
Predicting Virality on Networks Using Local Graphlet Frequency

Distribution

Andrew Baas1, Frances Hung2, Hao Sha3, Mohammad Al Hasan4, and George Mohler5

1Dept. of Physicsa, Baylor University
2Dept. of Mathematics, Pomona College

3,4,5Dept. of Computer Science, Indiana University—Purdue University, Indianapolis
1Andrew Baas@baylor.edu, 2fwhe2015@MyMail.pomona.edu

3haosha@iupui.edu, 4alhasan@cs.iupui.edu, 5gmohler@iupui.edu

Abstract—The task of predicting virality has far-reaching
consequences, from the world of advertising to more recent
attempts to reduce the spread of fake news. Previous work
has shown that graphlet distribution is an effective feature for
predicting virality. Here, we investigate the use of aggregated
edge-centric local graphlets around source nodes as features for
virality prediction. These prediction features are used to predict
expected virality for both a time-independent Hawkes model
and an independent cascade model of virality. In the Hawkes
model, we use linear regression to predict the number of Hawkes
events and node ranking, while in the independent cascade model
we use logistic regression to predict whether a k-size cascade
will multiply by a factor X in size. Our study indicates that
local graphlet frequency distribution can effectively capture the
variances of the viral processes simulated by Hawkes process and
independent-cascade process. Furthermore, we identify a group
of local graphlets which might be significant in the viral processes.
We compare the effectiveness of our methods with eigenvector
centrality-based node choice.

Index Terms—Hawkes process, Cascade process, local
graphlets, virality

I. INTRODUCTION

Network virality is how quickly and widely an event travels

throughout a network. Studying virality is key to understand-

ing event spread in real-life networks. In addition to predicting

the virality of events given a single node or set of nodes,

it allows people to preemptively pick nodes which increase

the chances of events going viral. For example, by building

a model which predicts whether a cascade from a certain

node will go viral, a user can run that model on all nodes

to predict which ones will yield the most viral event cascades.

From predicting viral posts on social media (i.e. Facebook

and Twitter) to finding strategic ambassadors for advertising

products [1], the ability to predict successful event spread

has many potentially profitable applications. Researchers have

used virality to study the spread of subjects as diverse as

memes [2] and computer viruses [3].

There are many different methods currently used to predict

network virality; some of the most basic use global centrality

measures like degree and eigenvector centrality [4]. Degree

centrality, one of the most intuitive measures of node impor-

tance, assigns more importance to nodes with higher degree.

Therefore, according to this centrality, events originating at

high-degree nodes should spread farther than those originating

at lower-degree nodes. One of the best global centrality mea-

sures is eigenvector centrality. In this centrality, high-scoring

nodes are those which are linked to other high-scoring nodes

(for example, a low-degree node with high-degree neighbors

may have a higher centrality score than a high-degree node

with low-degree neighbors). Such global centrality measures

are indeed fairly reliable and effective in choosing viral nodes.

However, in real-life applications, the whole network structure

may not be available or good global centrality measures may

be too time-consuming to calculate.

More recent research has used network sub-structures called

graphlets to predict virality. By giving a more detailed picture

of structures within a network than degree, studying graphlets

allows for the utilization of more graph information than more-

established structural properties. Global graphlets of size 3,

4, and 5 can be counted efficiently using GUISE [5] and a

recent study [6] has shown that global graphlets can be used to

predict Hawkes virality. Moreover, edge-wise local graphlets

up to size-5 can also be counted efficiently by using a method

named E-CLoG [7]. So far, however, the application of local

rather than global graphlets as predictive features has not been

explored.

By using local graphlet counts to predict event spread,

our methods allow users to predict overall virality given

only limited scope of the graph. In this paper, we present

ways to find the most potentially viral starting nodes in two

different models: the Hawkes process [8], [9], [10], [11] and

independent cascade [12]. These models of virality differ in

their inherent predictability and way of spreading, but our

results indicate that the structural information revealed by local

graphlets is a good predictor for both of them. We consider two

questions central to network virality application: (1) whether

we can predict the size of Hawkes process and independent

cascade process, and (2) whether we can choose the best nodes

to start the Hawkes process and independent cascade in order

to maximize their size.

Our contributions to studying virality in this paper can be

summarized as follows. In our first section, we find that local

graphlet counts are strong predictors for the size of Hawkes

process, as well as for identifying the top nodes which produce

the largest event count. Using local graphlet counts, we can

train linear regression models which predict ultimate event
__

This is the author's manuscript of the article published in final edited form as:

Baas, A., Hung, F., Sha, H., Hasan, M. A., & Mohler, G. (2018). Predicting Virality on Networks Using Local Graphlet Frequency Distribution.
2018 IEEE International Conference on Big Data (Big Data), 2475–2482. https://doi.org/10.1109/BigData.2018.8622605

https://doi.org/10.1109/BigData.2018.8622605

count better than models using first-degree and second-degree

counts. In the next section, we show that graphlet counts are

also good at predicting whether an independent cascade will

grow 10-fold, and using this, we propose an algorithm for

predicting the N-best nodes in an independent cascade model.

In this N-nodes problem, local graphlets identify alternate

node groupings which produce high-count cascades similar or

bigger in size to groupings found via eigenvector centrality.

Overall, local graphlet counts are conclusively good features

for virality in both the Hawkes and independent cascade

models, and have potential for solving the N-best nodes

problem. Another advantage to our approach is that we are

able to find specific graphlets and graphlet patterns which

characterize nodes with high virality potential.

II. BACKGROUND

A. Local Graphlets

Graphlets are small subsections of a network which are

classified by their specific structure. Figure 1 shows the

different graphlets of size 3, 4, and 5 used by the E-CLoG

algorithm [7]. In this algorithm, the program counts some

graphlet types and uses combinatorial methods to deduce the

other graphlet counts.

Fig. 1: 3,4,5-size local graphlets

B. Hawkes Process

Hawkes process is a special kind of point process where the

conditional intensity function increases upon new events. For

Hawkes process on a network G, given a sequence of events

represented by (vi, ti) pairs where vi is the node where an

event occurs and ti is when it occurs, the conditional intensity

at node v, λv(t), is of the form [8]

λv(t) = µ+
∑

t>ti
vi∈N(v)

g(t− ti) (1)

where µ ≥ 0 is the base intensity and N(v) is a set of

neighbors of v. The triggering kernels g(t − ti) are summed

over all events that occurred on a neighboring node vi at a

previous time ti.

III. METHODS

A. Generating Simulation Graphs

As indicated in [7], degree distribution can partially explain

the evolution of viral process in a network. To nullify the

influence of degree distribution in our analysis, for each

network in Table I we generate a collection of synthetic

networks which have the same degree distribution as the

original network. In particular, we adopt an edge-swapping

method [13], [14] where two edges e1 and e2 are selected at

random and their second vertices are swapped to generate two

new edges e3 and e4. If e3 or e4 already exists, this proposed

swap is rejected and the process is repeated with a new pair of

randomly chosen edges e1 and e2. As a result, the degree of a

vertex is invariant under edge-swapping and the overall degree

distribution remains constant. A series of degree-preserving

graphs can thus be generated for further analysis.

B. Modeling Virality

To model the virality of a network, we run a series of

Hawkes processes [9], [10], [11] originating from every node

of the network. The Hawkes process is a specific kind of self-

exciting point process where discrete events occur according to

a stochastic intensity λ(t) that increases upon the arrival of a

new event and decreases between two consecutive events. Our

implementation of the Hawkes process starts from one active

node, and during each iteration an active node has a chance

to activate any of its neighbors if the neighbor is inactive. As

a result, any node can be activated at most once. Moreover,

an active node can only attempt once to activate a neighbor

regardless the outcomes. Our Hawkes process ends when all

nodes exhaust their attempts. The virality can be measured

by the Hawkes event count HE which is the total number

of nodes that are active when the Hawkes process completes.

Therefore, a large HE indicates high virality.

In our implementation of the Hawkes process, θ serves

as a threshold, below which an inactive node would not be

activated. Specifically, an active node can activate a neighbor

if a randomly generated number ∈ [0, 1) is not greater than

θ. In general, θ has to be less than certain critical value θc
for Hawkes process to converge. The critical value θc can be

calculated by

θc = 1/λm (2)

where λm is the largest eigenvalue of the adjacency matrix

A of a network G. To obtain λm, we adopt ARPACK [15],

a software which is capable of solving a few eigenvalues

for large sparse matrices efficiently. Alternatively, one can

approximate λm by its upper bound. For instance, for graphs

with power law degree distribution with exponent β, the

largest eigenvalue of the adjacency matrix is almost surely

approximately the square root of the maximum degree, d
1/2
max

if β > 2.5, and is almost surely approximately cd3−β
max if

2 < β < 2.5, where c is a constant [16]. In order for Hawkes

process to finish in finite steps, we define the θ value as the

following

θ = αθc (3)

where α ∈ [0, 1].
In independent cascades, each edge in a network is assigned

a random weight, which represents the probability of an event

spreading through the edge. Additionally, each node can be

activated once; each node can attempt to spread events to

its neighbors only one time. In this paper, we assign random

weights to the edges using a gaussian distribution (µ = 0.2,

σ = 0.3).

C. Counting Local Graphlets

To obtain local graphlet distribution by enumeration is

expensive and not scalable for very large real-life networks.

In fact, for a network of |V | vertices, the brute-force com-

plexity of counting local graphlets up to size 5 is O(|V |5).
Alternatively, we adopt a hybrid algorithm E-CLoG [7] which

obtains local graphlet distribution efficiently by combining

enumeration and combinatorial calculation. E-CLoG counts

all size 3, 4, and 5 local graphlets considering all possible

edge orbits. Specifically, E-CLoG enumerates 4 out of 8 size-

4 local graphlets and 14 out of 32 size-5 local graphlets,

and generates the counts for the rest of the local graphlets in

constant time through combinatorial calculation. Furthermore,

E-CLoG can run in parallel, thus highly scalable. However, E-

CLoG counts the local graphlets with respect to a given edge.

To convert from edge-centric to node-centric, we sum up the

local graphlet counts of all edges that connect a given node.

To be specific, for vertex vi, the node-centric count of the kth
local graphlet can be calculated by

C(vi)[k] =
∑

j∈N(i)

C(ei,j)[k] (4)

where N(i) is a set of neighbors of vi. For edge ei,j in network

G, E-CLoG outputs a 42-dimensional vector C(ei,j) whose

kth element is the count of the kth local graphlet in Figure 1

(local graphlet figure). After converting the vectors from edge-

centric to node-centric, we obtain a 42-dimensional vector

C(vi) for node vi, which would be the features (explanatory

variables) for our regression.

D. Regression Model for Predicting Virality

Given a real-world network G0, after degree-preserve-

rewiring, we generate K rewired networks G1 ∼ GK . For

Gi, where i = 0, . . . , K, we perform the following steps:

1) obtain θi for Gi using the method described above;

2) run Hawkes process from each node vj in Gi, and record

the Hawkes event count HEi(vj);
3) run E-CLoG on Gi to obtain edge-centric local graphlet

count Ci(ej,k);
4) convert edge-centric local graphlet count Ci(ej,k) to

node-centric local graphlet counts Ci(vj);

5) repeat step 1 to 4 for i = 0, . . . , K;

6) randomly select 70%(K + 1) networks as the training

set to learn a linear regression model;

7) evaluate R2 and MSE on the remaining 30% test set.

Specifically, to learn a linear regression model, we adopt the

node-centric local graphlet distribution Ci(vj) as features and

log Hawkes event count log(HEi) as label. Therefore, our

regression is of the form

log(HEi(vj)) = bi +

41∑

k=0

bk × Ci(vj)[k] + ε (5)

where bi is the intercept and bk are the coefficients of the

linear regression where the errors are assumed to be normal.

E. Ranking

Starting Hawkes process from different nodes would result

in different total Hawkes event counts. In real-life applications,

people are usually interested in finding the top k nodes that

give rise to the largest event spread. Given that our linear

regression model is able to predict the total Hawkes event

count HEi
pred for the Hawkes process initiated at node vi, we

can thus rank vi by HEi
pred, for i = 1, 2, ..., |V |, and pick

the top k nodes with the largest HEpred. Alternatively, we

can assign vi a label yi = 1, if its actual Hawkes event count

HEi
true is among the top k, otherwise a label yi = 0. We can

thus learn a logistic classifier with such binary labels.

F. Cascade Prediction

Our goal is to predict whether a cascade will grow by a

certain factor or not, as it has been stipulated in previous

research that actual cascade size is inherently difficult to

predict [12]. In previous research, researchers used structural

as well as temporal variables to correctly predict real-life

cascade doubling with a high accuracy (80% for k = 5) [12].

In accordance to their approach, we use logistic regression

to predict whether a k-size cascade will grow by a chosen

factor (X) or not. We obtain our k-size cascades by the

following process: we simulate independent cascade from a

given number of random nodes until our time limit is reached

or the cascade ends naturally. The first k nodes reached make

up the k-size cascade spread.

We then use logistic regression to predict whether a given

k-size cascade will grow by a certain factor. Cascade spread

is very network specific: to determine the correct factor to

use for a smaller k-size (i.e. k = 6 ∼ 20, which is what

most applications are interested in) we need to understand the

distribution of cascade sizes in a network. For our applications,

we test factors X = {10, 20}. Given a network, k value

of interest and factor X , our data-generating process is as

follows:

1) Simulate a cascade from a random node(s) and deter-

mine whether it exceeds size k.

2) If it exceeds size k, take the first k nodes reached

and find the extended subgraph considering up to 2-hop

neighbors of the vertices of initial k-subgraph.

3) Ignoring edges between the k nodes, take the global

graphlet count of the k nodes and their up to 2-hop

neighbors. These are our graphlet features.

4) If the cascade size exceeds kX , then this cascade is

a positive instance of growth for the logistic model;

otherwise, it is a negative instance.

5) Repeat steps 1-4 p times. In this paper, we set p = 100.

Once we have our training and test data, we use 5-fold cross-

validated logistic regression to return 5 ROC-AUC scores of

our model. To gain an accurate idea of how well graphlet

models predict growth, we randomly reassign weights and

repeat the above process multiple p times. In this paper, we

set p = 15. As a comparison method, we use the aggregated

degree of the k nodes and up to 2-hop neighbors, excluding

edges between the k nodes. This gives an equivalent of single-

node degree centrality for multiple connected nodes.

G. Cascades: Choosing N-Best Nodes

To choose the N-best nodes in a network, we implement

LIR, a measure which gives a relative degree centrality of a

node in comparison to its neighbors [17]. Say G = (V,E) is a

network with vertices V and edges E. Letting vi be our node

of interest, di its degree, and N(vi) = {vj |(vi, vj) ∈ E}, the

corresponding LIR score is

L(vi) =
∑

vj∈N(vi)

Q(dj − di) (6)

where Q(dj − di) = 1 if dj − di > 0 and Q(dj − di) = 0
otherwise. We call nodes with a LIR score of 0 0-LIR nodes.

Identifying the 0-LIR nodes as centers of communities in a

network, we run cascade simulations from each of the 0-LIR

nodes. By taking the graphlet count features as described in

the methods section, we can predict which nodes have the

highest probability of growing by factor X .

1) Identify the 0-LIR nodes and choose an existing cascade

prediction model to apply. We ideally use a logistic

regression model trained on the network of interest via

the process in Section F, with an initial size k and growth

factor X of interest.

2) For each node, run a cascade simulation with the k used

in the chosen model; find the graphlet count of the k
nodes and the up to 2-hop neighbors using GUISE[5].

3) Use the logistic regression model to predict the prob-

ability that the cascade emanating from that node will

grow by X .

4) Once probabilities have been calculated for all 0-LIR

nodes, take the top N nodes with the highest probabil-

ities of growing.

5) Repeat so that each node has a cascade simulated from

it j times. In this paper, we set j = 5. Pick the top N
occurring nodes of the aggregated cascade runs as the

N nodes we activate initially.

We compare the performance of this procedure to nodes

chosen via eigenvector centrality.

IV. RESULTS

A. Linear regression

For our experiments, 12 real-world networks from

two domains are collected from the Network Repository

[18]. Among them, socfb-Caltech36, socfb-Reed98, socfb-

Haverford76, socfb-Simmons81, socfb-Swarthmore42, and

socfb-Bowdoin47 are Facebook friendship networks, while

soc-dolphins, soc-wiki-vote, soc-hamsterster, soc-advogato,

soc-anybeat, and soc-gplus are social networks. Some basic

statistics such as number of vertices (|V |), number of edges

(|E|), largest degree (dmax), and average degree (davg) for

these networks are shown in Table I.

TABLE I: networks adopted in experiments

Network |V| |E| dmax davg

socfb-Caltech36 769 17K 248 43
socfb-Reed98 962 19K 313 39

socfb-Haverford76 1K 60K 375 82
socfb-Simmons81 2K 33K 300 43

socfb-Swarthmore42 2K 61K 577 73
socfb-Bowdoin47 2K 84K 670 74

soc-dolphins 62 159 12 5
soc-wiki-vote 889 3K 102 6

soc-hamsterster 2K 17K 273 13
soc-advogato 5K 47K 947 18
soc-anybeat 13K 67K 9K 10
soc-gplus 24K 392K 3K 3.32

By degree-preserving rewiring, we generate 92 rewired

networks for each real-world network. For each rewired net-

works along with the original network, we obtain the largest

eigenvalues of their adjacency matrices using ARPACK [15].

Correspondingly, θ can be calculated using Eq. 2 and 3. In

our simulations, we adopt α = 0.99 for all networks so

that Hawkes process can finish in finite steps. It is worth

mentioning that instead of using θ of the original network

for all rewired networks like in [6], we calculate θ for each

rewired network. Had adopted a fix θ, Hawkes process on

some rewired networks which have small θc might never

converge. On the other hand, Hawkes process would finish

quickly after few events on rewired networks with large θc.

Next we apply E-CLoG [7] on each network including

the original and the rewired. Then we convert the resulting

edge-centric local graphlet (LG) distribution to node-centric

local graphlet distribution which is used as a feature set. In

addition, we adopt log Hawkes event count log(HE) as a label

set. As mentioned in the Method section, Hawkes process is

invoked from every node for 100 times, and HE is the average

node-base Hawkes event count. For linear regression, we use

70% training set and 30% test set. The R2 score and mean

square error MSE of each real-world network are shown in

Table IV. The regression results are in general very good -

except for soc-gplus, all networks have R2 higher than 90%.

In particular, for the Facebook networks, the R2 scores are all

higher than 95%. Moreover, MSE are small for all networks.

As a baseline, we learn linear models using first order degree

distribution (FD) which is essentially the degree distribution

of each graph and second order degree distribution (SD) which

is defined as diθ +
∑

j∈N(di)
djθ

2 where the first term is the

degree di of node vi scaled by θ and the second term is the

sum of the degree dj of all the neighbors of vi scaled by θ2.

As shown in Table II, LG outperforms FD and SD in terms

of R2 and MSE.

With a linear regression model in hand, we proceed to

identify which local graphlets are predictive of viral process

(i.e. Hawkes event count). The counts of local graphlets can

be viewed as independent variables in our linear regression

model, therefore their p-values can be calculated. In Table

III, we list the local graphlets which are significant at the .01

level. It appears that most of the local graphlets are significant

in predicting the Hawkes event count. In particular, for soc-

hamsterster, all local graphlets are significant at the .01 level.

To further identify the local graphlets with the most pre-

dictive power, we calculate the increase in R2 that each local

graphlet produces when it is added to the linear regression

model. We start with the local graphlet that gives the largest

R2 when it is the only feature. We then identify the next local

graphlet that raises R2 the most when added on top of the

first feature. Along this line, we rank local graphlets by the

amount of unique variance in addition to those before them.

In Table IV, we list the top 4 local graphlets of each real-

network. It appears that most Facebook networks have g0 and

g4 as important local graphlets, while most social networks

have g4 and g32 play important roles. We also perform linear

regression using the top 4 local graphlets as the feature set, and

it turns out that for the various Facebook networks more than

80% of the variance is captured, while for the social networks

the R2 score ranges from about 50% to 90% (Table IV). In

addition, MSE remains small despite that only top 4 local

graphlets are adopted (Table IV).

B. Ranking

We further test our linear regression model’s ability to

identify the k most influential nodes. Specifically, we choose

k = 10. We rank node vi by the predicted Hawkes event

counts HEi
pred. On the other hand, we rank vi by their

actual Hawkes event counts HEi
true. Let the top 10 nodes

given by the former be U = {u1, u2, ..., u10} and the later

be U ′ = {u′

1, u
′

2, ..., u
′

10}, where ui, u
′

i ∈ V . We can

then calculate the size of their intersection, |U ∩ U ′| as an

estimation to the hit rate (out of 10). As shown in Table V,

our linear regression model correctly predict at least 8 out of

10 top nodes for the six networks tested. In particular, for the

three social networks (soc-wiki-vote, soc-dolphins, and soc-

hamsterster), we achieve a hit rate about 9 out of 10.

As a comparison, we construct a logistic regression model

with local graphlet counts as features and whether a node is

among the top 10 as labels. Specifically, we label a node 1

if it is one of the top 10 nodes, and 0 otherwise. We use the

same dataset and train-test split (30% test set) as the linear

regression model. For the six networks tested, this logistic

regression model correctly predicts more than 6 out of 10 top

nodes (Table V), and for the three social networks the hit rates

are higher than 85%. However, as indicated in Table V, the

logistic model is outperformed by the linear regression model

in most cases.

C. Cascade Logistic Regression

We use 3 real-world social networks and 2 other domain

networks from the ones used for Hawkes linear regres-

sion: socfb-Caltech36, socfb-Reed98, socfb-Haverford76, soc-

Hamsterster, and soc-advogato. To compare performance with

an alternative prediction method, we create another logistic

regression model using the sum of degrees of an initial

cascade’s nodes and up to 2-hop neighbors as a feature. This

aggregated degree feature is meant to represent the multi-node

equivalent of a degree centrality metric. Especially for smaller

values of k, logistic regression using graphlets as features

outperforms this aggregated degree feature on average (Fig. 2).

There appears to be different optimal X for different networks;

values of X which are too large lead to poor AUC values for

both graphlet and aggregated degree features (Fig. 2e), while X

which are too small often lack enough negative classification

instances to build a meaningful model. However, in all our

tested networks, graphlet features on average outperformed

aggregated degree and AUC didn’t fall below 0.7, for at least

one of the two X values. The fact that graphlet features are

able to predict 10-fold growth with relatively high accuracy

for all our networks indicates they are useful predictors of

virality.

D. Cascade: Best N Nodes

Given a generated logistic model, we apply it to all 0-

LIR nodes in a network to determine the most significant

independent nodes (if there are fewer 0-LIR nodes than N ,

we extend our search to 1-LIR nodes). Aggregating the N

most common important nodes (we test N = 3, 4, and5), we

then run independent cascades originating from those N nodes.

Compared to the top N nodes found via eigenvector centrality,

this approach works better or about as well in sparse networks

with many 0-LIR values and does identically to eigenvector

centrality in networks with fewer 0-LIR values (where we also

include the 1-LIR values). Even in cases where the algorithm

does identically to eigenvector centrality, different nodes are

often chosen, which gives users useful alternatives to nodes

chosen through eigenvector centrality. When the narrowing-

down process was changed from 0 and 1-LIR nodes to the

50 most-central nodes via eigenvector centrality, the graphlet

counting process consistently performed worse. This indicates

that in most graphs, eigenvector centrality undervalues nodes

with high potential of cascade spread which our method is

able to discover. The fact that our method usually doesn’t

outperform the eigenvector method is likely due to our initial

narrowing down of nodes to be tested (from all nodes to 0

and 1-LIR nodes). It is too temporally expensive to test all

nodes, so this algorithm would benefit from a more effective

narrowing-down process.

TABLE II: Linear regression for Local graphlet and Degree distribution

Network LG R2 LG MSE FD R2 FD MSE SD R2 SD MSE

socfb-Caltech36 0.984 0.009 0.786 0.126 0.807 0.114
socfb-Reed98 0.978 0.012 0.768 0.121 0.793 0.108

socfb-Haverford76 0.976 0.013 0.787 0.112 0.802 0.104
socfb-Simmons81 0.971 0.016 0.751 0.136 0.769 0.126

socfb-Swarthmore42 0.970 0.016 0.763 0.123 0.784 0.111
socfb-Bowdoin47 0.963 0.021 0.748 0.143 0.767 0.132

soc-dolphins 0.943 0.011 0.869 0.025 0.909 0.017
soc-wiki-vote 0.935 0.023 0.659 0.119 0.748 0.088

soc-hamsterster 0.952 0.025 0.695 0.156 0.739 0.134
soc-advogato 0.936 0.030 0.635 0.168 0.712 0.133
soc-anybeat 0.925 0.021 0.146 0.236 0.485 0.142
soc-gplus 0.819 0.022 0.251 0.093 0.468 0.066

TABLE III: Important variables

Network Important variables (.01 level)

socfb-Caltech36 g0-7,g9-16,g18,g19,g21-23,g25,g27-29,g31-36,g38-41
socfb-Reed98 g0-20,g22-34,g36-38,g40,g41

socfb-Haverford76 g0-3,g6-12,g14-18,g20,g21,g23-30,g33-40
socfb-Simmons81 g0-7,g10-24,g26-30,g32-41

socfb-Swarthmore42 g0-23,g25-29,g31-41
socfb-Bowdoin47 g0-31,g33-36,g38-40

soc-dolphins g0-6,g9-14,g16,g18,g21-23,g27,g28,g33,g34,g39,g41
soc-wiki-vote g0-28,g30-37,g39-41

soc-hamsterster g0-41
soc-advogato g0-17,g19-36,g38-41
soc-anybeat g0-38,g40,g41
soc-gplus g0-10,g12-41

TABLE IV: linear regression results

Network R2 MSE Top 4 graphlets Top 4 graphlets R2 Top 4 graphlets MSE

socfb-Caltech36 0.984 0.009 g4,g32,g0,g10 0.950 0.029
socfb-Reed98 0.978 0.012 g4,g32,g34,g13 0.817 0.096

socfb-Haverford76 0.976 0.013 g0,g10,g2,g28 0.952 0.025
socfb-Simmons81 0.971 0.016 g0,g10,g2,g26 0.921 0.043

socfb-Swarthmore42 0.970 0.016 g4,g23,g0,g12 0.906 0.049
socfb-Bowdoin47 0.963 0.021 g4,g22,g0,g10 0.874 0.072

soc-dolphins 0.943 0.011 g0,g10,g12,g1 0.925 0.014
soc-wiki-vote 0.935 0.023 g4,g23,g18,g1 0.677 0.113

soc-hamsterster 0.952 0.025 g4,g23,g5,g13 0.728 0.139
soc-advogato 0.936 0.030 g4,g32,g34,g35 0.650 0.161
soc-anybeat 0.925 0.021 g4,g32,g24,g23 0.466 0.148
soc-gplus 0.819 0.022 g33,g34,g35,g32 0.449 0.068

TABLE V: top 10 ranking results

Network Logistic Linear

socfb-Caltech36 7.3 8.1
socfb-Reed98 6.7 8.0

socfb-Haverford76 6.9 8.0
soc-wiki-vote 8.9 8.8
soc-dolphins 8.5 9.0

soc-hamsterster 8.5 9.0

V. CONCLUSIONS

In this work, we propose a linear regression model for

predicting Hawkes process event count and a logistic regres-

sion model for forecasting the growth of independent cascade

process using local graphlet distribution. We show that local

graphlet distribution outperforms other topological metrics for

predicting Hawkes event count in terms of accuracy. We also

rank the local graphlets by their contributions to the total

variance of the model and discover that networks of the same

kind share similar important local graphlets. Graphlet counts

have potential in determining N-best nodes for independent

cascades, performing on par with eigenvector centrality while

uncovering different combinations of nodes. However, a more

efficient way of finding these nodes should be researched

more. Overall, our paper concludes that local graphlet features

are applicable for predicting virality and provides viable

models for prediction.

ACKNOWLEDGMENT

This work was supported in part by NSF grants ATD-

1737996, REU-1343123, and SCC-1737585. Most of our

calculations were conducted on the Big Red II supercomputer

at Indiana University and a Linux cluster at School of Science,

Indiana University-Purdue University Indianapolis.

REFERENCES

[1] O. Gil-Or, “Building consumer demand by using viral marketing tactics
within an online social network,” 2010.

[2] L. Weng, F. Menczer, and Y.-Y. Ahn, “Virality prediction and
community structure in social networks,” Scientific Reports, vol. 3,
2013. [Online]. Available: http://dx.doi.org/10.1038/srep02522

[3] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos,
“Epidemic thresholds in real networks,” ACM Trans. Inf. Syst.

Secur., vol. 10, no. 4, pp. 1:1–1:26, Jan. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1284680.1284681

[4] A. Landherr, B. Friedl, and J. Heidemann, “A critical review of
centrality measures in social networks,” Business & Information

Systems Engineering, vol. 2, no. 6, pp. 371–385, Dec 2010. [Online].
Available: https://doi.org/10.1007/s12599-010-0127-3

[5] M. A. Bhuiyan, M. Rahman, M. Rahman, and M. A. Hasan, “Guise:
Uniform sampling of graphlets for large graph analysis,” in 2012 IEEE

12th International Conference on Data Mining, Dec 2012, pp. 91–100.

[6] S. Khorshidi, M. Al Hasan, G. Mohler, and M. B. Short, “The role
of graphlets in viral processes on networks,” Journal of Nonlinear

Science, May 2018. [Online]. Available: https://doi.org/10.1007/s00332-
018-9465-y

[7] V. S. Dave, N. K. Ahmed, and M. A. Hasan, “E-clog: Counting edge-
centric local graphlets,” in 2017 IEEE International Conference on Big

Data (Big Data), Dec 2017, pp. 586–595.

[8] A. G. Hawkes, “Spectra of some self-exciting and mutually exciting
point processes,” Biometrika, vol. 58, no. 1, pp. 83–90, 1971. [Online].
Available: http://www.jstor.org/stable/2334319

[9] R. Crane and D. Sornette, “Robust dynamic classes revealed by
measuring the response function of a social system,” Proceedings of

the National Academy of Sciences, vol. 105, no. 41, pp. 15 649–15 653,
2008. [Online]. Available: http://www.pnas.org/content/105/41/15649

[10] M. B. Short, G. O. Mohler, P. J. Brantingham, and G. E.
Tita, “Gang rivalry dynamics via coupled point process
networks,” Discrete & Continuous Dynamical Systems - B,
vol. 19, no. 1531-3492 2014 5 1459, p. 1459, 2014. [Online].
Available: http://aimsciences.org//article/id/cd177559-9306-4b44-881d-
fb279ce2f432

[11] Q. Zhao, M. A. Erdogdu, H. Y. He, A. Rajaraman, and J. Leskovec,
“SEISMIC: A self-exciting point process model for predicting tweet
popularity,” CoRR, vol. abs/1506.02594, 2015. [Online]. Available:
http://arxiv.org/abs/1506.02594

[12] J. Cheng, L. A. Adamic, P. A. Dow, J. M. Kleinberg, and J. Leskovec,
“Can cascades be predicted?” CoRR, vol. abs/1403.4608, 2014.
[Online]. Available: http://arxiv.org/abs/1403.4608

[13] C. Gkantsidis, M. Mihail, and E. Zegura, “The markov chain simulation
method for generating connected power law random graphs,” in In Proc.

5th Workshop on Algorithm Engineering and Experiments (ALENEX).

SIAM, 2003.

[14] S. Maslov and K. Sneppen, “Specificity and stability in topology of
protein networks,” Science, vol. 296, no. 5569, pp. 910–913, 2002.
[Online]. Available: http://science.sciencemag.org/content/296/5569/910

[15] R. Lehoucq, D. Sorensen, and C. Yang,
“Arpack users’ guide,” 1998. [Online]. Available:
https://epubs.siam.org/doi/abs/10.1137/1.9780898719628

[16] F. Chung, L. Lu, and V. Vu, “Spectra of random graphs with
given expected degrees,” Proceedings of the National Academy of

Sciences, vol. 100, no. 11, pp. 6313–6318, 2003. [Online]. Available:
http://www.pnas.org/content/100/11/6313

[17] D. Liu, Y. Jing, J. Zhao, W. Wang, and G. Song, “A fast
and efficient algorithm for mining top-k nodes in complex
networks,” Scientific Reports, vol. 7, 2017. [Online]. Available:
http://dx.doi.org/10.1038/srep43330

[18] R. A. Rossi and N. K. Ahmed, “The network data repository
with interactive graph analytics and visualization,” in Proceedings of

the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.
[Online]. Available: http://networkrepository.com

