
ARCHIE: Data Analysis Acceleration with Array

Caching in Hierarchical Storage

Bin Dong, Teng Wang, Houjun Tang, Quincey Koziol, Suren Byna, Kesheng Wu

Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Email: {dbin, tengwang, htang4, koziol, sbyna, kwu}@lbl.gov

Abstract—Scientific data analysis typically involves reading
massive amounts of data generated by simulations, experiments,
and observations. A significant bottleneck in this process is
reading such data because the data files are stored on the rotating
disks. Recent supercomputing systems are adding non-volatile
storage layers to fill the performance gap between fast main
memory and the slow disk-based storage. Software libraries for
managing this hierarchy not only need to read data efficiently, but
also reduce user-involvement for cross-layer data movement. As
the scientific data is usually organized as arrays, these libraries
also need to support array data access patterns over hierarchical
storage systems. Existing software tools manage individual stor-
age layers separately, and require significant manual work to
move data among the layers. In this paper, we introduce a new
array caching in hierarchical storage (ARCHIE) to accelerate
array data analyses in a seamless fashion. ARCHIE evaluates
array access patterns and prefetches data with array semantics
between storage layers. On a production supercomputing system,
our evaluation shows that ARCHIE outperforms state-of-the-art
file systems, i.e., Lustre and DataWarp, by up to 5.8× in accessing
data by scientific analysis applications.

Index Terms—Caching and prefetching, HDF5, Data Elevator,
hierarchical storage, burst buffers

I. INTRODUCTION

Scientific data analysis applications running on high-

performance computing (HPC) systems often spend significant

amount of time in reading data [14], see Fig. 1. This is because

the underlying data files are stored in disk-based parallel file

systems, which require considerable amount of time to the

terabytes and petabytes required for the analysis operations.

In Fig. 1, we show the percentage of time for reading data by

three scientific data analysis codes that were run on a Cray

XC40 system, called Cori, at the National Energy Research

Scientific Computing Center (NERSC). We observe that the

data access time ranges between 24% and 86% of the total

execution time.

While recent advances in HPC storage systems are adding

multiple levels of storage hierarchy, traditional file systems

are not equipped with supporting hierarchy of storage layers.

To handle the bursty nature of generating and writing data,

exascale computing designs are including node-local, non-

volatile storage, and shared burst buffers [6]. These layers act

as faster caching layers to store the data temporarily. However,

traditional file systems are designed for managing a single

layer of storage devices, such as arrays of disks or solid-state

drives (SSD) [10], [22]. While there are solutions for moving

24%
33%

86%

76%
67%

14%

0%

25%

50%

75%

100%

VPIC + Gradient CAM5 + Convolution S3D + Vorticity

P
e

rc
e

n
ta

g
e

 (
%

)

Application Datasets and Analysis Operations

Read Computing

Fig. 1: From a profile of data access time and computation

time for three scientific data analysis codes, we see significant

portions of overall time is spent on reading data. (‘VPIC

+ Gradient’ is a gradient calculation of a plasma physics

simulation (VPIC) dataset, ‘CAM5-Convolution’ is a Convo-

lution operation for a climate simulation dataset, and ‘S3D +

vorticity’ is vorticity calculation of a combustion dataset.)

the data between fast non-volatile storage and slow disk-based

storage, solutions to accelerate reading data by prefetching

into the intermediate storage layers are still required. While

a few systems support prefetching the entire files, they often

require user involvement. For example, Cray DataWarp [6]

provides tools for users to manually or programatically move

data to a faster shared burst buffer. Similarly, software such as

DDN IME [7] and DAOS [17] also need storage infrastructure

changes or user involvement in data movement.

Moreover, solutions using array semantics and prefetching

data at smaller granularity than the entire file are unavailable.

Scientific data analysis frameworks such as TensorFlow [1]

and ArrayUDF [9] work on large multi-dimensional arrays,

e.g., 2D images. Incorporating array semantics into hierar-

chical storage optimizations can help to further reduce data

reading cost in data analysis tasks. Meanwhile, these data

analysis frameworks are mostly designed to operate on a single

storage layer. Providing a transparent way to use hierarchical

storage for these systems is a critical task.

With the goal of providing a transparent and efficient

data prefetching solution using array semantics in a hier-

archical storage subsystem, we propose a Array Caching

in HIErarchical storage system (ARCHIE). This system is

parallel by design and runs concurrently with data analysis

applications to prefetch array data sets. ARCHIE provides an

“array semantics”-aware prefetching function to move array

data from slow storage devices into faster ones that are closer

to analysis applications before the application issues the data

read calls. This prefetching system reduces I/O overhead in

most array-based data analysis applications. The technical

contributions of this effort are:

• Development of a new array cache management system

for hierarchical storage to move large array data effi-

ciently across heterogeneous devices.

• Design of a parallel prefetching method for large arrays

to improve data read performance in analysis tasks. Our

method also augments prefetched data with ghost zones,

a typical requirement in array-based data analysis.

• Development of a fault-tolerance mechanism for the

caching system to recover from errors automatically that

may crash an application or the ARCHIE service.

• Implementation of ARCHIE using the HDF5 Virtual Ob-

ject Layer (VOL) [4] to provide caching and prefetching

capabilities without requiring source code modifications.

We demonstrate the effectiveness of ARCHIE with three

scientific data analysis codes, including convolution neural

network [21], gradient computing [9], and vorticity analy-

sis [5]. We ran our experiments on the Cori HPC system at

NERSC that is equipped with a hierarchical storage system

and thousands of computing nodes. The results show that

ARCHIE is up to 6X faster than DataWarp [6], the state-

of-the-art storage system for managing burst buffers.

II. BACKGROUND

A. Hierarchical Storage Systems

Several pre-exascale and exascale computing systems are

being deployed or designed with multiple levels of storage

device layers to reduce the latency gap between main mem-

ory and disk-based storage. Adding an extra layer of non-

volatile storage, such as SSDs, has been adopted on systems

that have been deployed lately. There are two methods of

integrating SSDs into a supercomputing system, 1) mounting

SSDs on each computing node and 2) mounting SSDs on

dedicated nodes remotely. An example of the former case

is the Theta system at the Argonne Leadership Computing

Facility (ALCF), where each compute node has a 128GB

SSD1. An example of the latter case is the Cray XC40 system

at NERSC, called Cori, which contains 144 Linux nodes

(called burst buffer servers) with SSDs providing a single

namespace managed by Cray DataWarp 2.

Various solutions have been developed to manage these stor-

age devices as a unified namespace. For instance, BurstFS [28]

presents an ephemeral namespace using node-local storage

devices. As mentioned above, DataWarp [6] uses XFS to

unify storage on burst buffer servers and provides the POSIX-

IO interface for users to access its data. DataWarp also

1https://www.alcf.anl.gov/theta
2http://www.nersc.gov/users/computational-systems/cori/burst-buffer/

provides tools for users to move data in and out of the unified

SSD space, such as stage in and stage out. Both BurstFS

and DataWarp distribute large files to multiple SSD devices

for parallel access. These solutions assume a disk-based file

system (such as Lustre [10]) for long-term and persistent data

storage. Therefore, users need to deal with hierarchical storage

system with both SSD space and disk space.

The main limitation of both DataWarp and BurstFS is their

lack of efficient functions to support reading data [8]. For

instance, in DataWarp, reading data for analysis relies on

users to stage in entire data files from a file system into a

shared SSD-based burst buffer, as shown in Fig. 2. Analysis

applications can read the data from the SSD. This method

increases the end-to-end time3 for data analysis applications.

As described in following sections, a large data analysis may

split data into smaller subsets and read these subsets for

analyzing sequentially. Thus, it is possible to have advanced

storage optimizations to overlap data analysis and reading the

subsets that would be required in future, without delaying

applications’ start until the completion of staging in files. As

discussed in the following paragraphs, scientific data analysis

typically work on array data. Incorporating array semantics

into software for hierarchical storage system can further allow

such optimization to reduce I/O cost of analysis applications.

Disk Parallel File System
e.g. Lustre

 SSD Parallel File System
e.g., DataWarp

...

...Read from Disk

 Read from SSD

Manually stage whole data

files into SSD space before

"Read from SSD" happens

Data Analysis Application

...

Disks

SSDs

Computing Nodes

...

...

Fig. 2: An overview of hierarchical storage, with a disk-based

parallel file system (e.g., Lustre) and an SSD-based file system

(e.g., DataWarp). Data files to be analyzed are usually stored in

Lustre for long-term persistence. To use the faster SSD-based

storage, currently entire data files need to be manually staged

in on DataWarp before applications can read them. Obviously,

this approach exacerbates space utilization and extends the

end-to-end time for applications.

B. Representation of an Array

An Array is a basic data structure to store data elements

with the same data type. An Array can be viewed as a

mapping function from a Cartesian product to a set of attribute

spaces: [D0, D1, . . . , Dd−1] 7→< A0, A1, . . . , Am−1 >, where

Di is a set of dimensions and Ai is a set of attributes.

3The end-to-end time refers to the time taken by users to move the entire
data files from Lustre into DataWarp and then read them from DataWarp into
application memory buffers for analysis.

0 200 400 600 800 1000
Longitude

0

100

200

300

400

500

600

700

La
tit
ud

e

10

20

30

40

50

60

70

(a) CAM5 (b) VPIC

Fig. 3: Example array datasets in scientific applications: a) A 2D array represents the total (vertically integrated) precipitable

water (kg/m2) generated by CAM5 [32]. b) Mapped 3D magnetic field data in the z dimension (bz) for all highly energetic

particles (E > 1.5) in physical space (x, y, and z dimensions) (Image produced by O. Rübel [3]).

Di is a continuous range of integer. Arrays are found in

many scientific applications. We briefly discuss two analysis

operations of two science use cases with large array data to

motivate optimizations of reading data:

• Convolutional Neural Networks (CNN) on climate data:

The Community Atmospheric Model version 5 (CAM5) [32]

is a global atmospheric model that uses the finite volume

dynamical core on a latitude—longitude mesh. A typical

resolution is 0.23
◦

(latitude) by 0.31
◦

(longitude), giving a

768 by 1152 array. Figure 3(a) presents one attribute, named

the total precipitable water, on the latitude-longitude mesh.

A recent study [21] uses a 3D CNN with a bounding-box

regression analysis to detect and identify extreme weather

events, e.g., tropical depressions and tropical cyclones. The

main computation task in CNNs is the convolution opera-

tion, which is defined as:

(f ∗ g)(n) =
∞∑

m=−∞

f(m)g(n−m) (1)

where f , g are two complex-valued functions on the set Z

of integers. In 2D image analysis, f(m) represents a set

of neighborhood pixels and g(n − m) is the filter/kernel

function (i.e., weight parameter) on each pixel.

• Gradient computing on plasma physics data. The Vector

Particle-in-Cell (VPIC) [3] is used to understand plasma

dynamics in strong magnetic field systems. The core algo-

rithm solves for the electric and magnetic fields on a discrete

“Yee” mesh using a finite-difference-time-domain method.

The magnetic field data produced by VPIC is usually a 3D

dataset, as shown in Fig. 3b. A key operation in analyzing

VPIC data is finding the gradient of the magnetic field,

which is essential for understanding particle acceleration.

On a meshed 3D field, the gradient can be computed with

a Laplacian as :

gradf(x, y, z) = ∇f(x, y, z) (2)

where f represents magnetic value and ∇ denotes the

Laplace operator.

Chunk #1

Ghost zone

Chunk #3

Chunk #0

Chunk #2

Ghost zone

Fig. 4: An example [8, 8] 2D array with chunking and ghost

zone. The size for chunking is [4, 4] and for ghost zone is

[1, 1]. This pattern widely exists in data analysis. For example,

in the CNN analysis on CAM5 data. A chunk may contain

all cells of a convolution filter. Since the convolution filter

may run at boundary cell, having a ghost zone can avoid

accessing neighborhood chunks. Similar chunking and ghost

zone strategy can be applied to gradient computing. Each

chunk can also store a small figures used in CNN and other

data analysis pipeline, where the size of ghost zone for the

chunk can be zero.

Array data access patterns: chunking and ghost zone.

Chunking [9] or partitioning an array is a widely used strategy

in parallel array processing for aforementioned data analysis

operations: convolution and gradient computing. Chunking

splits array into contiguous subsets of data and the subsets

can be accessed and processed in parallel. An example for a

2D array is presented in Fig. 4, where an [8X8] array is split

into four chunks and each chunk has a size of [4X4].

Beyond chunking, another common method in parallel array

processing is to access a ghost zone for each chunk. The

ghost zone refers to the boundary cells that are built from

cells from neighborhood chunks. Having a defined ghost zone

avoids communication during the data analysis process. For

the above data analysis operations in Equations 1 and 2, each

analysis operation on a single cell needs its neighborhood

cells. Hence, when a computation operation is performed on a

boundary cell, it may need a cell from other neighborhood

chunks. Maintaining a ghost zone for each chunk avoids

reading neighborhood cells from other chunks. Both chunking

and ghost zone access optimizations using hierarchical storage

accelerate array-based data analysis operations.

III. ARRAY CACHING IN HIERARCHICAL STORAGE

ARCHIE provides a transparent and efficient caching and

prefetching service for array data using hierarchical storage

layers. The main goal of this work is to reduce the I/O

overhead for data analysis tasks that access array data from

both disk-based and SSD-based file systems.

A. Overview of ARCHIE

Towards easing the burden of manually moving data be-

tween long-term storage and burst buffer for analysis applica-

tions, and using faster SSD-based storage devices efficiently,

we propose ARCHIE. HPC applications can transparently use

the SSD storage for data analysis applications using ARCHIE.

We show a high-level architecture of the ARCHIE in

Fig. 5. ARCHIE is a user-space service that runs in the

background and simultaneously with data analysis applica-

tions. This overview assumes a disk-based file system and

an SSD-based file system. Both of these file systems can be

used to store data. ARCHIE provides a cache management

function for data analysis applications that read data from disk

based file system. In the figure, we highlight the prefetching

function of ARCHIE that improves the performance of array-

based analysis program by reading ahead data from the disk-

based file system to the SSD-based burst buffer. An array is

prefetched as data chunks. We show an array with 12 (i.e.,

[3X4]) chunks in the figure. Let’s assume that an analysis

task is accessing the first two chunks (marked in green) that

are read from the disk-based file system. ARCHIE prefetches

the following four chunks (shown in blue) into the SSDs for

future reads.

Meanwhile, ARCHIE augments each prefetched chunk with

a ghost zone layer (shown with red halo around a blue chunk)

to match the access pattern on array. A user may specify

the width of the ghost zone, which can be zero. The first

two chunks (colored white) read into the SSDs are actually

empty chunks only containing metadata (e.g., starting and

ending offsets). These metadata are written by read function

and they provide information for the prefetching algorithm

in ARCHIE to predict future chunks. We have implemented

parallel prefetching to accelerate parallel I/O of analysis

applications. ARCHIE provides fault tolerance mechanism to

checkpoint and restart once it failed to handle any potential

failures in supercomputer environments.

ARCHIE has the following major components: metadata

manager, consistency manager, chunk access predictor, parallel

reader/writer, garbage collector, and fault tolerance manager.

Functions of these components are described as below:

• Metadata manager. ARCHIE manages a metadata table to

contain data access information extracted from applications.

SSD File System
Miss

Hits

Data Analysis

Applications

Parallel Read

Metadata

Table

 ARCHIE

-- metadata manager

-- consistency manager
-- prediction algorithm

-- parallel reader/writer

-- garbage collection
-- fault tolerance manager

--

Disk File System

...

...

...

...

 Parallel chunk prefetching

Cached chunks

Array to be

analyzed

Insert, Update, Query , ...

Fig. 5: An overview of ARCHIE in caching data in a hierar-

chical storage system.

Entries of the metadata table contain the name of the file

being accessed by a data analysis application. This file name

information is inserted into the table by the read function

linked with analysis applications. We have implemented

a HDF5 VOL connector [8] intercept the data read calls

from applications. On the other hand, the metadata table is

queried by ARCHIE to obtain the file name for prefetch.

The metadata table also contains “chunk size”, “ghost zone

size”, and “status of the cached file”.

• Chunk access predictor uses the information of the cached

chunks to predict the future read accesses of analysis appli-

cations and to prefetch the predicted data chunks into the

faster SSD storage. We provide an expanded description of

the prediction algorithm in Section III-D.

• Parallel reader/writer brings data from the disk file sys-

tem into the SSD file system, or vice versa. Because the

data to be analyzed may be large, ARCHIE uses parallel

reader/writer to prefetch data. Specifically, the reader/writer

uses multiple MPI processes that span across all computing

nodes that are running the analysis application. These pro-

cesses concurrently prefetch different chunks from the disks

into the SSD to increase the prefetch efficiency.

• Garbage collector monitors the usage of the SSD layer.

When the capacity of free SSD space is low, the garbage

collector service of ARCHIE chooses the oldest chunks and

reclaim their space. Algorithms used by garbage collection

in ARCHIE is the first-in-first-out (FIFO), which means the

oldest chunks are always chosen first for garbage collection.

The reason to use the FIFO is that most data analysis

programs scan data once and sequentially.

• Consistency manager. When a cached chunk is modified by

an application, a consistency manager synchronizes updated

cached chunks in the storage layers and writes the chunks

back to the disk-based file systems. However, since most

scientific data is written once and read many times, updates

to data rarely occur and hence, the consistency manager

function is required infrequently.

• Fault tolerance manager records all the actions of

ARCHIE and monitors the status of data analysis applica-

tions. When an error occurs in the ARCHIE processes, the

fault tolerance manager restarts it and continues from the

recorded actions. Meanwhile, if the data analysis programs

exit due to errors, the fault tolerance manager cleans up the

cache space and the terminates ARCHIE itself.

In the following subsections, we present a detailed function-

ality of these components, including data chunk movement,

using the SSD-based cache, prediction and prefetching algo-

rithms, and fault tolerance.

B. Chunk Management

ARCHIE splits large arrays stored in the disk space into

chunks and then prefetches these chunks into the SSD space

automatically for data analysis applications. As shown in

Fig. 4, the chunks sizes are configured to be aligned with

the access granularity of data analysis applications. ARCHIE

supports a chunk-based cache management through our new

chunk ID calculation method.

Chunk ID calculation. In ARCHIE, an array chunk is

a subset of contiguous cells of an array on all dimen-

sions. Theoretically, for a d-dimensional Array with sizes

[D1, D2, . . . , Dd], a chunk can be defined as [l1 : u1, l2 :
u2, . . . , ld : ud], where li and ui are lower boundary and upper

boundary in ith dimension. Each array chunk is defined using

a starting coordinate index and an ending coordinate index

in the cache. For example, for a 2D array of 8 rows and 8

columns (i.e., 8 x 8) with chunk sizes of [4 X 4], the first

chunk contains cells between coordinate (0, 0) and coordinate

(3, 3) (in the row-major format). We use the following hash

function to convert the array coordinates into a single integer.

CoordHash(i0, ik, . . . , id) =
d−1∑

k=0

d−1∏

l=k+1

Dlik (3)

In Equation 3, D is the size of d-dimensional array and i is

the coordinate of a cell in the array. For the above example,

the starting coordinates, i.e., (0, 0), are hashed into 0, and the

ending coordinates, i.e.,(3, 3), are hashed into 24. The ID of

a single chunk in ARCHIE is defined as a string “CoordHash

(chunk starting cell coordinate)-CoordHash (chunk ending cell

coordinate)”. All the cache management functions in ARCHIE

are based on the IDs calculated using the hash function shown

in Eq. 3. The hash value can also be translated back to array

coordinates using the algorithm shown in Fig. 6.

FUNCTION CoordHashRevert(H , (N0, . . . , Nd))

H: CoordHash value;

(N0, . . . , Nd): the size of a d-dimensional array

0. S = H
1. for i ∈ (d, d− 1, . . . , 2) do
2. ci = H%Ni; H = H/Ni

3. c1 = S
4. return (c1, c2, . . . , cd)

Fig. 6: Algorithm to convert CoordHash value H back to the

d-dimensional array coordinates.

Chunk caching, access controls, and eviction. Since the

SSD file systems (such as DataWarp and BurstFS [29]) already

provide a global name space integrating all SSD devices in a

burst buffer layer, ARCHIE uses binary files created in these

file systems to cache the prefetched chunks. Each chunk is

stored as a stand-alone binary file in the SSD cache. The names

of these binary files are based on the chunk ID, converted as

a string. Hence, the file name of a chunk actually contains

the starting and the ending cell coordinates of this chunk. We

also take advantage of other metadata associated with the file

to manage the status of the cached chunks. Each file contains

the timestamp to record its creation time, access time, and

last modified time. All these timestamps are added by the file

system during file creation, access and modification. ARCHIE

uses these timestamp to track the life time and last access time

of these cached chunks. When the available SSD space is low

for fetching a new chunk, ARCHIE chooses the chunk binary

file with oldest access time to evict from the SSD space.

ARCHIE also uses the file access permissions (e.g.,

“S IREAD” in Linux) to control the status for cached chunks.

Once a chunk is prefetched into the SSD space, its corre-

sponding chunk file’s access bit is set as read-only. When a

modification happens to the cached chunk file, the file access

permission is switched to be read-write by the write function

from applications. In implementation, we use the HDF5 VOL

connector to intercept the write functions from applications.

ARCHIE flushes the dirty chunk files marked as read-write to

the back-end storage system.

C. Querying Cached Chunks

ARCHIE prefetches data chunks from an array automati-

cally from a disk-based Lustre into a SSD-based DataWarp.

For the cached data, ARCHIE manages consistency, as pre-

sented in previous subsection. ARCHIE also provides an

efficient method for data analysis applications to query the

cached chunks in the SSD space. In the current version of

ARCHIE, we support three base cases in querying cached

chunks. These base queries are presented in Fig. 7. Ideally,

a query from application results in an exactly-matched chunk

from the SSD space. The first case, “exact match”, means

that the boundary (i.e., the starting cell coordinate and the

ending cell coordinate) of a read area by an application is

equal to the boundary of a cached chunk. In the other two

base cases, the area of data to be read from applications either

belong to a sub-region of a cached chunk or sub-regions of

multiple cached chunks. There are also more complex cases

where a read request needs multiple full chunks as well as a

few partial chunks. These complex cases can be expressed as

a combination of the base cases.

D. Parallel Prefetching

ARCHIE is designed to support a diverse set of prefetching

algorithms that predict chunks to be read in future by analysis

applications. As we mentioned in the previous sections, most

data analysis applications scan large arrays sequentially and

process the data in chunks. Hence, we have implemented

Cached Chunk by ARCHIE Read Area by Applications

(b) (c)(a)

Fig. 7: Three base cases of querying cached array chunks

in ARCHIE. a) The read region matches the boundary of a

cached chunk. b) The read region is a portion of a single

cached chunk. c) The read region is formed by multiple cached

chunks. Other cases can be a combination of these base cases

in querying cached chunks in ARCHIE.

a prediction algorithm to support sequential array access.

ARCHIE converts the ID of a chunk, i.e., “CoordHash (chunk

start coordinate)-CoordHash (chunk end coordinate)”, into a

single integer number. This conversion uses Eq. 3 and Alg. 6.

This integer number represents the location of the chunks in

an array using row-major order. For example, the first chunk

is numbered as 0, the second chunk is numbered as 1, and

so on. Since we expect sequential reads from applications,

our algorithm identified a pattern of these integer numbers to

bring the future chunks into the SSD space. Specifically, we

forecast n chunks, where n is the number of processes used

for analysis. The number of processes (n) is used because

the prefetched chunks need to satisfy all parallel processes

for data analysis. These n predicted chunks are prefetched

in parallel. The n chunks are prefetched by all ARCHIE

parallel processes in a round-robin manner. In the current

implementation of ARCHIE, our prefetch function starts to

work once it finds the metadata (e.g., file name) from the

metadata table. The prefetch function terminates once it finds

there are no more chunks to prefetch. Other advanced prefetch

algorithms (e.g., regularly striped or randomized) can also be

easily integrated into ARCHIE for other access patterns on

arrays. We demonstrate the effectiveness of ARCHIE with the

current implementation in our evaluation.

E. Ghost Zone Construction

Ghost zone is a small layer attached to the boundary of a

data chunk. As stated in the previous section, a ghost zone

helps to avoid accessing boundary cells from neighborhood

chunks during the execution of an analysis process. Having a

ghost zone layer local to processes improves analysis perfor-

mance significantly. ARCHIE augments each prefetched chunk

with a ghost zone. During the prefetch function of ARCHIE,

it extends each chunk with ghost zone, which is a novel

contribution for caching methods. ARCHIE stores these ghost

zones within the same file as the data chunk. When an analysis

application wants to read a chunk with ghost zone, it can find

the exactly matched chunk in the cache and reads the chunk

with ghost zone using a single and contiguous read request.

F. Deadlock Prevention in Collective I/O

Collective I/O [11] is a popular technique used by parallel

applications to reduce the number of I/O operations. The

semantics of collective operations require all the processes to

participate in aggregation. Otherwise, the collective I/O may

enter a deadlock state, where one or more processes wait

for other processes to join. Hence, data analysis operations

may be developed to use collective I/O semantics. In our

cache management, the worst case is when some processes can

find chunks (i.e., hits) in the SSD cache, and the remaining

processes cannot. The processes without any hits will continue

to read data from the disks, and the ones with hit do not. If

reads are issued with collective semantics, the reads without

any hits may wait forever for those with hits. In order to

address this issue, ARCHIE introduces a global hit mechanism

where either all processes should have hits from the SSD space

or all the reads are from disk space.

G. Fault Tolerance

Data analysis application and ARCHIE are two separate

programs running concurrently. Either of these two programs

could fail due to unforeseen errors introduced by hardware or

software, or even themselves. To be tolerant of these errors,

ARCHIE monitors the status of the applications during the en-

tire period of runtime. When the data analysis application fails,

ARCHIE can automatically terminate itself after the cleanup

work that includes writing dirty chunks from the SSD space to

the long-term persistent storage, e.g., the disk-based storage.

ARCHIE records the progression of its prefetching functions

as a journal log, e.g., chunks prefetched and metadata table.

If ARCHIE fails, the batch script restarts ARCHIE and it

recovers the previously recorded status.

H. Implementation of ARCHIE for HDF5

We have implemented ARCHIE with the HDF5 library [25]

and DataElevator [8]. HDF5 is the most popular parallel

I/O library that provides an API for users to store and to

access array structured data from file system. DataElevator

provides a HDF5 VOL connector to accelerate writing data

into a hierarchical storage system. Following the same way,

ARCHIE extends DataElevator to have an advanced caching

and prefetching function for array data. ARCHIE reduces

the I/O overhead of data analysis programs, which are read-

intensive and use HDF5 I/O. However, ARCHIE can also

be implemented within other popular array libraries, such

as netCDF and ADIOS [16], to support a wide range of

applications. In the current implementation, ARCHIE accepts

the user provided hints to specify the chunk size and the ghost

zone size. In most cases, we suggest that users can match

the chunk and the ghost zone sizes with their data access

size in applications. ARCHIE also supports querying chunks

with mismatch between access area and cached chunks (as

stated above). Users can start ARCHIE as user space service

processes (like Data Elevator) distributed on computing nodes

for data analysis processes.

IV. PERFORMANCE OPTIMIZATIONS

In the previous sections, we presented the basic functions of

ARCHIE to cache array data in a hierarchical storage system.

We now discuss the performance optimizations that ARCHIE

brings for data analysis applications.

• ARCHIE overlaps computation on CPU and data move-

ment across hierarchical storage. Data analysis appli-

cations typically exhibit a pattern of reading and then

computing in multiple iterations, where data retrieved and

then analyzed. When applications are analyzing the data,

the I/O devices tend to be idle. During this idle period,

ARCHIE moves the data from the disk space into the faster

SSD space. The prefetching operations in ARCHIE are

overlapped with the data analysis operations. During the

next data read phase, the analysis application can obtain the

data from the SSD cache faster than from the disk space.

This reduces the end-to-end time for data analysis program

by avoiding data retrieval from slow devices. Although, for

the very first read phase, the data retrieval happens from the

slow devices, the benefit brought by ARCHIE for the latter

read phases improves the end-to-end execution performance.

• ARCHIE converts non-contiguous reads from stor-

age devices into contiguous ones. As we stated above,

ARCHIE uses individual files for storing each cached chunk

prefetched from a large array. Hence, data analysis applica-

tions can obtain a cached chunk by reading a single and

contiguous binary file if the boundaries of a request match

with the cached chunk. Since array data are mostly lin-

earized on storage device, reading chunks from the original

multi-dimensional array tends to have large number of small

and non-contiguous reads [9]. These reads may span across

different rows and results in large overhead. ARCHIE can

avoid this type of I/O overhead by redirecting application

to read contiguous binary files. Thus, based on the overlap

method in previous paragraph, ARCHIE can further reduce

the I/O cost of array data based analysis applications.

V. EXPERIMENTAL RESULTS

We evaluated performance of ARCHIE on a Cray XC40 su-

percomputer, named Cori, installed at NERSC. Cori has 2,388

nodes with Intel Xeon (Haswell) processors and 9,688 nodes

with Intel Xeon Phi (Knight’s Landing - KNL) processors.

Cori has a 1.8 PB SSD-based burst buffer managed by Cray

DataWarp with a peak performance of 1.7TB/sec. Its disk-

based storage system is managed by Lustre, which has 28

PB space and can deliver up to 700 GB/sec performance.

We compare ARCHIE with Lustre to show the benefits of

the prefetching function on accelerating I/O operations by

converting non-contiguous I/O to contiguous ones. DataWarp

provides tools, e.g., “stage-in”, to manually move a data

file from disk space into SSD space. In contrast, ARCHIE

automatically prefetches the array data from Lustre to the burst

buffer in chunks. Our method avoids application’s wait time

for the entire file data movement at the start of job execution

enforced by DataWarp. Our tests demonstrate both detailed

performance metrics (i.e., time) for a single read as well as

the end-to-end time. The end-to-end time is the total I/O time

that data analysis programs spent in reading data.

A. Evaluation with micro-benchmarks

This section reports our evaluation of reading data from a

2D array data. The size of the 2D array is 256K x 256K,

where K = 1024 and it contains floating point values. The

data analysis operation is a 2 x 2 convolution operation. By

default, we used 256 processes (i.e., one process per CPU

core) to perform the data analysis. The 2D array is split into

chunks with a size of [8192, 8192]. The size of the ghost

zone is [1,1] to keep convolution operation locally at each

process. We use 256 processes to do the cache management

and prefetching work. Based on this configuration, the array

has 1024 chunks in total and these chunks can be read by 256

analysis processes in four batches. We denote the batches as

“Read#1”, “Read#2”, “Read#3” and “Read#4”.

• Converting non-contiguous accesses into contiguous ac-

cesses on both disks and SSDs. In Fig. 8a, we show the

performance improvement with ARCHIE’s converting non-

contiguous accesses to contiguous ones. As stated above,

this test uses an analysis framework, called ArrayUDF [9],

to perform convolution computing on a large 2D array. Ar-

rayUDF accesses the array in chunks. ARCHIE prefetches

the chunks from original multi-dimensional array and then

stores each chunk as an individual binary file. In the original

array structure in HDF5, rows of a multi-dimensional chunk

tend to be scattered in different locations of storage devices.

In contrast, ARCHIE stores all these scattered rows into

a single binary file. Data analysis can read the whole

chunk as a contiguous one increasing locality. This improved

locality achieves ≈8X performance over Lustre and ≈7X

over DataWarp. These test results show that ARCHIE can

improve the I/O performance of data analysis applications

on both disk- and SSD-based file systems.

• Overhead of querying chunks. ARCHIE allows applica-

tions to query cached chunks in the SSD space. We evalu-

ated the overhead of the three base query cases mentioned

earlier and report the execution time in Fig. 8b. When a

query accesses the exactly matched chunks, the overhead

for ARCHIE is small, i.e., less than 0.1 seconds. For the

partially matched cache chunks, the overhead of ARCHIE is

higher. Because partially matched chunks in ARCHIE need

to go through all the cached chunks once but the exactly

matched cache only checks the desired data chunks. For

the “multi-matched”-case, where a few cached chunks are

needed, ARCHIE needs to go though all the cached chunks

multiple times. Therefore, the overhead increases again. For

the first read of application running, it is usually a miss

in ARCHIE and therefore it does not involve any metadata

checking overhead.

• Fault tolerance. To test the fault tolerance of ARCHIE,

we manually injected a forced termination to ARCHIE by

adding an exit(-1) function in an arbitrary location.

In Fig. 8c, we show the performance of running the data

8X

7X

0

5

10

15

20

25

30

Lustre(Disk) DataWarp(SSD)

T
im

e
 (

s)

Non-Contiguous(HDF5)

Contiguous(ARCHIE)

(a) Non-contiguous vs. contiguous read.

0.01

0.1

1

10

Read #1 Read #2 Read #3 Read #4

T
im

e
 (

s)

Exactly-Matched Partially-Matched Multi-Matched

(b) Overhead of querying cached chunks.

58 57

0

20

40

60

ARCHIE w/ Failures ARCHIE w/o Failures

T
im

e
 (

s)

End-to-End Time of Analysis App

(c) Restart ARCHIE to resist error.

Fig. 8: Performance of ARCHIE with micro-benchmarks.

analysis program using ARCHIE with a forced failure and

without one. When ARCHIE terminates during runtime, it

can restart itself and continue previous operations recorded

in the journal log. Test results show that ARCHIE can suc-

cessfully restart itself and the failure and restart negligible

impact on the end-to-end time of the data analysis program.

• Comparing with Lustre and DataWarp. In Figure 9, we

compare the I/O performance of using Lustre and DataWarp

with that of ARCHIE to serve the read requests of the

convolution analysis program. For the test with Lustre, the

analysis program reads all data from the disk space. As

expected, it has the worst performance due to the slow

disk performance. DataWarp requires moving the entire

data files being read into the SSD-based burst buffer and

then the application’s reading from the SSDs. However, the

application’s reads can only start after all the files are moved

to SSDs. The read time from SSDs, which are faster than

disks, is smaller than that from Lustre. In total, i.e., bringing

data from Lustre and then reading from the burst buffer, the

DataWarp case is 1.5× faster than Lustre For ARCHIE,

the first read is slightly costlier than reading data directly

from Lustre, as ARCHIE has to observe data accesses and

inform the application to read data directly from the disks.

The following reads are much faster than both the Lustre

and Datawarp cases because the application can read the

prefetched data by ARCHIE. The I/O time is further reduced

by converting non-contiguous I/O requests into contiguous

ones. We have tested using the disks as a cache for ARCHIE,

and the overall improvement of contiguous accesses for the

four read requests is 2.6× over accessing data directly from

Lustre. Using the SSD burst buffer, ARCHIE achieves 3.3×
overall performance benefit.

B. Evaluation with Real-world Scientific Applications

We describe performance evaluation of using ARCHIE in

supporting three real-world data analysis tasks on a hierarchi-

cal storage system. These data analysis tasks are implemented

in C++ and ARCHIE provides a transparent method through

HDF5 to accelerate their I/O operations. We use Lustre and

DataWarp for comparing I/O performance.

Convolution analysis of a climate dataset. As mentioned

in Section II-B, convolutional neural network (CNN)-based

analysis on CAM5 data is used to detect extreme weather

1.5X

2.6X

3.3X

0

20

40

60

80

100

Lustre(Disk) DataWarp(Disk+SSD) ARCHIE(Disk) ARCHIE(Disk+SSD)
T

im
e

(s
)

Stage (only for DataWarp) Read #1 Read #2 Read #3 Read #4

Fig. 9: Comparison of Lustre, DataWarp, and ARCHIE in

serving data read for the convolution analysis program.

1.7X

2.6X
3.1X

0

0.5

1

1.5

2

Lustre(Disk) DataWarp(Disk+SSD) ARCHIE(Disk) ARCHIE(Disk+SSD)

T
im

e
(s

)

Stage (only for DataWarp) Read #1 Read #2 Read #3 Read #4

Fig. 10: Evaluation of ARCHIE with CAM5 dataset

events [21]. In our evaluation of ARCHIE, we focus on the

most time-consuming step, i.e., convolution computing, in

CNNs. The CAM5 dataset used in this test is a 3D array with

size [31, 768, 1152], where 768 and 1182 are the latitude and

the longitude dimensions, respectively, and 31 is the number of

height levels from the earth into the atmosphere. The filter size

for the convolution is [4, 4]. The chunk size is [31, 768, 32],

resulting in a total of 36 chunks. The analysis application runs

with 9 MPI processes. We run ARCHIE runs with another 9

processes. In this configuration, there are four batches of reads

and each batch accesses 9 chunks. We present the read time

of the analysis application in Fig. 10. Reading all the data

from the disks, i.e., Lustre, gives the worst performance, as

expected. Using DataWarp to move the data from Lustre to the

burst buffer reduces the time by 1.7X for reading data but it

contains initial overhead in staging the data in the burst buffer.

Using the ARCHIE cache on both the disks and on the SSDs

reduces the time for reading data. The advantage of ARCHIE

comes from converting non-contiguous reads into contiguous

reads. ARCHIE can also prefetch data to be accessed in

future into the burst buffer as chunks and achieves the best

performance. Overall, for the CNN use case, ARCHIE is 3.1×
faster than Lustre and 1.8× faster than DataWarp.

0.9X

1.8X

2.7X

0

1

2

3

4

5

Lustre(Disk) DataWarp(Disk+SSD) ARCHIE(Disk) ARCHIE(Disk+SSD)

T
im

e
(s

)

Stage (only for DataWarp) Read #1 Read #2 Read #3 Read #4

Fig. 11: Evaluation of ARCHIE with plasma physics data

Gradient computation of plasma physics dataset. In

this test, we used a 3D magnetic field data generated by

a VPIC simulation [3]. The data is a 3D array with size

as [2000, 2000, 800]. The data analysis operation is gradient

computing, which is defined in Eq. 2. The chunk size for

parallel array processing is [250, 250, 100], giving a total of

512 chunks. Our tests use 128 processes to run the analysis

program and use only 64 processes to run ARCHIE. In this

test, we have a ghost zone with a size of [1, 1, 1]. We present

the read time of this analysis in Fig. 11. The performance

comparison have the same pattern as the that of convolution

on CAM5 data. Overall, ARCHIE is 2.7× faster than Lustre

and 2.4× faster than DataWarp.

0.8X

3.4X

5.8X

0

20

40

60

80

Lustre(Disk) DataWarp(Disk+SSD) ARCHIE(Disk) ARCHIE(Disk+SSD)

T
im

e
 (

s)

Stage (only for DataWarp) Read #1 Read #2

Read #3 Read #4 Read #5

Read #6 Read #7 Read #8

Fig. 12: Evaluation of ARCHIE with combustion (S3D) data

Vorticity computation on combustion data. S3D simu-

lation code captures key turbulence-chemistry interactions in

a combustion engine [5]. An attribute to study the turbulent

motion is vorticity, which defines the local spinning motion

for specific location. Given the z component of the vorticity

at a point (x, y), the vorticity analysis access four neighbors

for each point at (x + 1, y), (x − 1, y), (x, y − 1) and

(x, y + 1), as defined in [9]. Our tests use a 3D array with

size [1100, 1080, 1408]. The chunk size is [110, 108, 176] and

the ghost zone size is [1, 1, 1], giving 800 chunks. We use

100 processes to run analysis programs and 50 processes to

run ARCHIE. The read performance comparison is shown

in Fig. 12. The analysis program reads all 800 chunks in

8 batches. ARCHIE outperforms Lustre by 5.8× and is 7×
better than DataWarp. In this case, DataWarp performs 1.2×
slower than Lustre.

In summary, our performance evaluation of three scientific

analysis kernels shows that ARCHIE accelerates data analysis

through its cache management and the prefetching function

by taking advantage of hierarchical storage system. The per-

formance benefit of ARCHIE primarily depends on the data

size, the number of non-contiguous accesses, and the number

of iterations data is accessed.

VI. RELATED WORK

Existing work on cache management can be classified into

three categories: single-node cache management, distributed

cache management, and cache management on the hierarchical

storage. Early efforts, such as LRU, LFU, FIFO, CLOCK [24],

were primarily dedicated to single-node cache management.

These algorithms, as well as their ramifications [18], [20] have

been used for cache management on various devices, such as

disk cache on DRAM and on SSDs. These algorithms also

serve as the building blocks for distributed and hierarchical

cache management.

Numerous distributed caching systems have been developed

to tackle the cloud computing I/O workloads, such as Mem-

cached [19]. These caching systems typically expose to their

upstream applications key-value based interfaces, and allow

users to quickly retrieve the data of interests based on their

keys. Different from these work, ARCHIE is designed to

handle the HPC I/O workloads, in which data are typically

formatted as multi-dimensional arrays.

Recently, SSD-based burst buffers have been widely de-

ployed on supercomputers to provide temporary caching ser-

vice for HPC I/O workloads. A large body of burst buffer

management software is designed to move data only between

burst buffer and applications [15], [31], [26], [28], [30]. On

the other hand, burst buffer software such as DataWarp [6],

DDN IME [7], IBM Spectrum scale [12], and Data Elevator [8]

support transparent caching feature that redirects writes to the

PFS to burst buffer transparently, and asynchronously flushes

data to the PFS. However, this feature is mainly designed for

accelerating bursty writes. In order to provide read caching,

users have to manually populate data into burst buffer. All of

these systems cache data in the form of flat binary files, with-

out considering their multi-dimensional data structure. Recent

works such as Hermes [13] and UniviStor [27] provides multi-

tiered I/O buffering system for flat file. Different from these

work, ARCHIE provides a multidimensional array semantic-

aware caching and prefetching that allows users to utilize the

hierarchical storage system.

A few recently proposed cache management systems have

the prefetching feature. Eley [33] and [34] prefetches the input

data of applications into SSD to reduce the latency of reading

data inputs. Byna [2] and Tang [24], [23] propose prefetching

algorithms that fetch data based on the historical access

patterns of flat files. In contrast, ARCHIE works efficiently

on multi-dimensional arrays to accelerate read operations of

analysis applications using hierarchical storage systems.

VII. CONCLUSIONS

Scientific data analysis applications often operate on mas-

sive amounts of data. Retrieving data from disk-based file

systems often performs poorly due to the slow mechanical

components of the hard disk drives. Augmenting the disk-

based storage layer with a multiple layers of non-volatile stor-

age has been considered a cost-effective solution to this prob-

lem. However, software solutions to integrate the hierarchical

storage system for efficient data retrieval is either unavailable,

or needs significant manual involvement. To address this issue,

we have proposed ARCHIE to provide an efficient caching and

prefetching functionality for hierarchical storage systems. We

introduce optimizations such as prefetching data from multi-

dimensional arrays that are common data structures in scien-

tific data. Our performance evaluation with micro-benchmarks

and with real scientific data analysis operations demonstrate

that ARCHIE improves I/O performance significantly. In the

case of vorticity computation of combustion data, ARCHIE

outperforms Lustre and DataWarp by more than ≈5×. We plan

to design more generic and advanced prediction algorithms for

ARCHIE to improve prefetching accuracy further.

ACKNOWLEDGMENT

This effort was supported by the U.S. Department of Energy

(DOE), Office of Science, Office of Advanced Scientific Com-

puting Research under contract number DE-AC02-05CH11231

(program manager Dr. Lucy Nowell). This research used re-

sources of the National Energy Research Scientific Computing

Center (NERSC), a DOE Office of Science user facility.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, et al. TensorFlow: A System
for Large-scale Machine Learning. In OSDI, 2016.

[2] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp. Parallel I/O
prefetching using MPI file caching and I/O signatures. In SC 2008.

[3] S. Byna, J. Chou, O. Rübel, Prabhat, H. Karimabadi, W. S. Daughton,
V. Roytershteyn, E. W. Bethel, M. Howison, K.-J. Hsu, K.-W. Lin,
A. Shoshani, A. Uselton, and K. Wu. Parallel I/O, Analysis, and
Visualization of a Trillion Particle Simulation. In SC ’12.

[4] M. Chaarawi and Q. Koziol. HDF5 Virtual Object Layer. Tech-
nical report, Available: https://confluence.hdfgroup.uiuc.edu/display-
/VOL/Virtual+Object+Layer, 2011.

[5] J. H. Chen, A. Choudhary, B. de Supinski, and et al. Terascale
Direct Numerical Simulations of Turbulent Combustion Using S3D.
Computational Science & Discovery, 2(1), 2009.

[6] Cray. DataWarp User Guide S-2558-5204. Technical report, Available:
http://docs.cray.com/books/S-2558-5204/S-2558-5204.pdf, 2016.

[7] DDN. DDN IME Web Page. http://www.ddn.com/products, 2014.

[8] B. Dong, S. Byna, K. Wu, H. Johansen, J. N. Johnson, and N. Keen.
Data Elevator: Low-Contention Data Movement in Hierarchical Storage
System. In HiPC, 2016.

[9] B. Dong, K. Wu, S. Byna, J. Liu, W. Zhao, and F. Rusu. ArrayUDF:
User-Defined Scientific Data Analysis on Arrays. In HPDC, 2017.

[10] D. Fellinger. The State of the Lustre File System and The Lustre
Development Ecosystem. Technical report, 2003.

[11] M. Howison, Q. Koziol, D. Knaak, J. Mainzer, and J. Shalf. Tuning
HDF5 for Lustre File Systems. In IASDS10, 2010.

[12] IBM. IBM Spectrum Scale. https://www.ibm.com/us-en/marketplace/
scale-out-file-and-object-storage, 2018.

[13] A. Kougkas, H. Devarajan, and X.-H. Sun. Hermes: A Heterogeneous-
aware Multi-tiered Distributed I/O Buffering System. In HPDC, 2018.

[14] A. Kumar, M. Boehm, and J. Yang. Data management in machine
learning: Challenges, techniques, and systems. In SIGMOD, 2017.

[15] N. Liu, J. Cope, P. H. Carns, C. D. Carothers, R. B. Ross, G. Grider,
A. Crume, and C. Maltzahn. On the role of burst buffers in leadership-
class storage systems. In MSST, 2012.

[16] Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, et al. Hello
ADIOS: The Challenges and Lessons of Developing Leadership Class
I/O Frameworks. Concurr. Comput. : Pract. Exper., 26(7):1453–1473,
May 2014.

[17] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan. Adaptable, Metadata
Rich IO Methods for Portable High Performance IO. In IPDPS, pages
1–10. IEEE, 2009.

[18] N. Megiddo and D. S. Modha. ARC: A Self-Tuning, Low Overhead
Replacement Cache. In FAST, 2003.

[19] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, et al. Scaling Memcache
at Facebook. In NSDI, 2013.

[20] E. J. O’neil, P. E. O’neil, and G. Weikum. The LRU-K page replacement
algorithm for database disk buffering. Acm Sigmod Record, 22(2):297–
306, 1993.

[21] E. Racah, C. Beckham, T. Maharaj, Prabhat, and C. J. Pal. Semi-
Supervised Detection of Extreme Weather Events in Large Climate
Datasets. CoRR, 2016.

[22] F. Schmuck and R. Haskin. GPFS: A Shared-disk File System for Large
Computing Clusters. In FAST’02, 2002.

[23] H. Tang, S. Byna, S. Harenberg, W. Zhang, X. Zou, et al. In situ
storage layout optimization for amr spatio-temporal read accesses. In
45th International Conference on Parallel Processing (ICPP). IEEE,
2016.

[24] H. Tang, X. Zou, J. Jenkins, D. A. Boyuka, S. Ranshous, D. Kimpe,
S. Klasky, and N. F. Samatova. Improving read performance with online
access pattern analysis and prefetching. In Euro-Par, 2014.

[25] The HDF Group. HDF5 user guide. http://hdf.ncsa.uiuc.edu/HDF5/doc/
H5.user.html, 2010.

[26] D. Tiwari, S. Boboila, S. S. Vazhkudai, Y. Kim, X. Ma, P. J. Desnoyers,
and Y. Solihin. Active Flash: Towards Energy-efficient, In-situ Data
Analytics on Extreme-scale Machines. In FAST’13, 2013.

[27] T. Wang, S. Byna, B. Dong, and H. Tang. UniviStor: Integrated
Hierarchical and Distributed Storage for HPC. In CLUSTER, 2015.

[28] T. Wang, K. Mohror, A. Moody, K. Sato, and W. Yu. An Ephemeral
Burst-buffer File System for Scientific Applications. In SC, 2016.

[29] T. Wang, K. Mohror, A. Moody, K. Sato, and W. Yu. An Ephemeral
Burst-Buffer File System for Scientific Applications. In SC, pages 807–
818. IEEE, 2016.

[30] T. Wang, A. Moody, Y. Zhu, K. Mohror, K. Sato, T. Islam, and W. Yu.
MetaKV: A Key-Value Store for Metadata Management of Distributed
Burst Buffers. In IPDPS, pages 1174–1183. IEEE, 2017.

[31] T. Wang, S. Oral, Y. Wang, B. Settlemyer, S. Atchley, and W. Yu.
BurstMem: A High-Performance Burst Buffer System for Scientific
Applications. In Big Data, 2014.

[32] M. Wehner, Prabhat, K. A. Reed, D. Stone, W. D. Collins, and
J. Bacmeister. Resolution Dependence of Future Tropical Cyclone
Projections of CAM5.1 in the U.S. CLIVAR Hurricane Working Group
Idealized Configurations. Journal of Climate, 28(10):3905–3925, 2015.

[33] O. Yildiz, A. C. Zhou, and S. Ibrahim. Eley: On the Effectiveness of
Burst Buffers for Big Data Processing in HPC Systems. In CLUSTER,
2017.

[34] W. Zhang, H. Tang, X. Zou, S. Harenberg, Q. Liu, S. Klasky, and
N. F. Samatova. Exploring memory hierarchy to improve scientific
data read performance. In Cluster Computing (CLUSTER), 2015 IEEE

International Conference on, pages 66–69, 2015.

