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Abstract— Conventional methods used to analyze storage
workloads have been centered on relational database technol-
ogy combined with attributes-based classification algorithms.
This paper presents a novel analytic architecture, GraphLens,
for mining and analyzing real world storage traces. The design
of our GraphLens system embodies three unique features.
First, we model storage traces as heterogeneous trace graphs in
order to capture diverse spatial correlations and storage access
patterns using a unified analytic framework. Second, we employ
and develop an innovative graph clustering method to discover
interesting spatial access patterns. This enables us to better
characterize important hotspots of storage access and under-
stand hotspot movement patterns. Third, we design a unified
weighted similarity measure through an iterative learning and
dynamic weight refinement algorithm. With an optimal weight
assignment scheme, we can efficiently combine the correlation
information for each type of storage access patterns, such as
random v.s. sequential, read v.s. write, to identify interesting
spatial correlations hidden in the traces. Extensive evaluation
on real storage traces shows GraphLens can provide scalable
and reliable data analytics for better storage strategy planning
and efficient data placement guidance.

I. INTRODUCTION
Performance optimization in enterprise storage systems

has primarily relied on the ability to isolate and control
workloads that were relatively well understood [1], [2], [3],
[4]. With virtualized environments and cloud implementa-
tions, enterprise storage systems have to support a mixture of
a large number of disparate workloads from a variety of ap-
plications [5], [6], [7]. Thus, storage systems not only need
to deal with changes within a single workload, but also have
to respond to changes to the workload mix, enabling more
efficient sharing of the underlying infrastructure. Although
Flash, DRAM and newer high performance storage hardware
hold the promise to alleviate the performance problem, to
fully capitalize on the potential of these new storage devices,
intelligence and automation are required to identify the right
data to be placed on the right storage devices or storage tiers
at the right time.

Trace analysis is recognized as a viable model to assist
with characterizing workloads and gaining deeper insights
into workload behavior. Conventional storage trace analysis
is primarily carried out by the per-column based statistical
analysis (single attribute based access pattern) or the row-
based statistical analysis using vector similarity. Characteriz-
ing workloads in depth and from different levels of granular-
ity of spatial dimension is challenging. The challenge can be

more demanding when a single volume represents a varying
mix of workloads and such workload mix may change over
time. We argue that understanding similarity and causality of
access patterns can offer many opportunities for optimization
of performance such as intelligent data placement.

This paper presents a storage trace analysis architec-
ture, GraphLens, for mining and analyzing real world s-
torage traces. By innovative exploration of graph analytics,
GraphLens offers three original contributions. First, storage
traces are modeled as heterogeneous trace graphs in order
to use a unified analytic model to study the complex spatial
correlations among storage addresses at different levels of
granularity in terms of their access patterns. Second, an
innovative graph clustering method is developed to discover
interesting spatial correlations by clustering storage address-
es with a dynamic weighting scheme that continuously
refines the weights on different access patterns of the storage
addresses towards clustering convergence. This allows us to
identify deeper spatial correlations among storage addresses
beyond direct neighboring addresses. Third, our weight
assignment scheme can efficiently combine the correlation
information for each type of storage access patterns, such as
random v.s. sequential, read v.s, write, to identify hotspots
and their movements along diverse spatial dimensions of
the trace. Extensive evaluation on three real storage traces
demonstrates that GraphLens can perform deep trace analy-
sis to derive new insights and new values for better storage
planning and more efficient data placement strategies.

II. MOTIVATION AND BACKGROUND
Related Work. Storage traces of production servers are

valuable and critical in gaining insights on design, imple-
mentation and optimization of both modern storage servers
and I/O intensive applications. However, mining and analyz-
ing storage access patterns from real world workload traces
has been scarce and superficial for a number of reasons,
including difficulty in obtaining traces of production servers
in diverse domains and absence of effective trace analysis
models and algorithms that can infer deeper insight from
limited traces of production systems. More seriously, many
past trace-based studies have predated technology trends [8].
In the last decade, there are only a few studies [9], [1], [8],
[10], [11] have dedicated to developing methodologies for
characterization of real world workload traces. [9] analyzed
four storage workload traces of production Windows servers



with respect to block level requests, file access frequencies
and read/write ratios. It performs trace analysis by measuring
the spatial and temporal self-similarity based on variance
and mean of storage log data. The approach in [4] assumes
that workloads are well defined and can be cleanly isolated
in order to train a classifier to identify workload phases
using supervised learning. In addition, [8] studied the same
large scale network file system workloads as reported in
[10] using a multi-dimensional trace analysis methodology
instead of single dimension based method. However, none
of existing work has analyzed workload traces of production
storage servers based on graph analytics. A unique advantage
of modeling storage traces using graphs is the ability to
conduct deep-analytics on both self-similarity and neighbor-
hood similarity from both spatial and temporal perspectives.
More importantly, GraphLens derives insights from traces
with no assumption of a priori knowledge about workloads.
Graph as an expressive data structure is popularly used
to model structural relationship between objects in many
application domains, ranging from web, social networks,
biological networks to sensor networks [12], [13], [14], [18],
[15], [16], [17], [19], [20], [21]. However, to the best of
our knowledge, GraphLens is the first one that applies and
extends graph mining to storage trace analysis. A unique
feature of GraphLens is its ability to effectively identify
fine-grained behavioral similarity across spatial and temporal
dimensions using storage block traces.
Workload Traces. We analyze block-level traces collect-
ed from three large enterprise storage installations: a live
banking environment, a retail backend system environment
and an email server environment. Each of the traces consists
of storage workloads collected over every 15 minute period
(referred to as “cycle”) for storage addresses, called “ex-
tents”, each extent representing 1 GB logical address unit.
The traces provide summary information on the number of
random read, random write, sequential read and sequential
write IO accesses over one week period (7 days). The only
knowledge we know about each of these environments is
that multiple workloads (such as applications and backup)
may have been executing simultaneously. But we have no
details regarding the exact nature of the workloads.

Figures 1 (a), (b) and (c) exhibit the distribution four
access patterns observed on the three real world storage
traces. For ease of presentation, we group the total of
2010 cycles into 20 cycle groups and summarize the access
account for each extent in each cycle group. Figure 1 (a)
presents the access activities on Bank Trace and “sequential
read” is obviously the dominating access pattern. However,
the access activities on Email Trace (Figure 1(b)) are often
dominated by “sequential read” access pattern, with “random
write” and “sequential read” as secondary behavior. In
contrast, the workloads on Store Trace is mainly dominated
by “random read” access pattern. We argue that by analyzing
spatial, temporal and hot spot correlations from block-level
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(a) Bank Trace
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(b) Email Trace
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(c) Store Trace
Figure 1. IO Workloads by Four Access Patterns

traces we can provide broader and deeper insights for better
tradeoffs in storage system design and implementation.

III. OVERVIEW
GraphLens by design aims at exploiting graph data analyt-

ic techniques on multi-dimensional storage traces to derive
deep insights hidden in the storage logs, such as spatial
access correlation and hot-spot dynamics. For example, how
are different addresses accessed similarly within a cycle or
amongst cycles? how does the access pattern of a storage
address change between cycles? do spatial patterns interact
with one another? what types of spatial access patterns are
common in real world traces? and how hot spots move across
extents (spatial)?

One approach for discovering and mining interesting
correlations is to associate different storage addresses by
utilizing their common attributes (access patterns), such as
random v.s. sequential access and read v.s. write access.
This motivates us to introduce two levels of abstractions
for analyzing storage traces. First, we model storage traces
as heterogeneous graphs. Second, we employ innovative
graph analytic methods to measure and discover correlations
among storage addresses. This two-level abstraction enables
us to study the access correlations among different address-
es by examining two types of vertices: structure vertices
representing storage addresses (Lun (Volume), Extent) and
attribute vertices (access patterns such as random, sequential,
read or write) and their explicit and implicit relationship-
s. Compared to naive vector-based correlation (record by
record comparison), modeling storage access logs as a graph
allows us to observe and understand not only those shallow
correlations reflected from direct relationship between an
address and its access pattern (attribute) but also enables
us to derive deeper correlations that can only be inferred
through reasoning over both direct and indirect correlations
in a probabilistic manner.



Lun Extent RR RW SR SW
0x0021 0 354 435 11 2
0x0023 2 324 117 1 0
0x002f 0 0 0 0 961
0x0031 12 0 0 78 205

Table I
A SAMPLE TRACE FOR A CYCLE

0x0021,0

0x0023,20x002f,0

354

961

205

0x0031,12

Random_ReadSequential_Write
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(a) Graph Model of a Single Cycle
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(b) Structure Relationship Deriving
Figure 2. An Illustrating Example of Heterogeneous Trace Graph

A. Modeling Traces as Graphs
An enterprise storage trace recorded with multiple cy-

cles is logged with a set of attributes (access patterns),
such as random read (RR), random write (RW), random
transfer (RT), sequential read (SR), sequential write (SW),
sequential transfer (ST), etc. We model each cycle ti of
the storage log as heterogeneous trace graph, denoted as
Gi = (V,A,Ei, Fi), where n = |V | specifies the size of the
structure vertex set, m = |A| defines the size of attribute
vertex set in the trace, Ei denotes a set of structure edges
between structure vertices and Fi represents the set of m
types of attribute edges between V and A or between A
and V . v ∈ V is a structure vertex, representing a storage
address and a ∈ A denotes an attribute vertex associated
to a structure vertex v, specifying an associated attribute
of the address v. A structure edge e ∈ Ei connects two
structure vertices and an attribute edge f ∈ Fi represents
the relationship between a structure vertex and its associated
attribute, weighted by the frequency of the corresponding
access pattern within the given cycle. The initial heteroge-
neous graph Gi for each cycle ti is a bipartite graph with
only attribute edges. By employing GraphLens, we learn the
correlations between structure vertices via their associated
attributes. For instance, the more the access patterns shared
by two addresses are, the greater the similarity between two
addresses is.

Table I presents an example of a real storage trace. Each
combination of Lun and Extent represents a unique storage
address. RR, RW, SR, and SW correspond to four kinds
of access patterns: random read, random write, sequential
read, and sequential write, respectively. Figure 2 (a) is the
heterogeneous graph representation of the sample trace in
Table I. This trace graph has heterogeneous vertices: struc-
ture vertices (black square) represent the storage addresses,
attribute vertices (red circle) specify 4 types of attributes:
RR, RW, SR and SR. In addition, this trace graph has
explicit attribute edges (solid lines), each representing a
relationship between an structure vertex and one of its four
types of attributes, and derived relationships (dashed lines)
that represent the spatial correlation between two structure

0x0021,10x0021,0

354

27

Random_Read

Sequential_Write

426

2

Sequential_Read

Random_Write

435175

811

(a) More Paths

0x0021,20x0021,0

354

27

Random_Read

Sequential_Write

426

2

Sequential_Read

Random_Write

435175

811

(b) Less Paths
Figure 3. Summarization of all Possible Paths
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(b) Weight Mismatch
Figure 4. Attribute Weight Match

vertices, as shown in Figure 2 (b). Although the four address
vertices have no direct correlations, we can learn the spatial
correlations among different structure vertices because they
can be reached by traversing the graph via attribute vertices.
Case 1: summarization of all paths between any pair
of extents. In Figure 3 (a), there exists four 2-hop paths
between extents “0x0021, 0” and “0x0021, 1” through four
attribute vertices respectively. In comparison to Figure 3 (b),
there is only one 2-hop path between two extents through
RR. We make the following observation: extents “0x0021,
0” and “0x0021, 1” are more similar than extents “0x0021,
0” and “0x0021, 2” since there are more reachable paths
between the first two extents.
Case 2: attribute differentiation by attribute weight
match. For both Figure 4 (a) and Figure 4 (b), two extents
are reachable by two 2-hop paths through RR and RW
respectively. However, the two addresses in Figure 4 (b) on
each of RR and RW have diverse edge weights. Thus, extent
“0x0021, 3” and extent “0x0021, 4” are more similar than
extent “0x0021, 5” and extent “0x0021, 6” because the first
pair of extents not only have the same access patterns (RR
and RW) but also have the same access counts (100 for RR
and 200 for RW).
Case 3: attribute differentiation by attribute weight sig-
nificance. In both Figure 5 (a) and Figure 5 (b), two extents
are reachable by two 2-hop paths through RR and RW
respectively and the corresponding attribute edge weights are
the same respectively. However, the corresponding attribute
edge weights (100 for RR and 200 for RW) in Figure 5 (a)
are larger than that (10 for RR and 20 for RW) in Figure 5
(b). Thus, two extents in Figure 5 (a) are more similar than
two extents in Figure 5 (b).
Case 4: summarization of all possible k-hop paths
between pairwise extents. In the above cases, we only con-
sider 2-hop paths between extents, i.e., direct relationships
between extents. However, we should consider all possible
k-hop paths, i.e., both direct and indirect relationships, to
achieve a comprehensive and fair comparison result when
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(b) Insignificant Weights
Figure 5. Attribute Weight Significance
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Figure 6. k-hop Path

we calculate the similarity scores between two extents. The
only difference between Figures 6 (a) and (b) is the attribute
edge weights between extent “0x0022, 0” and access pattern
RR. Note that there is a 4-hop path between extent “0x0021,
3” (or “0x0021, 9”) and extent “0x0021, 4” (or “0x0021,
10”): “0x0021, 3” (or “0x0021, 9”) → “Random Read”
→ “0x0022, 0” → “Random Read” → “0x0021, 4” (or
“0x0021, 10”). We argue that extents “0x0021, 3” and
“0x0021, 4” in Figure 6 (a) have larger attribute edge
weights and thus are more similar than extents “0x0021, 9”
and “0x0021, 10” in Figure 6 (b). The similarity between
two extents depends on not only their direct relationships
(their own access patterns and access counts) but also their
indirect relationships (predecessors’ and successors’ access
patterns and access counts).

B. Trace Analysis with GraphLens
GraphLens performs trace analysis to derive deep insights

on spatial/temporal access correlations and hotspot charac-
terization in two phases: (1) extent similarity computation
and (2) spatial based graph clustering.

In Phase I, we measure pairwise extent similarity within
a cycle in terms of two factors: how similar their access
patterns (attribute) are (direct correlation) and how similar
their k-hop neighbor extents are in terms of their access
patterns. In order to capture the spatial access similarity
between storage addresses in terms of both direct and in-
direct correlations, we introduce a unified weighted extent
neighborhood random walk similarity measure. It is used
to measure the closeness between extents based on all four
types of attribute edges, each with an initial weight. This
unified similarity measure captures the connectivity and the
vicinity between extents (structure vertices).

In Phase II, we utilize this unified similarity measure to
cluster all extents in trace graph Gi into ki clusters with
initial centroids and initial weights. We employ a dynamic
weight tuning method combined with an iterative refinement
mechanism of centroid update and vertex assignment to

quantitatively estimate the importance of various types of
attributes and attribute links in terms of their contribution
to the clustering process. Formally, given a heterogeneous
trace graph Gi for cycle ti, the problem of spatial extent
clustering is to partition the objective extents V into ki
disjoint clusters C1, C2, . . . , Cki , where i ∈ {1, 2, . . . , N},
N is the number of cycles, V =

∪ki

p=1 Cp and Cp

∩
Cq = ϕ

for ∀p, q, 1 ≤ p, q ≤ ki, p ̸= q, to ensure: (1) the extents
within each cluster have larger similarity scores, while the
extents in different clusters have smaller similarity scores;
and (2) the extents within clusters have low diversity on
access patterns, while the extents in different clusters have
highly diverse access patterns. The spatial based clustering
can indicate where the hotspots are and how such hotspots
move across extents (along spatial dimension).

IV. METHODOLOGY

This section describes the two-phase correlation analysis
in GraphLens: extent-similarity based spatial clustering.

A. A Unified Spatial Similarity Measure

In GraphLens, we propose to use a unified similarity
measure based on the neighborhood random walk model
to infer the spatial access correlations between extents
and the temporal access correlation between cycles. In the
heterogeneous graph, some vertices are close to each other
while some other vertices are far apart based on connectivity.
Random walk distance can accurately capture such pairwise
vertex closeness. Recall the example in Figure 2, there exists
a random walk path between two extents v1, v2 ∈ V if (1)
v1 and v2 have the same neighbor extent v3 ∈ V ; or if
(2) v1 and v2 have the same attribute a ∈ A. If there are
multiple random walk paths connecting v1 and v2, then they
should be very close in terms of similar access patterns. On
the other hand, if there are very few or no paths between
v1 and v2, then they should be far apart in terms of diverse
access patterns.

Definition 1: [Transition Probability] Let V be the set
of n extents, A be the set of m associated attributes, the
transition probability matrix P (i) of a heterogeneous graph
Gi for cycle ti is defined as follow.

P (i) =

[
PSS PSA

PAS PAA

]
(1)

where PSS is an n × n matrix representing the transition
probabilities between structure vertices; an n × m matrix
PSA specifies the transition probabilities from structure
vertices to attribute vertices; PAS denotes the transition
probabilities from attribute vertices to structure vertices;
and PAA is an m × m matrix representing the transition
probabilities between attribute vertices.

In the context of heterogeneous trace graph, submatrices
PSS and PAA have all zero entries since there is no
connection between structure vertices or between attribute
vertices. However, the corresponding submatrices in the



power of P (i), such as P (i)2, P (i)3, . . ., may contain non-
zero elements since there may exist possible paths through
other vertices.

To capture the fact that each type of attribute edges
may have different degrees of contribution in random walk
similarity, we assign an individual weight for each type of
attribute edges. Initially, all weights are set to equal value,
say 1.0. We design a dynamic weight tuning method to
produce an optimal weight assignment for all types of links
in the next section. Based on this weight assignment, each
submatrix in P (i) is defined as follow.

PSA(p, q) =


αqepq∑mi
r=1 αrepr

, if(vp, aq) ∈ Fi

0, otherwise
(2)

where epq represents the count of access pattern aq that
storage extent vp has in the given cycle. For instance, a
storage extent of “0x0021, 0” has the count of 354 on
“random read” in the example cycle of Figure 2(a). αq

denotes the weight of attribute edges from any of the
structure vertices to attribute vertex aq . Since each row of
transition probability matrix should sum to 1, we employ
the row-wise normalization for PSA.

PAS(p, q) =


αpepq∑ni
r=1 αpepr

=
epq∑ni
r=1 epr

, if(ap, vq) ∈ Fi

0, otherwise
(3)

where epq specifies the count of an access pattern ap
achieved by a storage extent vq . αp denotes the weight of
attribute edges from attribute vertex ap to structure vertices.
Different from the normalization in PSA, the count on
pattern ap by extent vq is normalized by the counts on
pattern ap by all extents.

A random walk on a heterogeneous trace graph Gi is
performed in the following way. Suppose a particle starts
at a certain vertex v0 and walks to a vertex vs in the sth

step and it is about to move to one of the neighbors of
vs, denoted as vt ∈ N(vs), with the transition probability
P (i)(s, t), where N(vs) contains all neighbors of vertex vs.
The vertex sequence of the random walk is a Markov chain.
The probability of going from vi to vj through a random
walk of length l can be obtained by multiplying the transition
probability matrix l times.

Definition 2: [Unified Random Walk Similarity] Let P (i)
be the transition probability of a heterogeneous trace graph
Gi, l be the length that a random walk can go, and c ∈ (0, 1)
be the restart probability, the unified random walk similarity
s(u, v) from vertex u ∈ V

∪
A to vertex v ∈ V

∪
A in Gi

is defined as follow.
si(u, v) =

∑
τ :u v

length(τ)≤l

p(τ)c(1− c)length(τ) (4)

where τ is a path from u to v whose length is length(τ)
with transition probability p(τ) which is equal to the multi-
plication of the transition probability of each step in path τ .
si(u, v) reflects the extent closeness within cycle ti based
on multiple types of attribute information.

The matrix form of the unified random walk similarity is
given as follow.

R(i) =

l∑
γ=1

c(1− c)γP (i)γ (5)

where an (n + m) × (n + m) matrix R(i) sums over the
dependency of all possible paths between two extents. Each
entry si(u, v) in R(i) measures the similarity between extent
vertex u and extent vertex v within cycle ti.

B. Spatial Extent Clustering
Our extent clustering framework, E-CLUSTER, partitions

extents in a heterogeneous trace graph Gi into ki densely
connected clusters. Due to space limit, we will briefly
illustrate the extent clustering framework by focusing on
different points. E-CLUSTER follows the traditional K-
Medoids clustering method [22] by using the unified random
walk similarity R(i) with ki extents of high degree as the
initial centroids and the initial weights α0

11, . . . , α
0
im as an

input. At each iteration, based on unified extent random
walk similarity scores, we select the most centrally located
extent in each of the ki clusters to obtain ki new centroids,
and assign the rest of extents to their closest centroids. The
objective of clustering is to maximize intra-cluster similarity
and minimize inter-cluster similarity. The weight update
method computes the weighted contributions of each kind of
attribute links to both clustering convergence and clustering
objective, and updates m weights accordingly after each
iteration. This process is repeated until convergence.

Thus the graph clustering problem can be reduced to three
subproblems: (1) cluster assignment, (2) centroid update and
(3) weight adjustment, each with the goal of maximizing the
objective function. The first two problems are common to
all partitioning clustering algorithms. Hence we only focus
on the third subproblem, weight adjustment in this paper.

We employ a dynamic weight adjustment method to
iteratively improve the spatial extent clustering objective.
Let αt

ip(p = 1, . . . ,m) be the weights of attribute edges
between structure vertices and attribute vertex ap in the
transition probability P (i) of Gi in the tth iteration. All α0

ips
are first initialized as 1.0. We then iteratively adjust αt+1

ip

with an increment △αt
ip, which denotes the weight update

of attribute edges between structure vertices and attribute
vertex ap in P (i). The attribute weight αt+1

ip in the (t+1)th

iteration is computed as
αt+1
ip =

1

2
(αt

ip +△αt
ip) (6)

To determine the extent of weight increment △αip, we
design a majority vote mechanism: if a large portion of
structure vertices within each cluster share the same attribute
vertices with similar access counts, which means it has
a good clustering tendency, then the structure weight αip

should be increased; on the other hand, if structure vertices
within clusters have a very random distribution on attribute
or have quite diverse access counts, then the weight αip

should be decreased. We define a vote measure which



DataSet Name Total Size (in GB) Duration (in cycles)
Bank Trace 8,097 2,013
Store Trace 7,902 2,008
Email Trace 1,599 2,011

Table II
TRACE DATASET SUMMARY

determines whether two structure vertices u and v have
similar attributes.

voteip(u, v) =

 1, 1− |aip(u)− aip(v)|
|aip(u) + aip(v)|

> ϵ

0, otherwise

(7)

where aip(u) specifies the count achieved by u on attribute
ap in Gi. A positive number ϵ denotes a threshold of similar
extent of u and v on ap. The weight increments △αt

ip are
then calculated as

△αt
ip =

∑ki
j=1

∑
v∈Cj

voteip(cj , v)

1
m

∑m
q=1

∑ki
j=1

∑
v∈Cj

voteiq(cj , v)
(8)

An important property of the weight self-adjustment
mechanism is that the updated weights should increase the
clustering objective. The detailed proof is omitted due to
space limit. We will briefly illustrate this property qualita-
tively: if a large number of structure vertices within clusters
have the similar access counts on ap, then the weight is
increased, i.e., αt+1

ip > αt
ip; on the other hand, if structure

vertices within clusters have quite different access counts
on ap, the weight is then decreased, i.e., αt+1

ip < αt
ip. There

must be some weights with increasing updates and some
other weights with decreasing updates, since

∑m
p=1 αip = m

is a constant. Due to some increased weights, the random
walk similarities between pairwise endpoints of attribute
edges with the increased weight will be further increased.
As a result, these vertices tend to be clustered into the
same cluster, thus increasing the clustering objective. Due to
space constraint, we omit the pseudo code of our E-Cluster
algorithm in this section.

V. EXPERIMENTAL EVALUATION

In this section we discuss insights obtained by employing
GraphLens on three different real world traces from three
perspectives: spatial extent correlation analysis, temporal
cycle correlation analysis and hotspot characterization. For
ease of presentation, we divide similarity scores between
0 and 1 into three groups: “More Similar” (red, [0.9, 1]),
“Similar” (green, (0.5, 0.9)) and “Less Similar” (blue, [0,
0.5]). In addition, the white area represents the extents
without any activities in the given cycle.

We use the three storage trace datasets described in Sec-
tion II. The trace characteristics are summarized in Table II.
We build a heterogeneous trace graph for the workloads in
each cycle where structure vertices represent the combina-
tions of Lun and Extent, attribute vertices specify four access
patterns of RR, RW, SR and SW. Attribute edges denote
the relationships between structure vertices and attribute
vertices, weighted by the corresponding access count to each
data unit within the cycle. We construct 2,013, 2,008 and
2,011 trace graphs for three storage traces respectively.

(a) Random Read (b) Random Write

(c) Sequential Read (d) Sequential Write
Figure 7. Extent Similarity on Email Trace

A. Spatial Correlation Analysis
Figures 7 (a), (b), (c) and (d) represent the spatial similar-

ity matrix based on each access pattern for the email trace.
Figure 7 (a) shows that most of spatial similarity between
extents based on random reads shows several regions of
strong similarity. Next observe that 7 (b) and (c) which
represents the random write and sequential read patterns
are dominated by weak similarity. It is highly likely that
most people usually access their emails at least once each
day and mainly read the emails without any reply. Thus,
most of extents are very similar based on random reads
due to frequent as well as random accesses. Figure 7
(d) is dominated by average similarity. Sequential writes
typically represent backup and replication activity in these
environments and extents would be expected to be similar
in behavior for this access pattern. However, since such
activities are infrequent, the number of accesses are very
low, leading to a decision of “Less Similar”. This leads us
to the first set of observations:

• Observation 1: similar behavior is exhibited both
within and across volumes.

• Observation 2: spatial similarity varies by the dimen-
sion under consideration.

• Observation 3: data expresses stronger similarity under
the random read access pattern.

Figures 8 (a), (b) and (c) exhibit the unified random
walk similarity matrix on different trace datsets. We use
our dynamic vote-based weight tuning method in Section
IV-B to learn an optimal weight assignment for four types
of attribute links: RR, RW, SR and SW, to achieve high
intra-cluster similarity and low inter-cluster similarity, i.e.,
extents within clusters have similar access patterns, while the
extents in different clusters have diverse access patterns. The
similarity matrix in Figure 8 (a) is similar to the similarity
matrix we have observed in the extent similarity case. This
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(c) Store Trace
Figure 8. Unified Extent Similarity on Different Traces

demonstrates that the unified random walk similarity on
Bank Trace is dominated by the access pattern of random
read. Due to space constraint, we omit the extent similarity
on Bank trace and on Store trace.

Comparing with Figures 7 (b) and (d), the similarity
matrix in Figure 8 (b) mainly depends on the access patterns
of random write and sequential write. Since most of extents
do not have these two kinds (random write and sequential
write ) of access activities extents that exhibit these activities
are more alike each other and more different from extents
that do not exhibit the activity. Figure 8 (c) shows the unified
random walk similarity matrix on Store Trace, which is a
relatively random distribution for each of three kinds of sim-
ilarities due to the lack of clear distinctions between extent
access patterns. This leads us to the following observations.

• Observation 4: when all data exhibits all types of ac-
cess pattern, the strongest access pattern (which is most
often random read) dominates the similarity metric.
This implies that data placement taking only random
read patterns into consideration is likely to provide
good results.

• Observation 5: when access type distributions are not
uniform across all extents, extents that exhibit more rare
access patterns have stronger similarity under a unified
metric. This implies that under such circumstances,
data placement must first consider the unified metric to
identify broader distinctions between extents and then
consider random reads as a secondary metric.

• Observation 6: when unified extent similarity weighted
on all access patterns exhibit a relatively random distri-
bution as shown in Figure 8 (c), this indicates that there
is no need to further explore attribute-specific spatial
access patterns.

B. Hotspot Characterization
Hotspots can be defined as regions that have relatively

higher activity (hence “temperature” or “heat”) in compari-
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(b) Bank Trace: Burstiness
Figure 9. Bank Trace

son to its surroundings. Understanding hotspot characteris-
tics is essential to data placement strategies, such as caching
at host or storage server by utilizing the “recency” [23], [2],
and tiering by exploring the “frequency” aspect [24], [3].

By using GraphLens, extents are classified into “Hot”,
“Warm” and “Cold” clusters for each cycle. An extent
that appears in the hot cluster at time t is referred to as
a hotspot at time t. A single extent can exhibit hotspot
behavior in multiple cycles and multiple extents can exhibit
hotspot behavior in the same cycle. Our dynamic weight
assignment and update at each clustering iteration reduce
the possible bias introduced by a single attribute dominating
the clustering outcome. We use the following measures to
classify hotspots from the temporal and spatial clustering
analysis results:

• Population Size: a summary measure which describes
the number of unique extents that exhibit hotspot be-
havior within a window (24 hours in this study) of
observation i.e. size of the hotspot.

• Intra-window stability or Burstiness: frequency dis-
tribution of number of hotspot occurrences for a each
unique extent within a window of observation. This
measure is indicative of the burstiness and durability
of hotspot behavior within each time window.

Due to space constraint, we omit the hotspot characteri-
zation of Email Trace.
Banking Transactions Workload

Figure 9(a) shows the variation in hotspot population size
over 7 days for four different access patterns. The x-axis
and the y-axis represent the day and the percentage of
total dataset population that exhibited hotspot behavior at
any time during the day for a specific access pattern. We
see that the hotspot population size remains fairly stable
from day to day for all workloads. Random Read (3%)
and Random write (10%) are most stable. Sequential Read
(30%) and Sequential Write (17%) activities span relatively
larger population sizes but remain small compared to the
total dataset size.

Figure 9(b) shows the frequency distribution during a 24
hour period for which an extent exhibited hotspot behavior.
Random write workload exhibits the least burstiness with
nearly 63% of the hotspots lasting longer than 75 minutes.
Random read and sequential read hotspots are relatively
more bursty with only 10% of the sequential read and
random read hotspots lasting longer than 75 minutes. On



!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

,-."#" ,-."$" ,-."%" ,-."&" ,-."'" ,-."(" ,-.")"

!
"
#$
%
"
#&
'
"
%
(
)*
+
"
,
&-
./
0
&

/-0123"/4-1" /-0123"56784" 94:;40<-="/4-1" 94:;40<-="56784"

(a) Store Trace: Population Size

!"

!#$"

!#%"

!#&"

!#'"

("

!
"
#
"
$%
&
'
(
)*
)

+"#,(-)./)0.123.1)455"--(65()!75$(2)

)*+,-.")/*," )*+,-."0123/" 4/56/+7*8")/*," 4/56/+7*8"0123/"

(b) Store Trace: Burstiness
Figure 10. Store Trace

the other hand, sequential write is the most bursty with
90% of hotspots lasting less than 15 minutes in a day
and nearly all hotspots lasting less than 30 minutes. We
conjecture that random write workloads for this application
are probably best serviced by a tiering strategy. On the
other hand, random reads and sequential reads contain a
mix of bursty and stable hotspot behavior, a combination
of caching (to catch bursty hotspots) and tiering (to catch
more long term behavior) could be used. Sequential writes
exhibit highly bursty behavior, which could be addressed
with prefetch caching.
Store Backend Workload

In the Store trace (Figure 10 (a)), almost all data exhibits
hotspot behavior at some point during the day. Sequential
write and random write hotspots are limited to a smaller
fraction of the dataset (3% and 35% respectively). However
sequential write and random write hotspots show large
variations in population size over the week.

Figure 10 (b) shows the frequency distribution during
a 24 hour period for which an extent exhibited hotspot
behavior. Sequential reads and random read patterns show
very identical behavior with 80% of the extents exhibit hot
spot behavior for nearly 4 to 5 hours a day. In comparison,
Sequential writes and random writes are relatively bursty
with nearly 60% and 70% respectively of the hotspots
exhibiting hotspot behavior for less than 30 minutes in a day.
Given the large population size and the low burstiness, these
access patterns may be effectively addressed by provisioning
a high performance tier (assuming that 8TB of cache may
not be viable option at every host and population such a
large cache may itself take several hours).

VI. CONCLUSIONS

We have presented a novel graph analytics framework,
GraphLens, for mining and analyzing real storage traces.
We model storage traces as heterogeneous trace graphs to
incorporate multiple complex and heterogeneous factors into
a unified analytic framework. An innovative graph clustering
method is proposed to identify and discover spatial corre-
lations and hotspot characterization. We design an dynamic
weight tuning method to combine multiple correlations into
a unified similarity measure with optimal weights.
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