decrease the energy footprint signif-
icantly. Figure 1 shows the achieved throughput and energy
consumption of a single transfer under different parameter
combinations. A short description of these parameters is given
below.

Concurrency (cc) refers to the task level parallelism. It
controls the number of server processes where each process
can transfer an individual file. It can accelerate the transfer
throughput when a large number of files need to be transferred.
Concurrency can also take advantage of parallel file systems
(e.g., GPFS, Lustre) with multiple concurrent servers and
metadata management.

Each server process can transfer a different portion of a
file in parallel. We define the number of parallel streams for
each server as Parallelism (p). It is a good choice to transfer
medium and large files. We can get the full performance of
parallelism with parallel file systems where files are divided
and distributed on different disks. The total number of parallel
data streams can be expressed as (cc× p). Increasing number
of parallel data streams can increase the achievable throughput,
however, excessive use of streams may lead to packet loss and
force TCP to initiate slow-start phase that may lead to severe
throughput loss.

Control channel idleness is a major bottleneck to transfer a
large number of files. After each file transfer, the server pro-
cess sends an acknowledgment to initiate the next file transfer.
This acknowledgment can take at least one Round-Trip-Time
(RTT) between each transfer. This one RTT delay may seem
innocent, however, it may hurt the overall throughput of a
dataset containing a large number of small files significantly
in a long RTT network. Because small files take short time
to transfer and then each file needs to wait for one RTT to
get acknowledgment from previous transfer. Moreover, TCP
will shrink window size to zero if it detects data channel
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idleness. These issues can be solved by queuing multiple file
transfer requests without waiting for the acknowledgments.
This technique can transfer large number files like a single
large file. We define the size of the outstanding file transfer
request queue as Pipelining (pp).

Energy consumption is a major concern in data centers
and end-systems that perform very large scale data transfers.
Minimizing the energy consumption can reduce the data
center operating cost-effectively while utilizing the network
links efficiently. Energy consumption can be measured using
specialized hardware meters. However, we need an energy
consumption model to estimate the real-time consumption that
can be used to facilitate fine-grained power tuning. Energy
consumption can be estimated from the current load of the
system, such as - CPU utilization (µcpu), memory utilization
(µmem), disk usage (µdisk), and network interface card utiliza-
tion (µnic). In literature, there exist many models to predict
the actual energy consumption using these load information.
We have used a linear model to predict power consumption,
which is presented in Section IV-A1.

Our aim is to perform an energy constrained optimization
of the data transfer performance. End users or data center
operations team may set these constrained optimization prob-
lem based on their requirements and priorities. In this work,
we introduce easy to describe energy-aware Service Layer
Agreement (SLA) categories that a user or an administrator
can initiate. SLA is a contract between the user and the service
provider where these two parties agree on service quality and
specific rights of both parties. It may include the description
of services agreed to be provided, monitoring and reporting
of quality of service (QoS) matrices, the consequence of not
meeting the requirements, and escape clause (the situation
where service guarantee promised does not apply). For energy
efficient transfers, SLA can be defined in three major ways:
(1) Throughput guarantee (Type-T), (2) Constraint over total
energy usage (Type-E), and (3) Constraint over instantaneous
power consumption (Type-P). We translate the SLAs into
appropriate optimization problems and solve them off-line.
These SLA categories are explained below.

(1) Throughput Guarantee: A user may need an overall
throughput guarantee that means the achievable throughput
Tact must be at least the throughput specified in SLA, Tsla. In
such case, the service provider would try to maintain the SLA
requirement using as less energy, E as possible. Therefore, the
optimization problem can be expressed as :

argmin
{cc,p,pp}

(E)

subject to. Tact ≥ Tsla
(1)

(2) Constraint over Total Energy Usage: User or ad-
ministrator may want to minimize energy cost by putting a
constraint over the total energy consumption and request for
the best possible throughput under this constraint. Therefore,
actual total energy consumption (Eact) can be constrained
by energy consumption level specified in SLA, (Esla). The

optimization problem is to maximize throughput, T under a
specified energy constraint and can be expressed as:

argmax
{cc,p,pp}

1
τf−τs

∫ τf

τs

T

subject to. Eact ≤ Esla.
(2)

Where τs and τf are the starting time and the finish time
respectively.

(3) Constraint over Instantaneous Power Consumption:
Sometimes spikes in instantaneous power consumption can be
very expensive, as power grid imposes a high penalty for such
spikes. The user may want to put constraint over instant power
consumption. That means the user wants to maximize the
throughput with a guarantee that instant power consumption
should not exceed the power limit mentioned in the SLA. To
do that we need to model the instant power, ϕ first based on
resource utilization.

ϕ = f(µcpu, µmem, µdisk, µnic) (3)

argmax
{cc,p,pp}

1
τf−τs

∫ τf

τs

T

subject to. ϕi ≤ ϕsla.
(4)

For all three cases, we need to schedule the compute
resources to the server processes in a way that minimizes the
energy consumption or keep it below the SLA constraint and
simultaneously increase throughput. Dynamic load balancing
among the parallel streams also helps to alleviate extra load
from the congested streams.

Several assumptions are made to design our optimization
model. Those are explained below:
Assumption 1. For disk-to-disk transfer, the achievable
throughput (Tact) should be bounded by the bottleneck re-
source that can be end-to-end link bandwidth or disk read/write
speed (vread and vwrite) at the source and destination.

Tact 6 min{BW, vread, vwrite} (5)

Assumption 2. We aim to optimize the application-level pa-
rameters and our solution is agnostic of the underlying file
system. On the other hand, if the target data is stored on
a parallel file system, that would benefit more from our
optimization.
Assumption 3. Our model is also agnostic of the underlying
reliable transport protocol. Any reliable transport protocol can
work with our model. In this paper, we apply our optimizations
to GridFTP [38] which is based on TCP. GridFTP is widely
used in the scientific community, and it supports easy tuning
of parameters such as parallelism, concurrency, and pipelining.
Assumption 4. Our model can work with/without Remote
Direct Memory Access (RDMA) technology. Surely RDMA
technology can reduce the overhead introduced by the kernel
copy. However, it requires special hardware (i.e., RDMA NIC)
support which can be a deployment barrier for the RDMA
technology in end users.
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III. CHALLENGES

The main challenge is the dynamic nature of the shared
network links. Achievable transfer throughput can change from
time to time during large-scale data transfers. To get required
performance, the transfer needs online update and micro-
tuning of the parameters, and real-time resource scheduling.
Searching for updated parameters (i.e., solving the optimiza-
tion problems mentioned in Section II) during the transfer
is expensive and introduces delay or transfer may continue
with suboptimal parameters until search finishes. Both can
introduce throughput loss to the transfer. To address the
issue we use offline analysis of historical transfer logs to
solve optimization problems. In this case, we need to solve
the optimization problem for all possible SLA requirements
which may be infeasible and take a considerable amount of
memory to store solutions. We introduce an intelligent way to
overcome the issue (discussed in Section IV-A). We store the
solution as the key-value pair. During the actual transfer, we
periodically check network conditions and if needed we can
look up for the new parameter settings in constant time. We
introduce a two-phase optimization model which combines the
benefits of offline analysis and online tuning to ensure the SLA
requirements. We introduce some design-specific challenges
below.

Challenge 1. (Cost of offline analysis) Offline analysis itself
introduces extra energy and latency cost. If not performed
efficiently, it may defeat the purpose of offline analysis, when
the combined cost of offline analysis Cost(Offline) and the
cost of actual data transfer, Cost(Trtuned) exceed the cost
of the transfer without optimization, Cost(Trno opt). So the
constraint can be imposed as:

Cost(Offline) + Cost(Trtuned) < Cost(Trno opt) (6)

Challenge 2. (Packet loss) Any packet loss can reduce the
TCP window size (cwnd) significantly (depending on the TCP
variant) which reduces the achievable transfer throughput.
Packet loss can happen for a range of reasons, such as: (1)
congestion, (2) bottleneck network devices with low capacity
(routers/switch/middleboxes), (3) software bugs in network
devices, and (4) faulty links. We need a mechanism to detect
the static packet losses (2-4) and eliminate them manually. We
also need a mechanism that can efficiently signal congestion
beforehand to avoid the TCP window size reduction.

Challenge 3. (Fairness) We need to ensure bandwidth usage
fairness among the contending transfers. This means our
model should not be too aggressive to increase the achievable
throughput for only a specific set of users or for specific
transfers.

Challenge 4. (Resource scheduling to sender/receiver pro-
cesses) We have explained in Section II that the energy con-
sumption can be modeled as a function of resource utilization.
Here, the goal is to find the optimal number of server processes
(cc) with multi-threaded sockets (p) and pipelining (pp) and

Symbol Description
T Throughput of the data transfer
E Energy consumption of the transfer
ϕ Instantaneous power consumption
cc Concurrency
p Parallelism
pp Pipelining
bs End system buffer size
S Total number of streams, S = cc× p
θ Set of parameters, θ = {cc, p, pp, bs}

BW Bandwidth
η Energy efficiency, Data/Energy

cclimit, plimit User limit on corresponding parameters
τ Time
ε Throughput fluctuation tolerance bound
µ Utilization of corresponding resource
µall Set of all resource utilization
I Interpolant of Throughput or Energy log

Table I: Description of different symbols

then schedule the compute resources to the concurrent pro-
cesses in a way to maintain the SLA agreement. Current CPU
schedulers are not designed to meet such optimization goal.
As an example, Linux uses Completely Fair Scheduling (CFS)
and Real-time scheduler (RT) to schedule the CPU. CFS tries
to mimic the perfectly fair scheduling. CFS achieves fairness
by calculating the time slice as a fraction of the total number of
running processes. In our case, not all the concurrent processes
are pumping data at the same rate and some server processes
may have more workload than the others. We may need to limit
the CPU usage of certain server processes to maintain a steady
power consumption rate. Current CFS scheduler cannot make
such forced external modification. Cgroup is a Linux kernel
tool that can provide more fine-grained external control over
the resource scheduling.

IV. MODEL DESIGN

We introduced two models to address the problem: (1)
distributed and (2) centralized. In the distributed solution, there
is no centralized control and all the users run their own opti-
mization model and converge to receive a fair share of network
throughput. However, in this situation, many users may end
up solving the same or similar optimization problems. On the
other hand, the centralized solution takes the burden of running
optimization from the end users and performs optimization
based on historical logs and shares it with the end users. The
centralized scheduling is efficient for intra/inter data center
large-scale transfers due to the fact that it can be integrated
with Traffic Engineering (TE) module for joint optimization of
throughput and energy consumption. The centralized scheduler
can optimize data center energy consumption more efficiently
than the distributed solution.

A. Distributed Approach

Our distributed approach has two phases: (1) offline op-
timization, (2) dynamic tuning. Offline optimization takes
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Figure 2: Distributed approach overview.

historical data transfer logs as input and solves the SLA based
optimization problem beforehand. We choose this strategy so
that optimization does not introduce latency during the actual
transfer. The cost of offline optimization can be amortized
over many subsequent transfers. As we have explained in
Section II different SLA requirements have different optimiza-
tion objective. However, all of them are actually looking for
optimal application-level parameters. In a shared environment,
where dynamic fluctuation of traffic is very common, the
static parameters from the offline analysis may become sub-
optimal during the transfer. A real-time tuning is necessary to
cope with such fluctuation as we have to maintain strict SLA
constraint. An overview of the model is depicted in Figure 2.

1) Offline Optimization: The Offline optimization can be
broken down into parts: (1) storing historical logs, (2) exter-
nal load modeling, (3) clustering and data interpolation, (5)
constrained optimization, and (6) energy modeling.

Step 1 – Storing Historical Logs: Historical data transfer logs
are collected periodically during the transfer and stored in a
log server. These logs collect information about the network
characteristics (e.g., round trip time, buffer size, queuing delay,
packet loss rate), application level parameters (cc, p, pp), end
system resource information (e.g., CPU, memory, NIC), data
set information (e.g., size, number of files/objects), energy-
related information (e.g., CPU utilization, memory utiliza-
tion, NIC card utilization, disk I/O utilization). These logs
provide insight to optimize transfers energy-efficiently under
different circumstances. Still, logs are prone to errors (e.g.,
recorded achieved throughput may be greater than the actual
link bandwidth) and may have missing values. Standard data
interpolation techniques are used to predict those values. A
preprocessing module takes care of such case.

Step 2 – External Load Modeling: In a shared network
environment, data transfer task has to compete with other
contending transfers. Contending transfers can be a mixture of
known incoming/outgoing transfers in both source/destination
and completely unknown transfers. Some bandwidth may
be wasted by TCP congestion and slow start. However, the
optimal number of streams can offset slow start and congestion
loss significantly. We can model the achievable throughput of

a data transfer as:

Tact = BW −
∑

Text known −
∑

Text unknown

−
∑

δslow start −
∑

δcongestion
(7)

As we have periodically collected logs, it is easy to estimate
the δslow start and δcongestion just analyzing the achieved
throughput of the subsequent time intervals. We can also
estimate the combined throughput of known transfers. There-
fore, from Equation (7), we can get a rough estimate of the
combined throughput of the unknown external traffic.
Step 3 – Clustering and Interpolation: Similar types of
transfers can be optimized using similar parameter combina-
tions. Categorizing logs into groups based on their similarity
could provide us a more structured view of the log information.
After analyzing the logs we come to the conclusion that some
parameters have direct precedence over other parameters. We
use Hierarchical Agglomerative Clustering [42] which is the
most suitable clustering technique for such cases.

We are interested to find the optimal parameters under
different external traffic load. In Step-2 we get a rough esti-
mate of external traffic. Our experiment shows that achievable
throughput, Tact and energy consumption, Eact can be directly
impacted by the application level parameters, θ[:] = {cc, p, pp}.
The relation is strictly non-linear and follows a continuous
cubic pattern. Therefore, we modeled both throughput and
energy using piece-wise cubic spline interpolation (Figure 1).
This technique stitches multiple cubic functions with smooth-
ness guarantee up to the second derivative. All the continuity
constraints and the smoothness constraints are linear. There-
fore, the coefficients can be computed by solving the system
of linear equations. Interpolants can be written for each cluster
ci as:

Tci = I1(p, cc, pp, bs)

Eci = I2(p, cc, pp, bs)
(8)

Step 4 – Constrained Optimization: An overview of con-
strained optimization for different types of SLA is explained
in Section II. Running those optimizations in real-time may
add extra latency during the transfer. One may argue that the
real-time optimization can be performed concurrently with
the transfer. Still, the transfer would run under sub-optimal
solution until optimization finishes. Pre-computing these op-
timizations during offline phase can have two major benefits:
(1) it eliminates any real-time latency for optimal parameters,
and (2) these precomputed results can be reused for many
subsequent transfers, which can effectively amortize the initial
cost of analysis. As the user can put constraints over through-
put or energy or instant power consumption, during offline
phase we would have to solve the optimization problem for all
possible SLA values of throughput or energy or power, which
is not feasible. We solve this issue by intelligently analyzing
the historical logs so that we can eliminate infeasible SLA
constraint values. For example, to perform a transfer we need
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a minimum level of energy consumption, therefore, any SLA
value below the threshold is infeasible. We can set a feasible
region of SLA values. We also observed that, when two SLA
values are close, they produce similar solutions. Therefore,
instead of solving the optimization problem for all possible
SLA values we partition the SLA feasible region based on
historical log data and solve one optimization problem for
each partition. This approach can give us a discrete number
of SLA levels for both throughput (kth level), energy (ke level),
and power consumption (kp level).

Step 5 – Energy model:
When multiple server processes are involved, the total

energy consumption of the end system can be estimated as
the summation of energy consumption of the concurrent server
processes, ei (energy consumption of i-th process).

Eτ =

cc∑
i=1

ei(µcpu,i,τ , µmem,i,τ , µdisk,i,τ , µnic,i,τ ) (9)

In order to estimate the energy consumption of the end
systems during the data transfers, we built a linear regression
model with the following input features: CPU utilization,
memory usage, number of disk reads and writes, number of
bytes read and written to disk, number of bytes sent and
received over the network, and number of packets sent and
received. We collected 4467 samples by monitoring a worksta-
tion under different CPU and network loads, and measured the
actual power consumption of the machine using a Yokogawa
WT210 power meter. We used 70% of the samples for training
and 30% for testing. Figure 3 shows the CDF of the prediction
error for the test set. As the figure shows, most predictions
(¿90%) suffer from a very small error (¡10%).

2) Dynamic Tuning: Dynamic tuning is the heart of the
protocol. This is the real-time monitoring of the health of the
data transfers, simultaneously it controls the aggressiveness of
the protocol (fairness constraint), while ensuring strict SLA
requirement. As we have three different categories of SLAs,
we need three different strategies as well. However, the core
control is mostly similar. An overview of the tuning module

Algorithm 1: Dynamic Tuning (Distributed)
// Expected Energy Efficiency,

η = Datatotal/Esla; Queuing Delay, Qrtt;
number of streams, S = cc× p

1 SLA type ← translate_SLA(SLA)
2 θinitial ← get_params(req, TY PE = median)
3 update_resource_groups(Esla,

TY PE = median)
4 data_transfer(req, θinitial)
5 Periodically check:
6 if SLA type == ’Energy Constraint’ then
7 if Datacurr/Ecurr ≤ η then
8 Eleft ← Esla − Ecurr

9 if Tcurr ≤ Tpred − ε : back_off_control()
10 θnew ← get_params(Qrtt, thprev[i : j], Elelf)
11 else
12 increase (cc limit,p limit, αcc, αp)
13 opportunistic_decrease(Eleft)
14 θnew ← get_params(Qrtt, thprev[i : j], Elelf)
15 end
16 else if SLA type == ’Throughput Guarantee’ then
17 if Tcurr 6= Tsla ± ε then
18 Tgoal ← Tsla + (Tsla − Tcurr)
19 if Tcurr ≤ Tsla − ε : back_off_control()
20 else: increase (cc limit,p limit, αcc, αp)
21 opportunistic_increase(Tgoal)
22 θnew ← get_params(Qrtt, thprev[i : j], Tgoal)
23 end
24 else if SLA type == ’Power Constraint’ then
25 update_resource_groups(ϕsla,

TY PE = fixed)
26 if Tcurr ≤ Tpred − ε then
27 Tgoal ← Tpred + (Tpred − Tcurr)
28 back_off_control()
29 else
30 increase (cc limit, p limit, Tgoal)
31 end
32 θnew ← get_params(Qrtt, thprev[i : j], Tlelf)
33 µ[1 : cc][:] ← get_resource_utilization()
34 update_resource_groups(Eleft)

35 Periodically call:
36 SSet low, th[1 : S] ← check_stream_perf(cc, p)
37 redistribute_pipelining(SSet low,

th[1 : S], cc, p)
38 if required : update_resource_groups(Eleft)

is introduced in Algorithm 1. To achieve energy efficiency
we need to restrict the resource utilization of the transfer
processes. We used cgroup to predefine some resource groups
where resource utilization can be restricted up to defined
levels. Transfer processes can be assigned to those resource
group in real-time. Large-scale transfers take a long time,
therefore, network load fluctuation is a reality. During the
transfer, there may be some time-interval when the network
becomes congested due to newly initiated external transfers
and achievable throughput may drop up to a certain level.
To maintain fairness, we introduce a back-off control to
reduce parameters (Algorithm 2). When queuing delay drops
for a certain amount of time, it reduces parallelism level
by predefined β1 (Line 4-6). When it detects a significant
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Algorithm 2: Stream Back off Control Algorithm
1 procedure back_off_control()
2 Qrtt ← measure_queuing_delay()
3 pkt loss rate ← get_packet_loss_rate()
4 if Qrtt � Qrtt.expected) then
5 reduce(p limit, β1)
6 end
7 if pkt loss rate � pkt loss rate.threshold then
8 reduce(cc limit, β2)
9 end

Algorithm 3: Centralized Scheduling
input : Transfer request, req = {src, dest, SLA},

Link information, L[1 : all], where,
L[i] = {BW,RTT, Texist}

1 Periodically receive:
2 network_view()
3 ledger ← existing_transfer_status()

4 if request, req is received : Queue.put(req)
5 while Queue is not empty do
6 Text ← compute_external_load(ledger)
7 if req.SLA == ’Type-1’ then
8 Eexp, θ ← get_params(Link, Text, Tsla)
9 else if req.SLA == ’Type-2’ then

10 Texp, θ ← get_params(Link, Text, Esla)
11 else
12 Texp, θ ← get_params(Link, Text, ϕsla)
13 end
14 send_parameters(θ)
15 end

increase in packet loss rate, it reduces the concurrency level
by predefined β2 (Line 7-9). During these time intervals
achieved throughput may go below the throughput mentioned
in SLA, which must be compensated to guarantee the SLA
requirement. We introduce an opportunistic strategy that is
- whenever possible (time intervals with low external load)
target for a solution better than SLA requirement so that
we have enough buffer performance to cover the inevitable
throughput drop during external load spike. Dynamic tuning
(Algorithm 1) for different SLAs are explained below.
Constraint 1 – Throughput Guarantee: (Line 16-23) It pe-
riodically checks the throughput, Tact and checks whether the
value is outside a tolerance bound Tsla ± ε. When it is below
the bound, dynamic tuning initiates back-off control (Line 17-
19), otherwise, it initiates opportunistic_increase()
module. In an uncongested link, it can provide continuous
throughput guarantee, however, a congested link may force the
transfer to reduce the parameters (ensure fairness) that directly
impact the throughput.
opportunistic_increase() compensates this in-

evitable throughput drop with a new throughput goal Tgoal
that is higher than Tsla (Line 20-21). During uncongested
time interval dynamic tuning module will ask offline analysis
module to provide parameters that can achieve Tgoal (Line 22).
We also introduce a buffer capacity of achievable throughput
higher than Tsla. This buffer size is based on historical data

Algorithm 4: Centralized Micro-Tuning
input : Periodic updates,

U [1 : all] = {EPs, EPd, T, E,Qrtt, Status}
1 if link capacity reduced due to failure/maintenance then
2 scale_down_params(... , BW=new capacity)
3 end
4 for ui in U [1 : all] do
5 if u[status] == ’FINISHED’ or’ABORTED’ then
6 redistribute_params()
7 end
8 if u[status] == ’SLA violation’ then
9 micro_tune()

10 end
11 end
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Figure 4: Centralized approach overview.

analysis. Opportunistic increase function tries to fill this buffer,
whenever it senses available throughput. This buffer pro-
actively offsets any future throughput degradation.

Constraint 2 – Energy Constraint: (Line 6-15) We have
used a similar strategy for the energy constrained tuning as
well. Here we are mostly interested in energy efficiency of
the transfer, η = Datatotal/Etotal. This is the expected
efficiency to maintain the energy constraint as mentioned in
SLA. When the current efficiency goes below the expected
efficiency, that means the transfer is using more energy to
transfer unit amount of data than expected. It could be due to
the congestion in the link where retransmission and waiting
for acknowledgment can reduce η significantly. We can easily
check whether this is the case, just by measuring current
throughput and queuing delay of the network and initiate
the back-off control to reduce the parameters (Line 7-10).
Another reason could be the unnecessary use of application-
level parameters. Redundant concurrency levels could open
more server processes which would lead to extra energy
consumption. In such case, we ask offline analysis to provide
new parameters. We also introduced opportunistic decrease
of energy consumption whenever possible to offset the extra
energy consumption happened due to suboptimal parameters
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Specifications IBM IDCN XSEDE
Bandwidth (GBps) 1 10

RTT (ms) 65 40
Buffer size (MB) 8 32

File system Lustre
Cores 2 16

Memory (GB) 2 32

Table II: System and network specification of test sites

or congestion. It can be done by switching processes to more
energy constraint resource groups.

Constraint 3 – Power Constraint: (Line 24-32) This con-
straint asks to limit instantaneous power consumption of the
transfer. However, in case of heavy congestion, it reduces the
parameters. In a congestion-free network, it tries to increase
the concurrency without violating the instantaneous power
consumption limit.

B. Centralized Approach

The main advantage of centralized scheduling is the sched-
uler has a global view of the network status and overall transfer
load. Therefore, the external load can be estimated more
precisely. In distributed scheduling, there may be parameter
over-shoot and under-shoot before all of them converge to
an optimal level. However, this oscillation can be reduced in
centralized approach, as the scheduler has global network view
and all transfer periodically send status to the scheduler. An
overview of the centralized approach is shown in Figure 4.
The centralized approach has three components: (1) offline
analysis, (2) transfer scheduling, and (3) dynamic tuning.
Transfer scheduler performs the offline historical analysis sim-
ilar to distributed approach and pre-computes the optimization
problems to use them during real-time transfers.

After explaining away the external load, the available link
bandwidth should not exceed the combined throughput guar-
antee of Type-1 SLA and combined predicted throughput of
Type-2 SLA and Type-3 SLA. This module can work as an
integration in Traffic Engineering (TE) module of SDN. To
make the solution more scalable, we can delegate controls in
a hierarchical manner.

1) Centralized Transfer Scheduler: Initially, the scheduler
(Algorithm 3) clusters all the transfer requests based on source,
destination, and their SLA requirements. Then it aggregates
SLA requirements of each cluster. As we can see, each of the
SLA groups in a single link is actually the external load for
one another. The scheduler receives periodic updates from the
participating transfers and has a more precise knowledge about
the parameter distribution. It periodically updates external
load estimation (Line 6). Therefore, the centralized approach
can ask offline analysis module for parameters with precise
external load (Line 6-13), unlike distributed approach that
starts with parameters for median external load and then
converges.

The centralized scheduler also performs micro tuning pe-
riodically when necessary (Algorithm 4). In case of link
capacity reduction due to failure or maintenance, scheduler
scales down the parameters for all contending transfers. When
a transfer finishes or is aborted, it notifies the scheduler so that
it can redistribute the newly released parameters to existing
transfers without violating energy and power constraints. In
case of SLA violation, it redistributes the parameters among
the contending transfer using more simpler micro_tune()
routine.

V. EVALUATION

We performed experiments on a wide-area network link
between IBM datacenters located in Washington, D.C. and
San Jose, CA. We also used XSEDE, a production level high-
speed computing infrastructure for large-scale scientific com-
putations. An overview of systems and network information
is provided in Table II.

We compared our model with many existing data transfer
solutions. However, there has been done very little work
on energy efficient data transfer optimization. We evaluate
our model against the model proposed by Alan et. al. [2],
globus-url-copy (guc) [19], Globus Online (GO) [14],
scp, SFTP, Rsync, Rclone [48], and CloudFuse [15].

Alan et. al. provide a High Throughput Energy-Efficient
Transfer Algorithm (HTEE) that uses heuristics based ap-
proach to balancing the achieved throughput and energy
consumption. It starts with one channel and periodically
increases it by 2 until it reaches to a user-defined limit.
Then it computes (Tact/Eact) ratio for each level and picks
the best one. This periodic additive increase is slow and
keeps the transfer sub-optimal until it searches the whole
parameter space which is still O(n) when the user-defined
value is n. Globus-url-copy and Globus Online are
GridFTP based data transfer tools to achieve high performance
during transfer. However, they are not energy optimized tools.
Scp and SFTP are widely used secure file transfer tools.
Rsync and Rclone are high-performance data synchronization
applications. CloudFuse provides cloud-based Managed File
Transfer (MFT) service and offers migration, sync and other
file management capabilities to the end users.

A. Comparison with Other Solutions

Figure 5 shows an elaborate experimentation and perfor-
mance analysis of different state-of-the-art solutions and our
proposed approach. In literature, very little work is done
to optimize both throughput and energy of a data transfer
with SLA specifications. Most of the models do not support
SLA. Therefore, to make comparison fair we set the SLA of
our model in two extreme cases - (1) Maximum achievable
throughput (MaxTh) and (2) Minimum possible energy con-
sumption (MinPow). To test the efficiency of different types
of file transfers we tested all data transfer solutions for small
(1 - 5MB), medium (100 - 500MB), and large (1 - 4GB) files.
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(d) Achieved throughput (medium files)
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Figure 5: Achievable throughput and corresponding energy consumption of different optimization objectives.

1) Performance of Medium File Transfers: Figure 5 (d-
f) contain performance comparison for medium files. We
compared achieved throughput, energy consumption, and the
throughput efficiency, (Tact/Eact). To accelerate the medium
file transfer, a moderate choice of concurrency cc and par-
allelism p is helpful in an uncongested link. Multiple files
with multiple segments can be transferred simultaneously.
However, an initial best-known parameter choice along with
dynamic tuning and effective end-system resource scheduling
can increase energy efficiency as well.

As we can see off-the-shelf tools like scp and SFTP per-
form poorly due to single data channel allocation and also
the control channel inefficiency in long RTT WAN. Their
energy consumption is also high because low throughput
transfer needs more time to finish and even though resource

utilization is low, longer time of execution increases the static
power component (power consumption when the resource is
idle and waiting). Similarly, globus-url-copy (guc),
a GridFTP based tool, also performs poorly with base-line
parameter settings (cc = 1 & p = 1).

GridFTP is designed for multi-threaded transfers and more
resource intensive than scp and SFTP when used with a
single channel. So, it suffers from low throughput while
consuming more energy. On the other hand, Globus Online
is a statically tuned cloud service that uses GridFTP protocol.
Due to the use of multiple streams (cc × p > 1), we observe
that it can reach up to 2× performance improvement compare
to scp, SFTP, and guc. However, it consumes 2× more
energy. The reason is that statically assigned parameters may
not be optimal for all external traffic levels. There is no way
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to limit the resource utilization as well.
Rclone and Rsync are file synchronization tools. By

default, Rclone uses 4 parallel data connections to transfer a
single file. We observe that it can achieve similar performance
as GO, however, there is no way to do any dynamic adjustment
to parallel connections. We see an unusually high energy
consumption at the destination. It may be due to the extra work
it has to do for sync operation for four parallel connections.
On the other hand, Rsync performance is lower than Rclone
as it does not use any parallel connections for file transfer,
therefore, under-utilizes the available bandwidth. However, it
consumes less energy due to its single connection syncing.

CloudFuse achieves slightly better performance than guc. It
consumes slightly less energy compared to Rsync and guc.
As we see in the Figure, Alan et. al. model performs much
better than solutions discussed above due to the fact that it
performs an on-line parameter search and after deciding on the
best parameter, it transfers rest of the data efficiently. However,
there is no real-time control on parameters, therefore, when
external traffic changes those parameters may become sub-
optimal. And additive parameter search may take a toll on
the achieved throughput. However, due to the search for
energy-efficient parameters, it can manage to keep energy
consumption less than other approaches mentioned above.

Both of GreenDataFlow algorithms (MaxTh and MinPow)
outperform all the listed solutions. MaxTh provides 6×
throughput performance improvement over the baseline perfor-
mance of globus-url-copy and almost 2× improvement
over the closest competitor Alan et al. model due to the
historical analysis and real-time tuning of the parameters. As
it achieves high throughput, the execution time reduces as
well which reduces the static power consumption along with
constrained resource scheduling in end-systems. MinPow is
aimed to decrease the total energy consumption. It consumes
8× less energy than the energy-hungry rclone, 3× less
energy than base-line guc and almost 36% less energy than
the closest competitor Alan et. al.

2) Performance of Small and Large File Transfers: Disk-
to-disk small file transfers are very challenging, as we have to
perform a lot of disk read/write operations. Without a proper
pipelining level, control channel idleness can introduce delay
among subsequent file transfers. As we can see in Figure 5 (a-
c), overall achieved throughput for all approaches are lower
than the achieved throughput of medium (Figure 5(d)) and
large files (Figure 5(g)). However, the achievable throughput
difference is quite similar to medium file transfers except
the cases where Rclone performs worst than Rsync and
CloudFuse. Alan et al. model achieves low throughput
compared to medium files, because small file transfers suffer
badly for sub-optimal parameter choices. Therefore, additive
parameter search takes more toll on small file transfers com-
pared to the medium files. Our MaxTh model reaches 2.5×
performance increase compared to the closest competitor Alan
et al. model, and our energy optimized MinPow consumes 2×
less energy compared to it.

Parallelism is the most important parameter for large file

transfers as we want to parallelize multiple segments of a
large file. Concurrency can add extra boost on performance,
however, a very high value can over-burden the network.
Figure 5 (g-i) shows the performance of large file transfers. It
can be seen that the overall throughput performance is better
than medium file transfers. However, the performance pat-
tern for guc, GO, SCP, SFTP, rsync, CloudFuse
is roughly similar to medium files because of the use of fixed
parameter settings. Energy consumption performance is also
similar to medium files except for a huge spike in rclone
destination, as the file size grows the energy consumption in-
creases rapidly. Alan et al. model also performs better compare
to its performance on small and medium files. Our model
outperforms Alan et al. model and achieves 2× performance
boost in throughput. On the other hand, our MinPow model,
consumes 70% less energy compare to Alan et al. model.

B. SLA-based Performance Analysis

We have discretized the SLA levels of throughput, energy
and instant power and eliminated the infeasible regions. Fig-
ure 6 shows the performance for different SLA levels. It can
be seen that SLA violations are rare unless there exist over-
subscription of throughput or severe capacity reduction for
a long period of time. Most of the cases in Type-T SLA
(Figure 6 (a-c)), our model can achieve performance over
Tsla, due to the opportunistic_increase strategy. It
also keeps the resource utilization manageable by putting
dynamic restriction on usage. SLA violation error is ranged
from 3% to 6%. For energy constrained (Type-E) SLA, we
observed the SLA violation occurs due to heavy congestion
which forces retransmission and initiates slow start phase.
Moreover, excessive concurrent processes can consume extra
power while congesting the network. As our model cautiously
monitors and budgets the required future energy usage, it can
achieve high accuracy in SLA commitment. Instant power
consumption constraint forces the transfer to be assigned in
a restricted resource group and never changes it to guarantee
this constraint, however, it may fix parameters in real-time
to achieve the expected throughput. This constraint produces
some interesting results, as we can see, it consumes more
total energy to achieve a throughput similar to Type-T and
Type-E SLAs. Due to the strict resource constraint, transfer
may take long time to finish that leads to more static power
consumption.

C. Protocol Fairness Analysis

Both of our distributed and centralized approaches are
designed to maintain fairness among the contending transfers
while maximizing the overall WAN utilization. We have tested
our model in 10 Gbps XSEDE WAN with four contending
transfers. Figure 7 shows the performance of different transfer
approaches. We can see that scp can achieve throughput
around 500 Mbps and all contending users can get an equal
share, however, the network utilization is very low. Rsync also
gets a similar performance with a good fairness among the
users. This is due to the single channel that is not enough
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Figure 6: Achieved throughput, energy consumption and SLA commitment accuracy for different SLA types. (a-c) SLA with
throughput guarantee, (d-f) SLA with energy constraint, and (g-i) SLA with power constraint.

to fill up the 10 Gbps WAN link. Both of them achieve
20% of the network utilization. Alan et al. model achieves
higher throughput and the network utilization is almost 40%,
however, we can see the performance is not fairly distributed
among the users. If all the transfer start at the same time,
then Alan et al. model can get a fair share. If external traffic
changes during the search process, then it can choose pa-
rameters unfairly. Both the distributed and centralized models
provide superior utilization of the network. The distributed
approach can achieve almost 82% network utilization where
centralized approach can reach up to 90% utilization. In the
distributed approach, the users need to sense the network
periodically and waste some throughput while converging.
However, centralized approach converges faster as it knows
about other contending transfers and estimates external load
more precisely. Due to the proper back-off control, it can
become less aggressive towards the other contending transfers.

VI. RELATED WORK

The work on network throughput optimization focuses on
tuning transfer parameters such as parallelism, pipelining,
concurrency and buffer size. The first attempts to improve
the data transfer throughput at the application layer were
made through buffer size tuning. Various dynamic and static
methods were proposed to optimize the buffer size [32], [45],
[50]. However, Lu et al. [40] showed that parallel streams
can achieve a better throughput than buffer size tuning and
then several others [5], [29], [56], [55] proposed throughput
optimization solutions by means of tuning parallel streams.
Another transfer parameter used for throughput optimization
was pipelining, which helped in improving the performance of
transferring large number of small files [20], [18], [11], [54].
Liu et al. [39] optimized network throughput by concurrently
opening multiple transfer sessions and transferring multiple
files concurrently. They proposed increasing the number of
concurrent data transfer channels until the network perfor-
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Figure 7: Fairness analysis of different approaches.

mance degrades. Globus Online [4] offers fire-and-forget file
transfers through thin clients over the Internet. It partitions files
based on file size and transfer each partition using partition-
specific protocol parameters. However, the protocol tuning
Globus Online performs is non-adaptive; it does not change
depending on network conditions and transfer performance.

The work on power-aware networking focuses on saving
energy at the networking devices. Gupta et al. [27] were
among the earliest researchers to advocate conserving energy
in networks. They suggested different techniques such as
putting idle sub-components (i.e. line cards, etc.) to sleep [26],
which were later extended by other researchers. S. Nedevshi et
al. [43] proposed adapting the rate at which switches forward
packets depending on the traffic load. IEEE Energy Efficient
Ethernet task force proposed the 802.3az standards [1] for
making ethernet cards more energy efficient. They defined a
new power state called low power idle (LPI) that puts the
ethernet card to low power mode when there is no network
traffic. Other related research in power-aware networking has
focused on architectures with programmable switches [25] and
switching layers that can incorporate different policies [33].
Barford et al. proposed power-aware network protocols for
energy-efficiency in network design and routing [13]. Bertozzi
et al. [10] investigated the energy trade-off in networking as
a function of the TCP receive buffer size and show that the
TCP buffering mechanisms can be exploited to significantly
increase energy efficiency of the transport layer with minimum
performance overheads.

Several highly-accurate scheduling algorithms [37], [7],
[8] and predictive models [9], [58], [57], [35], [34] were
developed which require as few as three sampling points
to provide very accurate predictions for the parallel stream
number giving the highest transfer throughput for the wired
networks. Yildirim et al. analyzed the combined effect of
parallelism and concurrency on data transfer throughput [53].
Alan et al. analyzed the effects of parallelism and concurrency

on end-to-end data transfer throughput versus total energy
consumption in wide-area wired networks using precalculated
values for these parameters and proposed a heuristic approach
to improve them [2], [3].

VII. CONCLUSION

In this paper, we introduced a novel set of data transfer
algorithms (collectively called GrenDataFlow) based on his-
torical analysis and real-time tuning, which can achieve high
data transfer throughput while keeping the energy consumption
during the transfers at the minimal levels. GreenDataFlow
supports service level agreements (SLAs) which give the ser-
vice providers and the consumers the ability to fine tune their
goals in this optimization process. Our experimental results
show that GreenDataFlow outperforms existing solutions in
this area both in terms of energy saving and the achieved end-
to-end performance. Considering the massive energy footprint
of global data movement, our presented GreenDataFlow tech-
niques have a great potential to decrease this footprint and
contribute to the efforts of achieving greener Internet.
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