arXiv:1209.5208v2 [cs.CR] 12 Feb 2013

Approximate Two-Party Privacy-Preserving
String Matching with Linear Complexity

Martin Beck! and Florian Kerschbaum?

! Technische Universitit Dresden
Institute of Systems Architecture
Dresden, Germany
martin.beckl@tu-dresden.de
2 SAP Research
Karlsruhe, Germany
florian.kerschbaum@sap.com

Abstract. Consider two parties who want to compare their strings, e.g.,
genomes, but do not want to reveal them to each other. We present a
system for privacy-preserving matching of strings, which differs from ex-
isting systems by providing a deterministic approximation instead of an
exact distance. It is efficient (linear complexity), non-interactive and does
not involve a third party which makes it particularly suitable for cloud
computing. We extend our protocol, such that it only reveals whether
there is a match and not the exact distance. Further an implementation of
the system is evaluated and compared against current privacy-preserving
string matching algorithms.

Keywords: privacy-preserving string comparison, approximate string match-
ing, homomorphic encryption, variable length grams, linear complexity

1 Introduction

As technology for sequencing the human genome is developing at a fast pace
and the number of sequenced genomes is rapidly growing, the need to process
this highly personalized information in a privacy preserving way also increases.
Several studies demonstrate how genomes can be linked to surnames [6] or even
reveal the full identity [9, 19] of the individual. Many algorithms were presented
which should protect the genomic information while it is being processed across
untrusted parties.

These protocols however are either interactive, match only exact strings or
require a third party to be involved. Our protocol is non-interactive, implements
approximate string matching and does not require any third party. Our protocol
is efficient and has linear complexity in computation and communication. It also
has better resistance to an iterated differential attack proposed by Goodrich [7],
that exploits the information gained by knowing the exact string distance (as
proposed in other protocols), since it only reveals whether there is a match.

Our contributions:

— A new efficient privacy-preserving, non-interactive, two-party string match-
ing protocol

— An analysis of our scheme in a genome matching setting using full mitochon-
drial DNA sequences

— We can privacy-preservingly, approximately compare real-world genomes in
under 5 minutes on commodity hardware.

The remainder of this paper is structured as follows. Section 2 gives an
overview over basic concepts and related work. In Section 3 the design will be
presented and followed by Section 4, which gives a security analysis of our sys-
tem. Section 5 describes some implementation details and results in comparison
to related systems. Section 6 concludes this work and points out further research
directions.

2 Related Work

Research into string matching algorithms is defined by a long list of proposed
algorithms over many years and for many different problems. String matching
itself is closely related to the distance between strings, which can be measured
by a large variety of means, ranging from generic and simple solutions like the
Hamming distance [11] to more powerful algorithms like Smith-Waterman [24]
solving local sequence alignment problems. A survey about current developments
can be found in [18].

2.1 Approximate String Matching

As several tasks, for example checking whether a user profile is within a remote
database, do not require the exact distance between two strings, data items or
other entities, the notion of approximate matching was introduced to define levels
of similarity, which in the most extreme way only output a single bit of informa-
tion: if the input strings are similar or not. Due to these properties this class is
called approximate string matching algorithms, which is not to be confused with
the approximate string matching of [10], where the term “approximate” referred
to the property of two strings being close in distance.

2.2 Privacy-Preserving String Matching

Two of the applications for string comparison algorithms which are often used
for motivation are calculating the distance of genome or protein sequences in
bioinformatics and checking if a person is present in a remote database. As these
topics by design deal with very personal information, which must not be given
to third parties, the necessity to build privacy-preserving matching algorithms
arose. As these were not sufficient to protect privacy due to information leakage

given by the exact distance results, just obtained in a privacy preserving manner,
combinations of the above mentioned approximation and the privacy-preserving
computational steps were developed. A survey of recently published algorithms
together with benchmark results can be found in [2].

One of the more recent protocols introduced by Schnell et al. [23] uses Bloom
filters to represent strings and transforms the notion of distances between strings
into distances between similar Bloom filters. We will also use Bloom filters as
set representation for our genomic strings and build the matching protocol upon
them. However, we use a two-party technique for comparing the Bloom filters
and therefore do not need a trusted third party for comparing the strings. Fur-
thermore, our protocol can be size-hiding, by choosing appropriate Bloom filter
sizes, that are not proportional to the string length.

Alternatively, techniques from private set intersection (PSI) [13] could be
used. However, revealing the content of the intersection is not appropriate for
a privacy preserving protocol. Based on these security concerns, protocols for
private set intersection cardinality (PSI-CA) were developed [5]. Yet, these so-
lutions still reveal the intersection cardinality, whereas we only reveal whether
there is a match.

Privacy-preserving protocols designed for approximate string comparisons
can also be found in literature [25, 15], but rely on interactive techniques like
oblivious transfers or secure computation. This excludes these protocols from off-
line execution, e.g., in the cloud. Further [3] presents a more efficient solution,
but which only matches exact strings, whereas we compare approximate strings.

3 Protocol Design

Let the client (Alice) have a string, e.g. a genome, and the server have a string.
After the execution of our protocol Alice will have learned whether the two
strings are approximately close, but not Bob’s string nor the approximate dis-
tance to Bob’s string. Bob will learn nothing.

First the transformation into grams of variable length and their representa-
tion through a Bloom filter is specified, upon which the generic string match-
ing algorithm is given. Following this generic matching algorithm a privacy-
preserving version is constructed and then enhanced to only reveal whether there
is a match.

3.1 Bloom Filter Representation

A Bloom filter is a data structure fixed in size to which element representations
can be added and on which member tests can be performed. Checking for an
element is probabilistic due to the design of the filter.

Let b be an array of bits of length n and b[i] the ith value within the array
with ¢ € [1,n]. Further let hy()...hx() be k hash functions, with uniformly
distributed output in [1, n]. For initialization set Vi € [1,n] : b[i] = 0.

To add an element e to the filter, all £ hash functions are evaluated on e
and the results are taken as indexes for b to set these positions to one. Set
Vje[l,k]:blh;(e)] =1.

A member test for element ¢’ is performed by also evaluating all k¥ hash func-
tions and checking the referenced positions in b. If at least one of the positions
b[h;(€")] is set to zero, the element has not been added to the Bloom filter before.
If all bits are set to one, however, one cannot be sure if the exact element was
inserted, or one or more different elements had these positions set to one.

Using these operations a set is represented by adding all set elements to the
filter. Depending on the filter parameters, the probability that a false-positive
member test occurs, i.e. that an element is falsely identified as being added to
the filter before, is given by:

p= (1(1i)>k 1)

Where (1 — %)kl is the probability that a single bit is still zero after [elements
were added to the filter of length n using k hash functions. To calculate the
required length of a Bloom filter n given the false-positive rate and the number
of elements to be inserted [, the equation (1) can be transposed to:

-1

n =

3.2 String Matching Using Bloom Filters

A typical string comparison algorithm is the Levenshtein distance [16], which
is often also referred to as edit distance and describes the minimum number of
insertions, deletions and substitutions needed to transform one string .S; into
another S;. The result is a distance measure d, which can easily be converted
into a similarity score s between zero and one by: s =1 — ﬁ

dmaz, 1-. the maximum distance between two strings, equals the length of
the longer string and can thus be replaced by d,q = max(]S1],]S2|) regarding
the Levenshtein distance.

4
max(|S1, [Sa|)

As a Bloom filter is a set representation, the input strings first need to be
converted into sets. This has to be done in a way, that a distance measure can
later be formulated upon the constructed set which, loosely spoken, correlates
with the Levenshtein distance measure.

The sets are build from ¢-grams, which are substrings of length ¢ from input
string S. Let n = |\S| be the number of characters in S and s; the g-gram starting

S =

at position ¢ with ¢ € [1,n — ¢+ 1]. As a result n — ¢ + 1 ¢-grams are generated
out of S using a sliding window for all possible ¢. If this set would be used to
represent a string and measure similarity upon, the positional information of
the substrings would not be included, which is important to build the similarity
measure. To keep this information positional g-grams are used, which are pairs
(4, 8;) with 7 being the position in S and s; the actual ¢-gram starting at that
position.

Further as characters at the beginning and at the end of S are underrepre-
sented over all g-grams, the input string S is extended by ¢ —1 identical symbols,
which are not part of the alphabet of S at the beginning and end of S. Gravano
et al. [8] introduced this definition of positional ¢-grams on extended strings.
Without the extension we would only see the first character in the first g-gram,
whereas in the middle of the string each character is found within ¢ ¢-grams.

These positional grams are not used directly, but a technique called VGRAM
[17] is employed to generate grams with variable lengths within a previously
defined range [¢min, @maz]- To choose which length to select at what position,
a gram dictionary is build prior to running the string comparison algorithm.
As source to build this dictionary, the Human Mitochondrial Genome Database
[14] is used. Afterwards the generated dictionary is published and available to
all participants described in this string matching algorithm.

Both parties use the VGRAM algorithm to build a set of variable length
grams based on the published dictionary, following the description in [17]. The
number of variable length grams generated for a string S is depicted by n,.

As these sets cannot be used directly to compare strings in a privacy-preserving
way, which would reveal the original data, we represent them using Bloom fil-
ters. A single Bloom filter is used for all grams generated by a single string S.
Papapetrou et al. [22] conclude, that the optimal number of hash functions to
do cardinality estimation using Bloom filters is 1. Based on this we fix k = 1 and
only use a single hash function to build and query Bloom filters throughout the
rest of the paper. The length [of the Bloom filter and the used hash function
h() is also fixed and set to be equal across all participants.

Determining an appropriate value for [can be done using the formula (2) with
the simplification £ = 1 as introduced above. This results in [being calculated
as:

P (3)

(1—p)" —1

Under these constraints, that k, I and h() are identical, set union U and
intersection N can also be performed upon Bloom filters By, By by applying the
binary OR or AND operator.

Li et al. [17] describe the effect of a single edit operation on the set of variable
length grams and propose an algorithm to calculate the maximum number of
affected grams by applying a number of edit operations upon an initial string.
Based on this number a lower bound on the number of common grams for two
strings which are within a certain edit distance can be calculated.

As this lower bound calculation on the set intersection cardinality uses the
input sequences to generate a baseline for the lower bound, it cannot be applied
in our privacy-preserving scheme directly. To be independent of such a baseline,
we do not use the absolute set intersection cardinality directly, but the differ-
ence between the union cardinality and the intersection cardinality. This results
in an approximate distance measure, which follows the explanation for the up-
per bound on the Hamming distance between bit vectors in [17]. Our distance
measure equals the Hamming distance between the Bloom filter bit vectors.

d =|B1UBy| — |B;1 N By|

Thus having d = 0 equals to having identical strings, as the set union and
intersection sizes are identical.

3.3 Encrypting the Bloom Filter

We constructed string representations using Bloom filters in Section 3.2 and
used them to define an appropriate distance measure. However the Bloom filters
themselves cannot be exchanged between the participants directly, as they can
be used to possibly reconstruct the original strings by guessing substrings and
checking if they were added to the filter. For preserving privacy of the filter
content, an additively homomorphic cryptosystem is used.

A homomorphic cryptosystem uses at least one homomorphic property to
evaluate an operation & on the ciphertext, which translates into applying the
equivalent operation + on the plaintext. We will use the additively homomorphic
system introduced by Naccache and Stern [20], which is also probabilistic. Alice
generates a key pair and shares the public key with Bob. Let E(z,r) denote the
encryption of a value z using a fresh random value r for each encryption, this
additively homomorphic system has the following properties:

E(z,m)E(y,s) = E(z +y,rs)
E(z,r)Y = E(zy,rY)

Further let E(x,7)~! denote the calculation of the multiplicative inverse upon
E(x,r), found through executing the extended euclidean algorithm, which is by
the homomorphism definition the encryption of the additively inverse plaintext.
This results in E(x,r)"! = E(—x,r) and can be used to calculate a difference
between two encrypted values.

To multiply an encrypted plaintext with a negative factor —z, first the mul-
tiplicative inverse of the encrypted value is calculated and then multiplied using
the positive factor. E(z,7)™* = E(z,r)"'* = E(—x,r)* = E(—xzz,7%). To in-
crease readability, E(x) = E(x,r) is used, which also always uses a fresh r.

An encryption of a Bloom filter B with length [is constructed by encrypting
every bit in B separately, storing the resulting ! values in a new array C' with
equal length.

Vi € [1,1], fresh r: C[i] = E(BJi],r)

This encryption is not to be confused with “encrypted Bloom filter”, which
were presented in [4]. Encryption of the Bloom filter is only performed by Alice,
who wants to compare a string privately to one that Bob holds. Bob also slices
his string down into variable length grams, which are then added to a new Bloom
filter using the previously agreed upon parameters k, [and h().

Alice sends the encryption of her Bloom filter to Bob, together with her public
key. Recall that the Bloom filters just contained zeros and ones. So calculating
the cardinality of a filter, denoted by |B|, cannot just be done by counting all
bits set to one, but also by calculating the sum over all values |B| = Zi’:1 BJi].

Bob can use this property to calculate the encrypted sum over all values in
the encrypted Bloom filter and thus the encrypted cardinality.

l l

E(|B,r)=E(}_ Blil.r) = [[Cli]

i=1 =1

However as Bob is not interested in the encrypted cardinality of Alice’s filter
|Bal, he only adds up values at those positions, that are set to one on his own
Bloom filter Bp. This is equivalent to building the intersection using binary
AND and calculating the resulting cardinality.

E(BanBs)= [[cli
i,Bpli]=1

Further Alice encrypts the cardinality of her Bloom filter E(|B4]|) and sends
it to Bob, who also encrypts the cardinality of his own Bloom filter E(|Bg]|).
Using these values, the union cardinality is calculated as follows:

|BaUBg| = |BaNBgp|+ (|Bal — [BaN Bgl|) + (|Bp| — |BaN Bgl)
= |BA| + |BB‘ — |BA ﬂBB|

E(|BaU Bg|) = E(|Bal) - E(|Bp|) - E(|BaN Bg|)™" (4)

This way the encrypted distance E(d) for the measure presented in Sec-
tion 3.2 is calculated as such:

E(d) = E(|[BAUBg|) - E(|BAN Bg|)~! (5)
= E(|Bal) - E(|Bgl) - E(|Ba N Bp|) > (6)

3.4 Privacy-Preserving Similarity

The calculated approximate distance value E(d) between both compared strings
S4 and Sp in Section 3.3, could be returned to Alice for decryption, for her
to learn the actual computed value. This would however result in increased
sensitivity to the Mastermind attack described in [7]. To circumvent this attack,
we restrict the information Alice gains from executing this protocol. Instead of
learning the exact result of the comparison, the result is manipulated to give
Alice only the information whether the distance is smaller than a previously
defined threshold ¢,,44-

Recall that the calculated distance value equals the Hamming distance be-
tween the Bloom filters and that [17] describes how to calculate an upper bound
for the Hamming distance in equation (4). The calculation however involves the
number of affected grams for both input strings S4 and Sp. As Sp is not avail-
able to Alice, she uses the revised Cambridge Reference Sequence (rCRS) [1]
Srcrs as a reference to replace Sp in the calculation of the upper Hamming dis-
tance bound. This replacement is a good approximation for small edit distances.
Following [17] the upper bound for a maximum edit distance e;,,, is calculated
as tmar = NAG(S4, €maz) + NAG(S,cRS, €maz), where NAG(S, e) describes
the maximum number of affected grams for e edit operations on string S. Fur-
ther, as NAG(S,cRrs, €maz) 18 very close to NAG(SB, €mar) and thus used as
an replacement. NAG(S4, €maz) can also be replaced for the same reason. This
has the effect, that the chosen t,,,, does not depend on the input sequence S4.

Due to the probabilistic nature of the Bloom filter, elements are mapped to
the same positions with a probability p as described in Section 3.1. As the Bloom
filter cardinality | B4| is therefore on average smaller than the number of variable
grams for S4 by a factor p, the upper bound is corrected to an approximated
upper bound.

tma:v =2 NAG(STCRSa ema:v)) : (1 _p) (7)
The protocol for calculating the return values for Alice by Bob is as follows:

— Calculate encrypted inverse thresholds V¢; € [0, tmaz] : E(—t;) = E(t;) !

— Calculate encrypted threshold differences for all inverse thresholds
E(D;)=E(d—-t;)=E()-E(-t)

— Multiply all differences with random values. E(rD;) = E(D;)" for fresh r
drawn uniformly from the plaintext space of the used cryptographic system.

After the first two steps Bob has ¢,,,, + 1 values, expressing the differences
between the incremented thresholds and the actual distance. If the calculated
distance d is within the defined threshold range [0, ¢4z, then there is one single
element, which is the encryption of zero due to equal threshold and distance
values.

Performing the last step randomizes all values through multiplication with a
random number, except the one encrypting a zero. All these t,,4, + 1 encrypted

values are then shuffled randomly and sent to Alice, who decrypts and checks
them against zero. In case a zero is found, she learns that the Bloom filter
intersection cardinality was within the specified threshold and thus the compared
strings have an edit distance equal or less than the specified maximum edit
distance e,,q, used to calculate ¢,,,, in Section 3.2.

4 Security Analysis

Our protocol is secure under the semi-honest, also called honest-but-curious
model and under the assumption the integrated crypto system builds upon. In
our case this is based on the higher residuosity problem used in the Naccache-
Stern cryptosystem. Several other additive homomorphic cryptosystems like
Paillier [21] can easily be used instead of the currently employed system, bringing
possibly another assumption like one based on the decisional composite residu-
osity problem as basis.

The encryption of the used cryptosystem must however be probabilistic, such
that similar plaintexts are mapped to different ciphertexts at random. This is
true for our employed Naccache-Stern system and the above mentioned Paillier
cryptosystem. This property is also called semantic security and corresponds to
indistinguishability under chosen plaintext attack (IND-CPA).

In the first part of our protocol, Alice translates her input string into variable
length grams, generates a Bloom filter representation and encrypts it using a
public key cryptosystem. As she is not using any information from Bob, she
cannot gain any insight into Bob’s input.

The second part involves Bob working on the encrypted Bloom filter from
Alice and her encrypted Bloom filter cardinality. As all values are encrypted
using an asymmetric, probabilistic cryptosystem, for which only Alice has the
private decryption key, Bob cannot decide if an encrypted value represents a
zero, a one or any other value, which directly follows the security analysis of
the underlying hardness assumption. The number of elements received does not
depend on Alice input, as only public information is used to infer the Bloom
filter length, as introduced in Section 3.4. Further Bob sums up elements from
Alice’s encrypted Bloom filter, based on his Bloom filter. The result is then
subtracted several times from different threshold values and multiplied with
random numbers, chosen uniformly from within the domain of plaintexts of the
underlying cryptosystem. All results are shuffled at random and transmitted
back to Alice. Bob gained no information in this phase about Alice’s input.

As a last step Alice decrypts all results received from Bob and checks if they
contain a zero. If a zero is found, she learns that the Hamming distance between
the Bloom filters was below a predefined threshold t,,,,. There can be at most
one zero. If no zero was found, the threshold was lower than the Hamming
distance. From the decrypted non-zero results, she cannot learn anything, as
these numbers are uniformly distributed due to the multiplication with uniform
random numbers drawn from the plaintext domain modulo the the plaintext
domain modulus. The index of the zero element, if there was one, gives no

information to Alice, as the return values were randomly shuffled by Bob. The
number of returned elements also holds no further information, as there are
always t,nq: + 1 results.

The only information Alice learns about the input of Bob is, if the threshold
was above the Bloom filter Hamming distance or not.

5 Evaluation

For the experiments a Linux Laptop with an Intel Core2 Duo T9600 running
at 2.8 GHz was used. The code is written in Java, using the Bouncy Castle
library®. The first tests evaluate the relation between the Levenshtein distance
and the measure introduced in section 3.2. Further the runtime performance of
the algorithm is evaluated for string lengths, which were also used for comparing
other privacy-preserving string matching protocols. All code implementing the
techniques in this paper and producing the test results can be found under
http://dud.inf.tu-dresden.de/~beck/bloomEncryption.tar.bz2.

5.1 Distance Measure

As the similarity metric is based on the Levenshtein distance as described in [17],
we measure the relation between the edit distance and the Bloom filter Hamming
distance as our proposed metric. The parameters ¢ = 2 and gmaqe = 40 are
used as [17] states that the variable length gram algorithm can start with a
low gmin and a large gmq. to find appropriate values for these parameters after
pruning the built Trie.

To run the tests the Bloom filters are set up to use a single hash function, in
our case “SHA1” modulo the size of the filter. The used strings contain roughly
n = 16,569 characters, which means that about the same number of variable
grams have to be inserted into each Bloom filter.

The probability that a false-positive test occurs after the n elements are
added to the filter is set to p = 0.1, which in turn generates a Bloom filter of
size 157261 bits. We used 10000 runs and for each 100 applied a fixed number
of edit operations. The original string and the altered string are then compared
using our distance measure. The resulting value is the difference between the
union cardinality and the intersection cardinality of both Bloom filters B; and
Bs. This represents the total number of unique elements for both parties, or the
Hamming distance between both Bloom filters. Following Lemma 1 in [17] this
directly correlates with the Levenshtein distance between the strings.

Figure 5.1 shows a Boxplot for every Levenshtein distance and the according
100 runs tested with our approximate distance measure. As can be seen from
the figure, our distance value approximates small Levenshtein distances very
good, with a narrow range of possible values and a small variance. The Pearson
correlation between the Levenshtein distances and the approximated distances
is ¢, = 0.997 for up to 100 edit operations.

3 http://www.bouncycastle.org/

http://dud.inf.tu-dresden.de/~beck/bloomEncryption.tar.bz2

Correlation of distance measure to edit distance

Hamming Distance
1000 2000 3000
|

ﬂf*’*#ﬂ

o
-
T I oI oo

1 8 16 26 36 46 56 66 76 86 96
Edit Distance

Fig. 1. Approximation of the Levenshtein distance by our distance measure

5.2 Protocol Execution Time

To evaluate the performance of our protocol, we ran 100 runs for each test. The
parameters were set to ¢min = 2, ¢maee = 40, p = 0.1 and an edit distances of up
to 10 operations.

The client runtime depends linearly on the length of the input sequence,
where the most time is spent on decrypting the results from the server and en-
crypting the Bloom filter prior to transmission. We can see a pretty high variance
on client runtimes, growing linearly with longer sequences, due to the unknown
number of results which are needed to be decrypted until a zero is found. If the
distance between both compared sequences is not within the predefined range
given by the threshold, the client always needs to decrypt all results, as no zero
will be found within the returned values.

—e— Maximum
—a— Mean

45 Mini !]
5 200 - —e— Minimum - — B
] - e
; —
E 100 - e e B
5 o _—
z - e
e
0 L ad -
| I I I I I I |
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Sequence length 10*
Fig. 2. Client runtimes
Server runtime depends linearly on the threshold value, whereas runtimes for

different sequence lengths are only increasing slightly. The measured values for
a constant threshold derived from a maximum edit distance of 10 and a variable

sequence length range between 8.54 seconds for sequences of length 200 and 9.01
seconds for full mitochondrial DNA sequences.

The amount of data that needs to be transferred between Alice and Bob is
shown in table 1 and grows linearly with the length of the Bloom filter for the
traffic from Alice to Bob and linearly with the size of the threshold range for the
traffic from Bob to Alice. For this test the threshold ¢, is set to the maximum
Hamming distance defined in Section 3.4 for a maximum edit distance of 10.

Sequence length Client to server Server to client

200 296 KB 123 KB
400 590 KB 123 KB
800 1169 KB 123 KB
1600 2337 KB 123 KB
3200 4663 KB 123 KB
6400 9323 KB 123 KB
12800 18636 KB 123 KB

Table 1. Bandwidth used for transmission

Comparing these results to the ones given by Jha et al. [15] and Huang
et al. [12] in the evaluations of their state of the art protocols, we achieve an
increased performance starting with the smallest sequence lengths of 200 char-
acters. Due to the lower linear complexity of our protocol, comparisons of full
mitochondrial DNA sequences can be performed more efficiently. The referenced
protocols have computational complexity of O(n log n), O(n?) and O(n xm) for
input string lengths n and m.

6 Conclusion

We presented a novel, non-interactive approach for a privacy-preserving approxi-
mate string matching protocol, that achieves superior performance for real-world
sized genomes. An attacker will not even learn the exact distances or approxima-
tions, but only whether two compared strings are within a predefined distance
range.

Due to the computation having linear complexity in the used sequence length
and the communication having linear complexity in the range of allowed dis-
tances, respectively in the Bloom filter length, this protocol is very practical
and was tested for full mitochondrial sequences with 16500 characters in length
and a maximum edit distance of 10, which took about 286 seconds on the men-
tioned hardware to complete.

Further enhancements could go into using our protocol for database searches.

1]

Bibliography

S. Anderson, A. T. Bankier, B. G. Barrell, M. H. L. de Bruijn, A. R. Coulson,
J. Drouin, I. C. Eperon, D. P. Nierlich, B. A. Roe, F. Sanger, P. H. Schreier,
A. J. H. Smith, R. Staden, and I. G. Young. Sequence and organization of
the human mitochondrial genome. Nature, 290(5806):457-465, April 1981.
ISSN 0028-0836.

Tobias Bachteler and Rainer Schnell. An empirical comparison of ap-
proaches to approximate string matching in private record linkage. Pro-
ceedings of Statistics Canada, 2010.

Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo Gasti, and
Gene Tsudik. Countering GATTACA: efficient and secure testing of fully-
sequenced human genomes. In Proceedings of the 18th ACM conference
on Computer and communications security, CCS '11, pages 691-702, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0948-6.

Steven M. Bellovin, Steven M Bellovin, and William R Cheswick. Privacy-
Enhanced Searches Using Encrypted Bloom Filters, 2004.

Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. Fast and Pri-
vate Computation of Cardinality of Set Intersection and Union. Cryptology
ePrint Archive, Report 2011/141, pages 1-19, 2011.

Jane Gitschier. Inferential genotyping of Y chromosomes in Latter-Day
Saints founders and comparison to Utah samples in the HapMap project.
American journal of human genetics, 84(2):251-8, February 2009. ISSN
1537-6605.

Michael T. Goodrich. The Mastermind Attack on Genomic Data. In 2009
30th IEEE Symposium on Security and Privacy, pages 204-218. IEEE, May
2009. ISBN 978-0-7695-3633-0.

Luis Gravano, Panagiotis G. Ipeirotis, Hosagrahar Visvesvaraya Jagadish,
Nick Koudas, Shanmugauelayut Muthukrishnan, and Divesh Srivastava.
Approximate String Joins in a Database (Almost) for Free. Proceedings
of the 27th International Conference on Very Large Data Bases, pages 491—
500, September 2001.

M. Gymrek, A. L. McGuire, D. Golan, E. Halperin, and Y. Erlich. Identify-
ing Personal Genomes by Surname Inference. Science, 339(6117):321-324,
January 2013. ISSN 0036-8075.

Patrick A. V. Hall and Geoff R. Dowling. Approximate String Matching.
ACM Computing Surveys, 12(4):381-402, December 1980. ISSN 03600300.
Richard Wesley Hamming. Error-Detecting and Error-Correcting Codes.
Bell System Technical Journal, 29:147-160, 1950.

Yan Huang, David Evans, and Jonathan Katz. Faster secure two-party
computation using garbled circuits. USENIX Security Symposium, 2011.
Yan Huang, David Evans, and Jonathan Katz. Private Set Intersection: Are
Garbled Circuits Better than Custom Protocols? NDSS, 2012.

[14]

[15]

[16]

[17]

23]

[24]

[25]

Max Ingman and U Gyllensten. mtDB: Human Mitochondrial Genome
Database, a resource for population genetics and medical sciences. Nucleic
Acids Research, 34:749-751, 2006.

Somesh Jha, Louis Kruger, and Vitaly Shmatikov. Towards Practical Pri-
vacy for Genomic Computation. In 2008 IEEE Symposium on Security and
Privacy (sp 2008), pages 216-230. IEEE, May 2008. ISBN 978-0-7695-3168-
7.

Vladimir Levenshtein. Binary Codes Capable of Correcting Deletions, In-
sertions and Reversals. Soviet Physics Doklady, 10:707, 1966.

Chen Li, Bin Wang, and Xiaochun Yang. VGRAM: improving performance
of approximate queries on string collections using variable-length grams. In
Proceedings of the 33rd international conference on Very large data bases,
VLDB’07, pages 303-314, September 2007. ISBN 978-1-59593-649-3.

Heng Li and Nils Homer. A survey of sequence alignment algorithms
for next-generation sequencing. Briefings in bioinformatics, 11(5):473-83,
September 2010. ISSN 1477-4054.

Jeantine E Lunshof, Ruth Chadwick, Daniel B Vorhaus, and George M
Church. From genetic privacy to open consent. Nature reviews. Genetics,
9(5):406-11, May 2008. ISSN 1471-0064.

David Naccache and Jacques Stern. A new cryptosystem based on higher
residues. Proceedings of the 5th ACM conference on on computer and com-
munication security, pages 59-66, 1998.

Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. Advances in Cryptography - Eurocrypt 99, 1592:223—
238, 1999.

Odysseas Papapetrou, Wolf Siberski, and Wolfgang Nejdl. Cardinality es-
timation and dynamic length adaptation for Bloom filters. Distributed and
Parallel Databases, 28(2-3):119-156, September 2010. ISSN 0926-8782.
Rainer Schnell, Tobias Bachteler, and Jorg Reiher. Privacy-preserving
record linkage using Bloom filters. BMC medical informatics and decision
making, 9(1):41, January 2009. ISSN 1472-6947.

Temple F. Smith and Michael S. Waterman. Identification of common
molecular subsequences. Journal of molecular biology, 147(1):195-7, March
1981. ISSN 0022-2836.

Juan Ramén Troncoso-Pastoriza, Stefan Katzenbeisser, and Mehmet Celik.
Privacy preserving error resilient dna searching through oblivious automata.
In Proceedings of the 14th ACM conference on Computer and communica-
tions security - CCS 07, page 519, New York, New York, USA, October
2007. ACM Press. ISBN 9781595937032.

	Approximate Two-Party Privacy-Preserving String Matching with Linear Complexity

