
Effectively Testing System Configurations
of Critical IoT Analytics Pipelines

Morgan K. Geldenhuys∗, Lauritz Thamsen∗, Kain Kordian Gontarska†, Felix Lorenz∗ and Odej Kao∗
∗Technische Universität Berlin, Germany, {firstname.lastname}@tu-berlin.de

†Hasso Plattner Institute, University of Potsdam, Germany, kordian.gontarska@hpi.de

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: 10.1109/BigData47090.2019.9005504

Abstract—The emergence of the Internet of Things has seen the
introduction of numerous connected devices used for the moni-
toring and control of even Critical Infrastructures. Distributed
stream processing has become key to analyzing data generated
by these connected devices and improving our ability to make
decisions. However, optimizing these systems towards specific
Quality of Service targets is a difficult and time-consuming task,
due to the large-scale distributed systems involved, the existence
of so many configuration parameters, and the inability to easily
determine the impact of tuning these parameters.

In this paper we present an approach for the effective testing
of system configurations for critical IoT analytics pipelines. We
demonstrate our approach with a prototype that we called
Timon which is integrated with Kubernetes. This tool allows
pipelines to be easily replicated in parallel and evaluated to
determine the optimal configuration for specific applications.
We demonstrate the usefulness of our approach by investigating
different configurations of an exemplary geographically-based
traffic monitoring application implemented in Apache Flink.

Index Terms—Distributed Stream Processing, Internet of
Things, Configuration Testing, Quality of Service.

I. INTRODUCTION

The Internet of Things (IoT) is an important emerging
technological paradigm whereby billions of ubiquitous sensor
and actuator devices are connected to enable the development
of applications across a wide number of domains. An in-
creasing number of these applications are expected to perform
in a capacity where the services they provide must meet
certain minimum Quality of Service (QoS) requirements. This
is especially relevant for applications used in the real-time
monitoring and control of Critical Infrastructures, such as: hu-
man health-care, transportation systems, electrical generation,
natural disaster prediction, and telecommunications, to name
but a few [1]–[4].

As the number of Internet-connected devices increases year-
on-year, so does the volume of data being produced. In
order to process these large data streams, Distributed Stream
Processing Frameworks (DSPF) such as Storm [5], and Flink
[6] allow for the deployment of analytics pipelines which
utilize the processing power of a cluster of commodity nodes.
Therefore, these frameworks are being utilized increasingly
for the processing of IoT data streams [7]–[10]. Applications
developed within these systems are, in principle, required to
operate indefinitely on an unbounded stream of continuous
data in an environment where partial failures are to be expected
as these applications scale. Consequently, DSPFs feature high

availability modes, implement fault tolerance mechanisms by
default, and expose a rich set of continually evolving features.
The end result being that the way in which these systems are
composed has a high level of complexity and number of con-
figuration options. A quick scan of the official documentation
reveals that Flink has over 300 options across 28 categories1,
and Spark [11] closer to 400 across 26 categories2.

System configuration has an impact on performance and
reliability. Yet, with the vast number of options available for
tuning, i.e. framework settings, job parameters, resource selec-
tions, etc., the effects of which are not always well understood
or straightforward to determine. That is, finding the best com-
bination of resource selections and system configurations is
difficult to estimate upfront both by experts and automatically
by optimization tools as it is highly dependent on a number
of key factors: the analytics application which exhibits its
own unique operational characteristics; the cluster environment
which is often not known before deployment and may vary
over time, i.e. network topologies and physical hardware; and
the data which is variable based on the characteristics of the
input data, loads from other applications, and ingestion rates.
This is especially true in environments consisting of multiple
connected distributed systems making up larger application
architectures, such as: resource managers, messaging queues,
distributed file systems, scalable databases, etc. At the same
time, critical IoT applications typically have defined QoS
requirements with regards to performance, reliability, etc,
which a configuration should meet [12].

Currently, the most common way of tuning configuration
parameters is for it to be done manually by performance
engineers, usually requiring several hours of investigation
and testing [13]. These engineers require detailed knowledge
of the specific DSPF itself and the cluster environment in
order to find a system configuration that falls inline with
the aforementioned QoS constraints. Approaches have been
proposed at finding more precise and less time-consuming
methods for the automatic tuning of DSPF parameters [14]–
[18]. These typically focus on only a limited number of
settings, while there are numerous points of configurations in
practice with many dependencies between them. A solution
is needed which is complementary to these existing perfor-

1Flink Configuration. URL: https://ci.apache.org/projects/flink/flink-docs-
stable/ops/config.html

2Spark Configuration. URL: https://spark.apache.org/docs/latest/configuration

ar
X

iv
:2

10
2.

06
09

4v
2 

 [
cs

.D
C

] 
 2

5 
Fe

b 
20

21

https://doi.org/10.1109/BigData47090.2019.9005504


mance modelling approaches, which provides an approach for
gathering analytics data through testing and monitoring.

For this purpose, we propose an approach for the effective
testing of system configurations for critical IoT analytics
pipelines in realistic conditions. We implemented our approach
using a prototype called Timon which allows for the testing of
multiple different versions of system configurations in parallel
within an environment that behaves like production using real
streaming data. In this way, operators can safely and efficiently
experiment with potential system configurations to understand
what impact these will have when used in production.

The remainder of the paper is structured as follows: Section
II discusses the related work with regards to configuring
DSPFs, Section III presents a typical architecture for critical
IoT analytics pipelines, Section IV presents our approach to
configuration testing, Section V describes our evaluation where
we present our experiments and findings, and Section VI
discusses our findings with conclusions.

II. RELATED WORK

There exists a large body of work which addresses the prob-
lem of system configuration. A number of these approaches
focus specifically on the tuning of parameters for DSPFs. This
typically involves learning from analyzing actual executions
or historical data, model specific aspects of the systems, and
then adapt to actual conditions based on user requirements.
We see our work as being orthogonal and complementary to
these contributions in that Timon provides a testing and metric
gathering environment within which these approaches could
function. These approaches can be categorized as follows:

Rule-based: A gray-box heuristic approach where domain
experts work with users to establish a rule-set which is
used to recommend suitable configurations. Bilal et al. [16]
present an approach where users provide a parameter ranking
in accordance with a priority level and specify whether an
increase in parameter value has an overall positive impact on
latency and throughput. This approach favors quickly finding
a suitable configuration at the expense of optimality.

Model-based: An approach which is concerned with con-
ducting experiments on a chosen set of configurations to
observe their performance. The results are used to train a
statistical model for finding good configurations. Fischer et
al. [14] and Trotter et al. [17] present an auto-tuning algo-
rithm using Bayesian Optimization (BO) [19] to achieve high
throughput. Jamshidi et al. [15] likewise proposes BO, how-
ever, it optimizes latency and leverages Gaussian Processes
[20] to continuously estimate the mean and confidence interval
of a response variable at yet-to-be explored configurations.

Search-based: For this approach, an initial configuration is
selected after which experiments are conducted sequentially.
Each iteration uses the results of the previous to fit a statistical
model which is used to select the next configuration. Evolu-
tionary Search Algorithms are typically adopted for automatic
parameter tuning. Trotter et al. [17] proposes a method using
genetic algorithms (GA) to optimize throughput. Additionally,
in a later paper Trotter et al. [18] use GA to optimize

throughput using SVM classifiers to further refine its search
of the configuration space. Bilal et al. [16] proposes a hill-
climbing algorithm based on Latin Hypercube Sampling [21]
while taking both latency and throughput metrics into account.

Learning-based: An approach which use online learning
techniques such as reinforcement learning to find the optimal
configuration by reacting to feedback, i.e. metrics, from the
DSPF at runtime [22]. This approach can be combined with
offline learning techniques to speed up convergence [23].

To the best of our knowledge, no approach exists which
focuses on parameter tuning for critical IoT analytics pipelines
executing in the production environment. For these applica-
tions it is essential to consider the time-dependant nature of
IoT data streams when optimizing the performance of DSPFs.

III. IOT STREAM PROCESSING ARCHITECTURE

In this section we assume a typical architecture for the
processing of IoT data streams, as depicted in Fig. 1. Here
we see a number of systems which, when combined, provide
a typical way of composing critical IoT analytics architectures.

The distributed streaming platform is where raw IoT data
flows into the system from sensor devices and is stored in a
messaging queue to await processing. This component is an
implementation of the publisher/subscriber messaging pattern
with Apache Kafka [24] being a distributed example of this.

Subscribers such as the IoT analytics pipeline register them-
selves with the distributed streaming platform and consume
messages from targeted messaging queues when they becomes
available. Additionally, messages that have already been pro-
cessed and produce alarms or notifications, for instance, can
be written back to a separate messaging queue for further
consumption. The IoT analytics pipeline in turn consists of
a number of inter-dependent systems. These systems include:

• Distributed Stream Processing Framework: responsible
for executing the IoT analytics application with the cur-
rent configuration set in order to process messages read
from the distributed streaming platform. Once processed,
outputs are written back to the distributed streaming
platform if necessary and the monitoring & analytics data
store for archival. E.g. Apache Flink.

• Monitoring & Analytics Data Store: this scalable database
warehouses all sanitized messages and outputs of the IoT
analytics application. The archived data can be used for
analysis over a longer period of time to detect trends and
other anomalies. E.g. Apache Cassandra [25].

• Metrics: it is important to monitor the health of the IoT
analytics application being executed. For this purpose,
most DSPFs like Flink and Spark generally have a metric
system that allows for the gathering and export of internal
metrics to external systems. These measurements should
be stored in a time series database to be accessed from
outside the cluster. E.g. InfluxDB3.

• Chaos Daemon: an optional component, however, if
deployed could provide the facility for using Chaos

3InfluxDB. URL: https://github.com/influxdata/influxdb



Distributed 
Streaming 

Platform

IoT Analytics Pipeline

Distributed Stream Processing Framework

Chaos DaemonMetrics

Monitoring & Analytics Data Store

IoT Analytics
Application

Configuration
Set

Fig. 1. Typical IoT stream processing architecture.

Engineering techniques to promote the development of
resilient services [26]. E.g. PowerfulSeal4.

In such a setup, the configuration set and/or IoT analytics
application could be designed to a standardized specification
allowing them to be traded out for alternate versions without
causing too much of a disruption to the overall environment.

IV. APPROACH

In distributed stream processing, system configuration has a
direct impact on performance and reliability. Yet, quantifying
exactly how much of an impact is hard to ascertain. This is
complicated by the existence of so many configuration param-
eters and the fact that no two stream processing applications
with even a minor difference in operational characteristics is
likely to share the same optimal setup. Additionally, if a more
performant version of the configuration were to be found,
migrating to this version in the production environment could
cause significant disruptions. It is the goal of Timon to find
solutions to these problems.

From a high level perspective, determining the best system
configuration for any particular stream processing application
can be found by comparing it to: the same application ex-
ecuting in the same environment while ingesting the same
data but using alternate variations of the configuration set. For
such a test, variants should be executed in parallel, metrics
recorded over a specific time interval, and on conclusion,
results compared to determine the best performer(s). This is
the general idea behind Timon, to provide a testing system
for the efficient comparison of alternative configurations in
the production environment, i.e. testing with actually deployed
systems, at scale, and with actual live data streams.

One of the key requirements of such a testing system would
be the ability of an environment where alternate deployments
can be quickly replicated. Moreover, these deployments would
need to be isolated from each other in order to eliminate
interference and provided with access to external services.
For this purpose we make use of two key enabling technolo-
gies, i.e. OS-level virtualization and container orchestration.
These technologies, when combined with Infrastructure-as-
Code (IaC) processes, provide a mechanism for efficiently
instantiating entire pipelines in parallel, assuming enough
resources are available in the cluster to do so.

Fig. 2 provides an architectural overview of Timon and its
dependencies. In this diagram we can see the virtual cluster

4PowerfulSeal. URL: https://github.com/bloomberg/powerfulseal

environment where both the production pipeline and shorter-
lived configuration testing pipelines exist and are managed by
the container orchestrator. The flow of data is from left to
right, from source, i.e. distributed streaming platform, to sink,
i.e. client gateway. Each configuration testing pipeline is com-
posed in the same way as the production pipeline and would
be executing the same IoT analytics application. Importantly,
all configuration testing pipelines will also process the same
input data as the production pipeline. When notifications and
alarms produced by a configuration testing pipelines needs to
be written back to the distributed streaming platform, they will
each have their own unique messaging queues.

As part of the assumed IoT stream processing architecture
described in the previous section, each IoT analytics pipeline
records metrics in a time series database. After all testing
rounds have concluded, these metrics are collected, aggre-
gated, and subsequently analyzed to determine if statistically
significant effects were observed. If a better performing test-
ing pipeline is found than the current production pipeline,
then a strategy can be followed to replace it. This strategy
first involves migrating all data not stored in the production
pipeline to the new candidate pipeline, i.e. message queue and
data store. Next, user traffic needs to be redirected towards
the new data sources via the client gateway. In this way the
client gateway can be thought of as a load balancer. Lastly,
all redundant pipelines can then be safely decommissioned
and resources recovered. It is important to note that the
copying of archived data over the network can be an expensive
operation both in terms of time and network resources. It is
therefore prudent to follow a strategy which will minimize this
impact. Container orchestrators such as Kubernetes [27] offer
a number of mechanisms for working with persisted data5.

Apart from performance, reliability testing is also important
for understanding the behavior of distributed systems. The
amount of things that can go wrong while a distributed system
is running is enormous. This is mainly due to the distributed
nature of all the components (which interact exclusively
through direct message parsing). It is virtually impossible to
predict every possible failure mode and then engineer solutions
for all the edge cases. Instead, a more realistic approach would
be to identify the weaknesses which cause these failures before
they are triggered. This is where Chaos Engineering practices
can be used to complement traditional testing approaches.

5Persistent Volumes. URL: https://kubernetes.io/docs/concepts/storage/persistent-
volumes



Distributed 
Streaming 

Platform

CONTAINER ORCHESTRATOR

Configuration Testing Pipeline(s)

Distributed Stream Processing Framework

Chaos DaemonMetrics

TIMON

Configuration
Sets

Chaos
Scenarios

Performance
Metrics

Monitoring & Analytics Data Store

IoT Analytics
App

Architecture
Specs

Production Pipeline

Distributed Stream Processing Framework

Chaos DaemonMetrics

Monitoring & Analytics Data Store

Resource
Manager
Master

IoT Analytics
Application

Configuration
Set

Client Gateway

Testing
Parameters

Fig. 2. Overview of Timon and system dependencies.

Therefore, Timon provides the ability to optionally define
failure scenarios whereby failures are injected into the testing
environment so that their impacts can be studied.

V. EVALUATION

Now we demonstrate that using Timon is both practical and
beneficial for distributed stream processing by presenting an
experiment conducted to evaluate the impact of using different
checkpoint intervals on the overall performance of the system.
Ensuring that DSPFs are fault tolerant while running in the
production environment is imperative, however, quantifying
this impact is important when considering QoS.

A. Prototype Implementation

Timon is essentially a software client which interfaces
directly with a container orchestrator to automatically manage
the instantiation / destruction of container groups. These con-
tainer groups compose the inter-dependent systems which in
turn make up the individual analytics pipelines. For implemen-
tation, we use Docker6 and Kubernetes. These technologies
were selected because they provide an IaC approach for the
management and provisioning of pipelines through machine-
readable definition files. Additionally, Kubernetes provides a
mechanism for isolating pipelines through the use of names-
paces, thereby minimizing the possibility of interference.

6Docker. URL: https://docker.com

B. IoT Data Stream & Analytics Application

For the purposes of this experiment, we created a simulation
which mapped the streets and intersections of an area with one
kilometer radius of central Berlin, Germany. In this area we
generated a number of vehicles which travelled along various
routes while providing an update message every 1 second.
This update contained the: vehicle ID, vehicle type, current
location, speed, and direction. We use a sinusoidal function
to model traffic behaviors where the number of simultaneous
vehicles is varied from a minimum of 25,000 to a maximum
of 75,000 as a function of the time of day (t in seconds). This
was done to more closely resemble real traffic behaviors rather
than a linear gradient, i.e. the number of vehicles gradually
increases until a peak point (rush hour), before gradually
decreasing again. Messages are submitted to an Apache Kafka
cluster to await processing by the IoT analytics pipeline.

The live stream of traffic messages stored in Apache Kafka
are consumed and analyzed using a DSPF. We use Apache
Flink for our experiments as it has native support for fault-
tolerant stream processing and is known for high performance
and low latency [6]. A Flink cluster implements a master-slave
architecture which consists of two processes: the JobManager
and the TaskManager. We developed an analytics application
for the purpose of analysis and define the following task: De-
termine the total number of different vehicle types within the
simulation area accumulated over a 5 minute window period.



Results were outputted to an Apache Cassandra database. This
task uses ”group by” transformations where the stream was
logically partitioned into disjointed partitions. All messages
with the same key, therefore, were assigned to the same par-
tition which allowed for a high level of parallelism. The long
windowing period of 5 minutes results in a larger accumulating
of state across the parallel tasks and therefore is a good fit for
testing fault tolerance behaviors.

C. Experimental Setup

Our experimental setup consists of a 3 node Apache Kafka
cluster and a 30 node Kubernetes cluster with HDFS [28].
Node specifications are shown in Table I.

TABLE I
CLUSTER SPECIFICATIONS

Resource Details

OS Ubuntu 18.04.3
CPU Quadcore Intel Xeon CPU E3-1230 V2 3.30GHz

Memory 16 GB RAM
Storage 3TB RAID0 (3x1TB disks, linux software RAID)

Network 1 GBit Ethernet NIC
Software Java v1.8, Apache Flink v1.9.0, Apache Kafka

v2.3.0, Apache ZooKeeper v3.5.5, Docker v18.06,
Kubernetes v1.15.3, Apache HDFS V2.8.3,
Apache Cassandra v3.11.4, InfluxDB v1.6.4

We limit our configuration sets to vary a single variable,
i.e. checkpoint interval, and choose 3 different variations
representing short (1000ms), medium (20,000ms), and long
(120,000ms) intervals. Using Timon, we created 3 corre-
sponding configuration testing pipelines in Kubernetes, each
composed of:

• an Apache Flink (High Availability) cluster of 11 in-
stances (1 JobManagers and 10 TaskManagers);

• an Apache ZooKeeper cluster of 3 instances for dis-
tributed coordination;

• an Apache Cassandra cluster of 3 instances for archival
of processed data; and

• a single InfluxDB time series database instance for col-
lection of performance measurements.

We define four key indicators to measure the performance
of each configuration set. These are: end-to-end latency, in
DSPFs, is the time difference between the moment a message
is produced at the source task and the moment the tuple
is produced at the output; input throughput, measured in
messages / sec, is the cumulative frequency at which messages
enter the source tasks of the dataflow, and; CPU utilization and
heap memory utilization as a percentage.

The total time to provision pipelines for each experimental
testing round averaged 330 seconds. There were 5 rounds
of testing conducted where metrics were recorded over 6
hours with an increasing input throughput of 25,000 to 75,000
messages per second.

D. Experimental Results

In the experiments, during the user-defined time interval,
metrics were recorded and saved to a time-series database.
After all testing rounds were concluded, Timon automatically
retrieved these metrics, aggregated them, and analysis was
performed. Parallelism for the dataflow job was set to eight.
This resulted in one sink operator executing for each of the
eight active TaskManagers. Latency, therefore, is recorded at
each sink operator separately. In order to address the observed
variance in the performance metrics, the median latency value
from all sink operators was chosen for each timestamp. The
same was applied to the TaskManagers for CPU and memory
utilization. Furthermore, the experiment was run for a total of
five testing rounds over the same time interval, i.e. time of
day. Again, the median values for each time step were chosen
to be the expected values. To further remove noise from the
diagrams, exponential weighted moving average windows with
a span of 1000 seconds were applied to the averaged metrics.

25000 28350 37500 50000 62500 71650 75000
input throughput (events/sec)

500

1000

1500

2000
en

d-
to

-e
nd

 la
te

nc
y 

(m
s)

0 1 2 3 4 5 6
hours

checkpoint interval
1000 ms
20,000 ms
120,000 ms

Fig. 3. End-to-end latencies.

Fig. 3 shows the average latencies as measured at the sink
operator across all TaskManagers. Here we can clearly see
how, as input throughput increases, performance deteriorates
across all configurations. Additionally, latencies decrease more
drastically the shorter the checkpoint interval as input through-
put increases. It is visible there is a trade-off between QoS
requirements, i.e. the maximum amount of time before a
message should be processed, and the recovery time should
a failure occur, i.e. the time for the system to go to a state
where all messages are processed up until the failure.

Fig. 4 and 5 show the average resource utilization for
CPU and memory across all TaskManagers. Here we can see
how CPU and memory usage increases as input throughput
increases, however, in both cases utilization is low and there
is no need to provision more resources through configuration.
The default setting for memory assigned to each TaskManager
is 1 GB. Analysis of resource utilization for the JobManagers
was likewise performed. As is to be expected, CPU and
memory utilization was lower than the TaskManagers while
following the same trend of the shorter the checkpoint interval,
the more resources were consumed and this increases as input
throughput increases.



25000 28350 37500 50000 62500 71650 75000
input throughput (events/sec)

0.010

0.015

0.020

0.025

0.030

cp
u 

ut
iliz

at
io

n 
(%

)
0 1 2 3 4 5 6

hours

checkpoint interval
1000 ms
20,000 ms
120,000 ms

Fig. 4. TaskManager CPU utilization.

25000 28350 37500 50000 62500 71650 75000
input throughput (events/sec)

300

350

400

450

m
em

or
y 

ut
iliz

at
io

n 
(M

B)

0 1 2 3 4 5 6
hours

checkpoint interval
1000 ms
20,000 ms
120,000 ms

Fig. 5. TaskManager memory utilization.

VI. CONCLUSION

This paper presented an approach which allows for the ef-
fective testing of system configuration of critical IoT analytics
pipelines in realistic conditions. For this, we assume a typical
distributed architecture for critical IoT analytics pipelines and
utilize containerization as well as container-orchestration in
order to replicate instances of this architecture in parallel, each
with their own configuration set. We showed how using such a
testing approach in the production environment can capture the
runtime behaviors of stream processing applications in order
to investigate the individual performance of each configuration
set. This was done by aggregating chosen metrics recorded
over a defined number of testing rounds and then comparing
them. Ultimately, the choice of which configuration set is
the best performer should always consider pre-defined QoS
requirements.

In the future, we would like to expand upon our approach
in two ways. Firstly, we want to conducting experiments
with failure scenarios and including critical IoT analytics
applications from different domains in addition to smart city.
Secondly, we want to research flexible methods for automatic
parameter tuning and selection of optimal performing config-
urations. Nevertheless, this approach has already proven to be
a helpful testing method and a usable tool.

ACKNOWLEDGMENTS

This work has been supported through grants by the German
Ministry for Education and Research (BMBF) as Berlin Big
Data Center BBDC2 (funding mark 01IS18025A).

REFERENCES

[1] D. Georgakopoulos, P. Jayaraman, M. Fazia, M. Villari, and R. Ranjan,
“Internet of things and edge cloud computing roadmap for manufactur-
ing,” IEEE Cloud Computing, vol. 3, pp. 66–73, 2016.

[2] J. Jin, J. Gubbi, S. Marusic, and M. Palaniswami, “An information
framework for creating a smart city through internet of things,” IEEE
Internet of Things Journal, vol. 1, pp. 112–121, 2014.

[3] B. Cheng, S. Longo, F. Cirillo, M. Bauer, and E. Kovacs, “Building a big
data platform for smart cities: Experience and lessons from santander,”
2015 IEEE International Congress on Big Data, pp. 592–599, 2015.

[4] M. Lom, O. Pribyl, and M. Svitek, “Industry 4.0 as a part of smart
cities,” 2016 Smart Cities Symposium Prague (SCSP), pp. 1–6, 2016.

[5] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulka-
rni, J. Jackson, K. Gade, M. Fu, J. Donham, N. A. Bhagat, S. Mittal, and
D. Ryaboy, “Storm@twitter,” Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, 2014.

[6] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” IEEE Data Eng. Bull., vol. 38, pp. 28–38, 2015.

[7] G. Morales, A. Bifet, L. Khan, J. Gama, and W. Fan, “Iot big data
stream mining,” Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2016.

[8] A. Shukla, S. Chaturvedi, and Y. Simmhan, “Riotbench: An iot bench-
mark for distributed stream processing systems,” Concurrency and
Computation: Practice and Experience, vol. 29, 2017.

[9] S. Amini, I. Gerostathopoulos, and C. Prehofer, “Big data analytics
architecture for real-time traffic control,” 2017 5th IEEE International
Conference on Models and Technologies for Intelligent Transportation
Systems (MT-ITS), pp. 710–715, 2017.

[10] G. Jansen, I. Verbitskiy, T. Renner, and L. Thamsen, “Scheduling
stream processing tasks on geo-distributed heterogeneous resources,”
2018 IEEE International Conference on Big Data (Big Data), pp. 5159–
5164, 2018.

[11] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in HotCloud, 2010.

[12] G. White, V. Nallur, and S. Clarke, “Quality of service approaches in
iot: A systematic mapping,” J. Syst. Softw., vol. 132, pp. 186–203, 2017.

[13] S. Allen, M. Jankowski, and P. Pathirana, “Storm applied: Strategies for
real-time event processing,” 2015.

[14] L. Fischer, S. Gao, and A. Bernstein, “Machines tuning machines:
Configuring distributed stream processors with bayesian optimization,”
2015 IEEE International Conference on Cluster Computing, pp. 22–31,
2015.

[15] P. Jamshidi and G. Casale, “An uncertainty-aware approach to optimal
configuration of stream processing systems,” 2016 IEEE 24th Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS), pp. 39–48, 2016.

[16] M. Bilal and M. Canini, “Towards automatic parameter tuning of stream
processing systems,” Proceedings of the 2017 Symposium on Cloud
Computing, 2017.

[17] M. Trotter, G. Liu, and T. Wood, “Into the storm: Descrying optimal con-
figurations using genetic algorithms and bayesian optimization,” 2017
IEEE 2nd International Workshops on Foundations and Applications of
Self* Systems (FAS*W), pp. 175–180, 2017.

[18] M. Trotter, T. Wood, and J. Hwang, “Forecasting a storm: Divining op-
timal configurations using genetic algorithms and supervised learning,”
2019 IEEE International Conference on Autonomic Computing (ICAC),
pp. 136–146, 2019.

[19] B. Shahriari, K. Swersky, Z. Wang, R. Adams, and N. D. Freitas,
“Taking the human out of the loop: A review of bayesian optimization,”
Proceedings of the IEEE, vol. 104, pp. 148–175, 2016.

[20] C. Rasmussen and H. Nickisch, “Gaussian processes for machine
learning (gpml) toolbox,” J. Mach. Learn. Res., vol. 11, pp. 3011–3015,
2010.

[21] M. McKay, R. Beckman, and W. Conover, “A comparison of three
methods for selecting values of input variables in the analysis of output
from a computer code,” Technometrics, vol. 42, pp. 55 – 61, 2000.



[22] L. Vaquero and F. Cuadrado, “Auto-tuning distributed stream processing
systems using reinforcement learning,” ArXiv, vol. abs/1809.05495,
2018.

[23] X. Bu, J. Rao, and C. Xu, “A reinforcement learning approach to
online web systems auto-configuration,” 2009 29th IEEE International
Conference on Distributed Computing Systems, pp. 2–11, 2009.

[24] J. Kreps, “Kafka : a distributed messaging system for log processing,”
2011.

[25] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Oper. Syst. Rev., vol. 44, pp. 35–40,
2010.

[26] A. Basiri, N. Behnam, R. D. Rooij, L. Hochstein, L. Kosewski,
J. Reynolds, and C. Rosenthal, “Chaos engineering,” IEEE Software,
vol. 33, pp. 35–41, 2016.

[27] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,”
Proceedings of the Tenth European Conference on Computer Systems,
2015.

[28] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), pp. 1–10, 2010.


	I Introduction
	II Related Work
	III IoT Stream Processing Architecture
	IV Approach
	V Evaluation
	V-A Prototype Implementation
	V-B IoT Data Stream & Analytics Application
	V-C Experimental Setup
	V-D Experimental Results

	VI Conclusion
	References

