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Abstract—We study the convergence behavior of the stochastic
heavy-ball method with a small stepsize. Under a change of
time scale, we approximate the discrete method by a stochastic
differential equation that models small random perturbations of
a coupled system of nonlinear oscillators. We rigorously show
that the perturbed system converges to a local minimum in a
logarithmic time. This indicates that for the diffusion process
that approximates the stochastic heavy-ball method, it takes (up
to a logarithmic factor) only a linear time of the square root of
the inverse stepsize to escape from all saddle points. This results
may suggest a fast convergence of its discrete-time counterpart.
Our theoretical results are validated by numerical experiments.

Index Terms—heavyball method, dissipative nonlinear oscilla-
tor, saddle point, non-convex optimization, small random pertur-
bations of Hamiltonian systems.

I. INTRODUCTION.

Our motivation in this work comes from the smooth uncon-
strained optimization problem

min
x∈Rd

f(x) . (1)

This problem can be solved by optimization methods that ad-
mits second–order differential equation approximations. These
methods have been demonstrated acceleration towards con-
vergence. As an example, Nesterov’s accelerated gradient
method is a classical scheme of such type that has been
used numerously in optimization. The original method can be
“surrogated” by a limiting ODE of the form (see [27])

Ẍ(t) +
3

t
Ẋ(t) +∇Xf(X(t)) = 0 , X(0) ∈ Rd . (2)

Here ∇Xf(x) is the gradient of the function f with respect
to the X–variable.

XZ acknowledges the Hong Kong GRF support 11305318.

However, in many practices of statistical machine learning
and optimization (see, e.g., [29] and [31]–[33]), the momentum
variable does not necessarily require a time–decaying factor.
Such methods are within the range of “heavy ball methods”
date back to 1964 [26], which leads to the consideration of
the following version of the heavy ball method (e.g. [29]){

xk = xk−1 + εvk ;
vk = (1− αε)vk−1 − ε∇Xf (xk−1) .

(3)

Here under our scaling, α > 0 is the friction constant,
ε > 0 is the learning rate which is assumed to be small,
and µ = 1 − αε ∈ [0, 1] is the momentum coefficient. It is
straightforward to show that after time–rescaling t→ t/ε, the
family of the discrete-time processes (xbt/εc, vbt/εc) converges
as ε → 0 to the solution (X(t), V (t)) to the system of
differential equations:{

Ẋ(t) = V (t) ;

V̇ (t) = −αV (t)−∇Xf(X(t)) .
(4)

Such approximation can characterized in its Ansatz form (see
e.g. [27, Theorem 2]): for any fixed T > 0,

lim
ε→0

max
0≤t≤T

(
|xbt/εc −X(t)|+ |vbt/εc − V (t)|

)
= 0,

where | · | is the standard Euclidean norms in Rd. Equation (4)
is a Hamiltonian system with a constant friction α. It can be
written in compact form as a second-order differential equation

Ẍ(t) + αẊ(t) +∇Xf(X(t)) = 0 . (5)

In this work, we mainly focus on the stochastic version
of (4) or (5) as the dynamical equation to approach local
minimizers of the objective function f(x). One main reason
to consider the stochastic scheme for (4) is to help the escape
from saddle points when the objective function f(x) is non–
convex in optimization practice. In this case, the deterministic
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process X(t) in (4) can be trapped at local maximum points or
saddle points of f , and therefore the question arises whether
or not one can add a noise to help the escape from these
unfavorable critical points. To this end, consider the following
noisy scheme of (3) which we call the stochastic heavy–ball
method: {

xk = xk−1 + εṽk ;

vk = (1− αε)vk−1 − ε∇̃Xf (xk−1) .
(6)

Here ṽk := vk + unbiased noise, and the noisy gradient
∇̃Xf := ∇Xf + unbiased noise. Let us pick the noise in the
x–variable iteration to be independent of the noise chosen in
the v–variable iteration. Following the general scheme in [14],
[21], [22], [4], [3], [19], this leads to a system of stochastic
differential equations as follows dx(t) = εv(t)dt+ εσ1(x(t), v(t))dW 1

t ;
dv(t) = −ε(αv(t) +∇Xf(x(t)))dt

+εσ2(x(t), v(t))dW 2
t .

(7)

Here dt shall be seen as 1, so it makes sense that we have both√
s and dt. This is a time-rescaled version of the approximat-

ing SDE seen in other literatures [21], [22]. Here W 1
t and W 2

t

are two independent d–dimensional Brownian motions, and
σ1(x(t), v(t)), σ2(x(t), v(t)) originates from the noise covari-
ance regarding to the two processes ṽt and ∇̃Xf(x) satisfying
the non-degenerate condition that ai(x, v) ≡ σi(x, v)σTi (x, v)
are uniformly positive-definite for i = 1, 2. Equation (6) can
be regarded as the time-discrertized scheme of (7) with a unit-
time stepsize.

In this work, we shall study the stochastic continuous model
(7) as heavy ball methods and shows that this converges to a
local minimum in a linear time with respect to ε−1 up to a
logarithmic factor. It is well-known (e.g. in the seminal work
[27]) that a continuous-time process serves as a surrogate of
some discrete-time algorithms, and the convergence result of
the continuous-time process (7) sheds light on the behaviors
of the discrete-time counterpart.1 Our main result can be
formulated roughly as the following:

Meta-Theorem 1: [Convergence of the diffusion limit of
the stochastic heavy–ball method] Under some mild non-
degenerate condition on covariances, as ε → 0, the process
x(t) in (7) converges to local minimizers of the objective
function f(x) after the time . Cε−1 ln(ε−1) on average. Here
the constant C > 0 depends on the function f and the friction
constant α.

To our best knowledge, our Meta Theorem 1 is the first
among continuous-time methods for stochastic heavy-ball
method for non-convex optimization, and we compare it with
another line of works discussed for discrete-time non-convex
stochastic algorithms. For instance, [15], [16], [25] discussed
the case of the so-called perturbed GD and AGD, where the
gradient oracle is deterministic. [6] discussed fast escaping of

1We remarks on the gap of discrete algorithm and continuous-time model
has been discussed and analyzed in [14], [21], who proved that for an O(ε−1)
time interval the error gap between the discrete-time and continuous-time
models is of O(ε). Our work does not, however, aim to analyze such a gap.

saddle points via stochastic gradient oracles. Along with these
existing analysis, our results offer a further hint towards the
fact that the stochastic noise and acceleration are sufficiently
helpful in escaping certain families of saddle points. In com-
parison, our work attempts to handle the ”stochastic” setting
in continuous time, with stochastic gradient oracle accessible
to the algorithm. For instance, in the PGD analysis of [15] it
takes (for stepsize η) η−1γ−11 steps to escape one saddle point,

and PAGD in [16] uses ε−1
√
γ−11 time to escape one saddle

point, where both stepsizes are picked as O(1). Here, ε is the
upper bound of the Euclidean norm of the gradient for a critical
point, and −γ1 upper bounds the least Hessian eigenvalue at
the saddle point (see Definition 5.2 and [12], [28]). Both match
the result in the stochastic setting as in this work, but our
choice of stepsize needs to be much smaller in order to cope
with the stochasticity. As the readers will see later, our analysis
works with the imposed “strong” saddle assumption which is
a quantitative characterization of the Morse function. Removal
of the strong saddle property, though, may be possible using
more (nontrivial) technicalities which is left for future work.

The paper is organized as follows. In Section II we establish
the connection between our continuous dynamics and the ran-
domly perturbed dissipative nonlinear oscillators. In Section
III we offer a heuristic argument based on the simple calcu-
lation for the special case where f is quadratic. Section IV
reviews the basics of dissipative Hamiltonian system. Section
V is the main body where we provide the convergence proof by
first considering the exit behavior of the randomly perturbed
process near one specific saddle point and then considering
global convergence in the case when there is a chain of saddle
points. In Section VI we provide numerical results that validate
our theory. Finally, Section VII is dedicated to some further
discussions.

II. RANDOMLY PERTURBED DISSIPATIVE NONLINEAR
OSCILLATORS

Our main idea is to reduce the problem to the study on the
exit problem of the randomly perturbed Hamiltonian system
[11, Chapter 9]. To illustrate the connection, consider the
process (x(t), v(t)) defined in (7). We apply the following
time rescaling technique:

Xε(t) := x(t/ε), and V ε(t) := v(t/ε), (8)

then (7) is equivalently transformed to the following system dXε(t) = V ε(t)dt+
√
εσ1(Xε(t), V ε(t))dW 1

t ;
dV ε(t) = (−αV ε(t)−∇Xf(Xε(t)))dt

+
√
εσ2(Xε(t), V ε(t))dW 2

t .
(9)

Equation (9) is a small random perturbation of (4), where√
ε represents the small intensity of the noise. This equation

is the main focus on our analytic studies in this paper.
Since the intensity of the perturbation is small, the trajectory
(Xε(t), V ε(t)) of (9) will be close to (X(t), V (t)) of the
deterministic system (4) with the same initial condition in any



finite–time interval [0, T ], so that we have for any δ > 0 and
T > 0,

lim
ε→0

P

(
max
0≤t≤T

(|Xε(t)−X(t)|+ |V ε(t)− V (t)|) > δ

)
= 0

(10)
under the same initial Xε(0) = X(0) and V ε(0) = V (0).

This estimation is an approximation in finite time of the
perturbed process to the unperturbed one. In the long run, e.g.
with a logarithmic time scale as shown in (42), the perturbed
process may escape saddle points while the unperturbed pro-
cess may not be able to do so.

Before we carry out the detailed analysis for the stochastic
system (9), we first discuss some basic facts on the unper-
turbed system (4), which is a Hamiltonian system with friction
(see Appendix IV for more on the Hamiltonian formulation of
the problem). The Hamiltonian associated with (4) is

H(X,V ) =
1

2
V 2 + f(X) . (11)

For any α > 0, (4) is a dissipative system in the sense that its
trajectory (X(t), V (t)) satisfies for any t > 0

H(X(t), V (t))−H(X(0), V (0)) = −α
∫ t

0

(V (s))2ds . (12)

From (12), we see that the Hamiltonian function
H(X(t), V (t)) is strictly decaying, unless V (s) ≡ 0,∀s ∈
(0, t). One can show that critical points of (4) all lie on
the X–axis (or X–plane, and we refer this to the X–axis
throughout the text that follows: It simply means that V = 0).
These critical points have (X,V ) coordinates (X, 0) in
which X is a critical point of the function f . If X is a
local minimum point of the function f(X), then (X, 0) is a
local minimum point of the Hamiltonian H; If X is a local
maximum or saddle point of the function f(X), then (X, 0)
is a saddle point of the Hamiltonian H (see Lemma 5.1 in
Section IV).

From the above reasoning, we see the deterministic system
(4) to approaches a critical point of H(X,V ) and the trajectory
(X(t), V (t)) may be trapped there. Notice that there are
two types of critical points of H(X,V ): saddle point or
local minimum point. Due to instability of the flow near the
saddle point, one can expect that random perturbations in (9)
help the process leave the saddle point after wandering in
its neighborhood for sufficiently long time. This is exactly
the reason why we shall devote lots of efforts below in
this paper for the randomly perturbed system (9). We shall
see that the perturbed system (Xε(t), V ε(t)) converges only
to local minimum points of H(X,V ) after sufficiently long
time and the expected value of this convergence time is
roughly bounded by O(ln(ε−1)) for the sufficient small ε. See
Theorem 5.5 for details. It is worth pointing out that when the
objective function f is bounded from both above and below,
then our conclusion holds for arbitrary initial condition.

III. HEURISTIC DERIVATION FOR THE QUADRATIC
OBJECTIVE FUNCTION

To demonstrate the key ideas of our proof in Section V, we
present the heuristic argument in the simple quadratic case:
f(x) = 1

2x
TΛx with Λ = diag{λ1, . . . , λd}, where λi 6= 0 for

all i. f now has only one saddle point X∗ = 0. The calculation
for this quadratic case is fundamentally important since the
proof of the general case is based on the local linearization
assumption near the saddle point provided by the Hartman-
Grobman Theorem (see Assumption 1 below). Furthermore,
we assume σ1 = 0 to simply the calcuation. This means that
there is no noisy term in the v-iteration for (6). With these
assumptions, (9) can be reduced to{

dXε(t) = V ε(t)dt ;
dV ε(t) = (−αV ε(t)− ΛXε(t))dt+

√
εSdW (t) .

(13)
where SST = E(∇̃Xf(X∗)[∇̃Xf(X∗)]

T ) and Wt is a stan-
dard d-dimensional Brownian motion. Note (13) is a linear
system. Its second-order form is

d2Xε

dt2
+ α

dXε

dt
+ ΛXε =

√
εS
dW

dt
. (14)

This indicates the following rescaling in space:

X̃(t) := Xε(t)/
√
ε, and Ṽ (t) := V ε(t)/

√
ε, (15)

then (X̃, Ṽ ) satisfies the following stochastic differential equa-
tion independent of ε:{

dX̃(t) = Ṽ (t)dt ;

dṼ (t) = (−αṼ (t)− ΛX̃(t))dt+ SdW (t) .
(16)

(14) is then equivalent to

d2X̃

dt2
+ α

dX̃

dt
+ ΛX̃ = S

dW

dt
.

Write X̃ = (X̃1, . . . , X̃d) component-wisely. Without loss
of generality, we consider the first component X̃1(t) of (16)
and let e1 be the elementary basis vector (1, 0, . . . , 0) in Rd.
We now have a linear scalar-valued stochastic dissipative linear
oscillator for X̃1(t) = eT1 X̃(t):

d2X̃1

dt2
+ α

dX̃1

dt
+ λ1X̃1 = eT1 S

dW

dt
= σ

dW̃1

dt
, (17)

where σ =
√
eT1 SS

T e1 > 0, and W̃1 = σ−1eT1 SW is the
standard one dimensional Brownian motion. The behavior of
the solution to (17) is mainly determined by the characteristic
equation for a scalar µ satisfying

µ2 + αµ+ λ1 = 0.

Now we assume that λ1 < 0 since we mainly consider the
saddle point. Then the two roots

µ± =
−α±

√
α2 − 4λ1
2

(18)



are both real and satisfies µ− < 0 < µ+. In this case, the
general solution to (17) has the explicit form:

X̃1(t) =eµ
+t

(
C1 + σ

∫ t

0

e−µ
+s

µ+ − µ−
dW̃1(s)

)

+ eµ
−t

(
C2 − σ

∫ t

0

e−µ
−s

µ+ − µ−
dW̃1(s)

)
∼ eµ

+t.

(19)

One can also verity that the variance Var(X̃1(t)) ∼ e2µ+t for
large t.

Now recall that the original process x(t) in (7) is linked to
X̃(t) here by the following scaling both in time and space
x(t) = Xε(εt) =

√
εX̃(εt). So, x1(t) =

√
εX̃1(εt) ∼√

εeµ
+εt. To exit a neighbour around the saddle point X∗ = 0,

it will takes x1(t) the time roughly about 1
2

1
µ+ ε

−1 ln(ε−1),
which is consistent with the rate given in Meta-Theorem 1.

We hope this simple analysis for the escape behavior
near the saddle point can shed light on the insight for our
rigorous analysis below. The main result is Theorem 5.2 where
there are two key ingredients in the proof. The first one is
the linearization analysis for the 2d dimensional dissipative
Hamiltonian system for all possible values of the eigenvalues
λi, which is a generalization of the above eigenvalue analysis
(18) for (17). Refer to Proposition A.1 in Appendix A. The
second ingredient is to apply the main result of [18] which was
originally for the first order dynamical system in our current
setup. Our method is to consider the Hamiltonian flow in the
(x, v) phase space R2d.

IV. HAMILTONIAN FORMATION OF THE DISSIPATIVE
NONLINEAR OSCILLATOR

In this section, we provide standard Hamiltonian formula-
tions for our randomly perturbed dissipative oscillator system.
Throughout the text, ∇X or ∇V will denote gradient with
respect to X or V variable, respectively, and ∇2

X , ∇2
V , etc. are

denoted similarly; ∇ denotes gradient with respect to (X,V )

variable, and ∇2 are denoted similarly; if we use
∂

∂X
or

∂

∂V
,

then it means the corresponding gradients with respect to X

or V variable, and
∂2

∂X2
or

∂2

∂V 2
, etc. are defined similarly.

Standard Euclidean norms in Rd are defined either by | • |Rd
or | • |.

We consider a Hamiltonian system{
dX(t) = V (t)dt , X(0) ∈ Rd ;
dV (t) = −∇Xf(X(t))dt , V (0) ∈ Rd . (20)

We add friction to (20), and we get{
dX(t) = V (t)dt , X(0) ∈ Rd ;
dV (t) = (−αV (t)−∇Xf(X(t)))dt , V (0) ∈ Rd .

(21)
We will denote the flow map of (21) to be St, so that

(X(t), V (t)) = St(X(0), V (0)). Let us define the Hamilto-
nian

H(X,V ) =
1

2
V 2 + f(X) , (22)

so that
∂H

∂V
= V and

∂H

∂X
= ∇Xf(X) .

Let (XO, VO) be a critical point of H . The above implies
that V0 = 0 and X0 is a critical point of f(X). From (22) we
have a formal expansion

H(X,V ) =H(X0, 0) +
1

2
V 2 + (X −X0)T∇2

Xf(X)(X −X0)

+ higher order terms in X.
(23)

If X0 is a local minimum point of f(X), then (23) tells us
that (X0, 0) is a local minimum point of H(X,V ). If X0 is
a local maximum or saddle point of f(X), then (23) tells us
that (X0, 0) is a saddle point of f(X). In particular, by our
strong saddle property assumption for the potential function
f (see Definition 5.3 in Section V), it is easy to see that
the Hamiltonian function H(X,V ) also has the strong saddle
property. The summary of these discussions is presented in
Lemma 5.1.

Define the column vector Y (t) =

(
X(t)
V (t)

)
∈ R2d and the

skew gradient

∇⊥H(X,V ) =

 ∂H

∂V

−∂H
∂X

 . (24)

Then the system (21) can be written in a standard Hamiltonian
form with friction

dY

dt
= ∇⊥H(Y (t))+b(Y (t)) , Y (0) = Y0 ∈ Rd×Rd . (25)

Here b(X,V ) = (0,−αV )T is the friction vector field.
Notice that divb = −α < 0 corresponds to the classical
friction case. Furthermore, b(X,V ) is a gradient field in the
sense that we can write b(X,V ) = −∇B(X,V ), in which

B(X,V ) =
1

2
αV 2.

Let us introduce the standard symplectic matrix

J =

(
0 Id
−Id 0

)
. (26)

The standard symplectic matrix J has the property that J2 =
−I2d, JT = −J = J−1.

The Hamiltonian vector field ∇⊥H(Y ) can be written as
∇⊥H(Y ) = J∇H(Y ). The local behavior of this vector field
near its critical point is characterized by the “skew Hessian
matrix”

∇[J∇H(X,V )] =

 ∂2H

∂X∂V

∂2H

∂V 2

−∂
2H

∂X2
− ∂2H

∂X∂V

 =

(
0 Id

−∇2
Xf(X) 0

)
,

(27)



in the sense that we have the expansion around a critical point
(XO, VO) of ∇⊥H:

∇⊥H(X,V ) = ∇J∇H(XO, VO)

(
X −XO

V − VO

)
+ψ(X −XO, V − VO)(|X −XO|2Rd + |V − VO|2Rd) ,

(28)

where ψ(X,V ) is some bounded smooth vector–function in
the variables (X,V ).

Let us also calculate the Hessian matrix of the Hamiltonian
function H as

∇2H(X,V ) =

 ∂2H

∂X2

∂2H

∂X∂V
∂2H

∂X∂V

∂2H

∂V 2

 =

(
∇2
Xf(X) 0

0 Id

)
.

(29)
From (27) and (29), taking into account that ∇2

Xf is a
symmetric matrix, we see that we have the relation

J∇2H(X,V ) = ∇[J∇H(X,V )]. (30)

Let us denote the matrix

I0 =

(
0 0
0 Id

)
. (31)

Then we can write the friction term b(X,V ) as

b(Y ) = −αI0Y (32)

where Y =

(
X
V

)
. Then the linearized behavior of the

dissipative Hamiltonian oscillator (21) is determined by the
Jacobi matrix

A = ∇[J∇H(X,V )]− αI0 =

(
0, Id

−∇2
Xf(X), −αId

)
.

(33)

V. RIGOROUS PROOF OF GLOBAL CONVERGENCE IN
GENERAL CASE

Before we continue with the analysis, we will make some
additional structural assumptions on the function f(x).

A. Strong saddle property

Definition 5.1: A smooth function f : Rd → R is a Morse
function if it has all critical points being non–degenerate,
i.e., the Hessian ∇2f(xO) at any critical point xO is non–
degenrate. This implies that all eigenvalues λ1 ≤ ... ≤ λd at
xO are nonzero.

Morse functions admit local quadratic re–parametrization at
each critical point, which is the content of the so–called Morse
Lemma [24, Lemma 2.2]. To ensure that the perturbation helps
the process X(t) escape from saddle points, we introduce the
following “strict saddle property” (compare with [12], [28])
as follows.

Definition 5.2 (strict saddle property): Given fixed γ1 > 0
and γ2 > 0, we say a Morse function f defined on Rd satisfies

the “strict saddle property” if each point x ∈ Rd belongs to
one of the following three cases:

(i) |∇f(x)| > γ2 > 0 ;
(ii) |∇f(x)| ≤ γ2 and λmin(∇2f(x)) ≤ −γ1 < 0 ;

(iii) |∇f(x)| ≤ γ2 and λmin(∇2f(x)) ≥ γ1 > 0.
Here λmin(∇2f(x)) is the minimal eigenvalue of the Hessian
matrix ∇2f(x) at point x.

We will call a saddle point x ∈ Rd of the function f a “strict
saddle” if Definition 5.2 (ii) holds at x. Thus a Morse function
f that satisfies the strict saddle property has all its saddle
points that are strict saddle points. Note that the strict saddle
property above only focus on the minimal eigenvalues but does
not imply anything on the degeneracy of the eigenvalues.

For the sake of proof, we need to assume that all eigenvalues
of the Hessian∇2f(x) at critical points are uniformly bounded
away from 0 in absolutely value (which is stronger than
the non-degeneracy requirement in the definition of Morse
function). This leads to our new notion of “strong saddle
property” as follows.

Definition 5.3 (strong saddle property): We say the Morse
function f satisfies the “strong saddle property” if it satisfies
the strict saddle property defined above and there exits a
constant γ3 > 0 such that for any critical point xO ( i.e.,
∇f(xO) = 0), all eigenvalues λi(xO), i = 1, 2, ..., d, of the
Hessian ∇2f(xO) satisfy |λi(xO)| ≥ γ3 > 0.

We will call a saddle point x ∈ Rd of the function f a
“strong saddle” if Definition 5.3 holds at x. Note that strong
saddle points are the strict saddle points where the absolute
values of all eigenvalues of the Hessian are bounded away
from 0 by a positive constant γ3. Throughout this paper we
will work under Definition 5.3 for the objective function f .

B. Exit behavior near one specific saddle point

To carry out the analysis like in Section III and to apply the
main theories in [18], we write the system (9) in the standard
Hamiltonian form (see Section IV)

dY εt = [∇⊥H(Y εt ) + b(Y εt )]dt+
√
εΣ(Y εt )dWt . (34)

where
Y εt := (Xε(t), V ε(t))T ∈ R2d

is seen as the column vector in R2d.
We study in this subsection the exit behavior of (34) near

one specific saddle point. Our method here follows that of [18],
[23], [7], [2], [13], among many other literature dedicated to
this topic. The main difference here is that we are working
with the Hamiltonian dynamics.

In the case when α > 0 is small as the parameter ε > 0
goes to zero, the general program of dealing with a randomly
perturbed Hamiltonian system such as (34) is considered in
[10], [5], [8], [10], [9], [11, Chapter 9]. In our case, the friction
term b(X,V ) = (0,−αV ) has a magnitude that is moderate
when compared to the Hamiltonian flow ∇⊥H , and it does not
go to zero together with the small parameter ε > 0. In this
case, one has to carefully analyze the behavior of the process
(34) near the saddle point.



Recall than the deterministic version of (34) is the Hamil-
tonian flow with friction defined in (4). We study the critical
points and the linear part of (4). First of all, we have the
following lemma.

Lemma 5.1: Let α > 0. All critical points of the system (4)
lie on the X–axis. These critical points are all saddle points
of the Hamiltonian flow ∇⊥H and have (X,V ) coordinates
(X, 0) where X is a critical point of f(X). If X is a
local minimum point of the function f(X), then (X, 0) is
a local minimum point of the Hamiltonian H; If X is a local
maximum or saddle point of the function f(X), then (X, 0)
is a saddle point of the Hamiltonian H . All saddle points of
the Hamiltonian function H(X,V ) are strong saddle points in
Definition 5.3.

By Lemma 5.1, let O = (XO, 0) ∈ R2d be a saddle point
of the Hamiltonian. then XO is a local maximum or saddle
point of the function f . The linear part of the flow (4) near the
saddle point O is given by the 2d×2d Jacobi matrix A defined
in (33). Since ∇2

Xf(XO) is a symmetric matrix, we can find
an orthonormal basis ξ1, ..., ξd (viewed as column vectors) in
Rd such that ∇2

Xf(O)ξi = λiξi. XO is a local maximum or
saddle point of f(x), and thus we see that without loss of
generality we can assume that

λ1 ≤ λ2 ≤ ... ≤ λk < 0 < λk+1 ≤ ... ≤ λd (35)

for some 1 ≤ k ≤ d. k is the number of negative eigenvalues,
the index of the saddle point of XO.

Proposition A.1 in Appendix A is an important tool bridging
the eigenvalues of the matrix A for the dissipative Hamiltonian
flow (4) with (λi, ξi) the eignpairs of the Hessian ∇2f(XO).
This proposition is the substantial development of our one
dimensional calculation in Section III and the cornerstone of
our main results.

To state our main result Theorem 5.2, we present the follow-
ing specifications. Let G be a connected open neighborhood in
R2d of the saddle point O with the smooth boundary ∂G, such
that O is the only critical point of the Hamiltonian flow ∇⊥H
inside G. Let the process Y εt = (Xε(t), V ε(t))T defined in
(9) start from initial condition Y ε0 = (x, v) ∈ G. Let

τε(x,v) = inf{t > 0 : Y ε0 = (x, v) , Y εt ∈ ∂G} . (36)

Denote the flow map of (4) be defined as St. Introduce the
decomposition as in [18]:

G ∪ ∂G = 0 ∪A1 ∪A2 ∪A3 ,

where A1 is a set of points (x, v) ∈ G ∪ ∂G such that if
(x, v) ∈ A1 then Su(x, v) ∈ G for u > s and Su(x, v) 6∈
G ∪ ∂G if u ≤ s for some s = s(x, v) ≤ 0 and St(x, v)→ 0
as t → ∞; A2 is a set of points (x, v) ∈ G ∪ ∂G such that
if (x, v) ∈ A2 then Su(x, v) ∈ G for u < s and Su(x, v) 6∈
G ∪ ∂G if u > s for some s = s(x, v) ≥ 0 and St(x, v)→ 0
as t → −∞; A3 is a set of points x ∈ G ∪ ∂G such that if
(x, v) ∈ A3 then Su(x, v) ∈ G provided s1 < u < s2 and
Su(x, v) 6∈ G ∪ ∂G if either u > s2 or u < s1 for some

s1 = s1(x, v) ≤ 0 and s2 = s2(x, v) ≥ 0. In other words, A1

is the set of initial points which will enter G from outside, A2

is the set of initial points which will exit G from inside, and
A3 is the set of initial points which will cross (i.e., enter and
then exit) G. If (x, v) ∈ A2∪A3, then St(x, v) leaves G after
some time, so that there is a finite

t(x, v) = inf{t > 0 : St(x, v) ∈ ∂G} . (37)

To specify the exit distribution on ∂G, we need some further
technical assumptions as in [18]. Assume there exists some
1 ≤ k◦ ≤ k such that λ1 = λ2 = ... = λk◦ . So k◦ is
the multiplicity of the lowest eigenvalues. Denote by γmax the
eigenspace of A in (33) which corresponds to the eigenvalues
µ+
1 , ..., µ

+
k◦ . Then as in [18], there exists a k◦–dimensional

sub–manifold Wmax tangent to γmax at the saddle point O and
is invariant with respect to St. We see that Qmax = Wmax∩∂G
is not empty.

Now we state our first theorem. Define

µ0 =
−α+

√
α2 − 4λ1
2

> 0. (38)

which plays the similar role to (18).
Theorem 5.2: (a) (Exit time) For each fixed (x, v) ∈ G we

have

lim sup
ε→0

Eτε(x,v)

ln(ε−1)
≤ 1

2µ0
. (39)

(b) (Exit distribution) If (x, v) ∈ (O∪A1)\∂G then for any
open set Q of ∂G such that Q ⊃ Qmax we have

lim
ε↓0

P(Y ετε
(x,v)
∈ Q) = 1 . (40)

If (x, v) ∈ A2 ∪ A3 then for any Borel measurable set Q of
∂G we have

lim
ε↓0

P(Y ετε
(x,v)
∈ Q) = 1(St(x,v)(x, v) ∈ Q) . (41)

The proof is the direct application of Theorems 2.1–2.3 of
[18] in view of Proposition A.1 in Appendix A and we skip
the proof.

Theorem 5.2 characterizes the asymptotic exit time for
the exit from one specific saddle point and the bound is
in the sense of super limit. In the next, we extend this
theorem to a uniform bound in Theorem 5.3. We would like
to point out here, that improving Theorem 5.2 to Theorem 5.3
requires essential exploitation of the Linearization Assumption
(Assumption 1 below). By the classical Hartman–Grobman
Theorem (see [1, §13]), for any strong saddle point O that
we consider, there exists an open neighborhood G of O, and
a C(0) homeomorphism mapping h : G → Rn, such that
the dissipative Hamiltonian flow given by (4) is mapped by h
into a linear flow. The homeomorphism h is called a (linear)
conjugacy mapping. To make our argument work, we will have
to put a stronger assumption.

Assumption 1 (Linearization Assumption): The homeomor-
phism h provided by the Hartman-Grobman Theorem can be
taken to be C(2).



It is known that a sufficient condition for the validity of the
C(2) Linearization Assumption is the so called non–resonance
condition (see, for example, the Sternberg linearization Theo-
rem [17, Theorem 6.6.6]).

Let U be an open neighborhood of the saddle point O such
that dist(U∪∂U, ∂G) > 0. The following theorem holds under
Assumption 1.

Theorem 5.3: (a) (Exit time) For any r > 0, there exist some
ε0 > 0 so that for all (x, v) ∈ U ∪ ∂U and all 0 < ε < ε0 we
have

Eτε(x,v)

ln(ε−1)
≤ 1

2µ0
+ r . (42)

Here the stopping time τε(x,v) is defined as in (36), and µ0 is
defined as in (38).

(b) (Exit distribution) For any small κ > 0 and any ρ > 0,
there exist some ε0 > 0 so that for all x ∈ U ∪ ∂U and all
0 < ε < ε0 we have

P(Y ετε
(x,v)
∈ Qκ) ≥ 1− ρ . (43)

Here Qκ = {(x, v) ∈ ∂G , dist((x, v), ∂GU∪∂U→out) < κ}
with

∂GU∪∂U→out = Qmax ∪ {St(x,v)(x, v) for some
(x, v) ∈ U ∪ ∂U with finite t(x, v)} .

The proof of this Theorem can be found in Appendix B.

C. Chain of saddle points and the global convergence

Upon exit from a neighborhood of a saddle point, the
process Y εt in (34) may further involve multiple saddle points
before reach a local minimum. We will analyze the case where
there is a chain of saddle points in this part. We would like to
point out that there might be an infinite number of saddle
points in the landscape. Nevertheless, our results apply to
the convergence time when the continuous dynamics passes
k consecutive saddle points among all of these saddle points,
so that we are analyzing the time during which the dynamics
visits the k consecutive saddle points.

Assume that there are k–consecutive strong saddle points
O1, ..., Ok of the Hamiltonian H(X,V ) such that H(O1) >
H(O2) > ... > H(Ok). Let O∗ be a local minimum point of
H(X,V ) such that H(Ok) > H(O∗) and there are no other
critical points o such that H(Ok) > H(o) > H(O∗).

Notice that any critical point of the Hamiltonian flow ∇⊥H
has V –component equal to zero. Furthermore, the saddle
points O1, ..., Ok are of the form Oj = (xOj , 0), j = 1, 2, ..., k
where xOj is a local maximum point or saddle point (under
Definition 5.3) of the potential function f(x). In the same way
we have O∗ = (x∗, 0) where x∗ is a local minimum point of
the potential function f(x).

Select a small number e > 0. For the perturbed process Y εt
in (34), define the stopping time

T H,ε(X,V ) = inf {t ≥ 0 : Y ε0 = (X,V ), H(Y εt ) < H∗ + e} .
(44)

where H∗ := H((x∗, 0)) = f(x∗) is the minimum of H (as
well as of f ) at the local minimizer (x∗, 0). Similarly, we
define

T f,ε(X,V ) = inf{t ≥ 0 : Xε
0 = X , f(Xε

t ) < f(x∗) + e}. (45)

It is clear that T H,ε(X,V ) ≥ T
f,ε
(X,V ) since H(Y εt ) = f(Xε

t ) +
1
2 |V

ε
t |2 and H∗ = f(x∗). In this section we aim at charac-

terizing the asymptotic upper bound as ε → 0 of the times
T H,ε(X,V ) (or T f,ε(X,V )).

For each saddle point Oi, we consider a nested pair of open
neighborhoods Ui ( Gi containing Oi. Let us first pick k
disjoint neighbours Gi, i = 1, 2, ..., k in such a way that
Oi ∈ Gi is the only critical point inside Gi, and for any
i 6= j we have Gi ∩ Gj = ∅. Then select Ui ⊂ Gi such
that dist(∂Ui, ∂Gi) > 0 for all i = 1, 2, ..., k. For each saddle
point Oi, let us denote by γi,max the eigenspace of the Jacobi
matrixA(Oi) which corresponds to the eigenvalues with the
largest positive real parts (see (33) and Theorem 5.2) . For
each open neighborhood Gi, as in [18], we can construct
a submanifold Wi,max that is tangent to γi,max at Oi and is
invariant with respect to St. Let Qi,max = Wi,max ∩ ∂Gi. By
the classification of points in Gi ∪ ∂Gi as Oi, A1, A2, A3 as
in [18] presented right above Theorem 5.2, we see that for any
point (x, v) ∈ Ui ∪ ∂Ui, either there exist some finite t(x, v)
such that St(x,v)(x, v) ∈ ∂Gi, or St(x, v) → Oi as t → ∞.
Let

∂Gi,Ui∪∂Ui→out = Qi,max ∪ {St(x,v)(x, v) for some
(x, v) ∈ Ui ∪ ∂Ui with finite t(x, v)} .

For the small e > 0, define

U = {(x, v) ∈ R2d : H(x, v) < H(O∗) + e

for some local minimum point O∗} .

The set U =
⋃
j

Uj where each Uj is an open neighborhood of

one of the local minimum points of the Hamiltonian H(X,V ).
We can set e > 0 to be so small that each of Ui and Uj are
mutually disjoint, and they are also disjoint with any of the
Gi’s.

Let us pick the neighborhoods Gi sufficiently small such
that starting from any point (x, v) on Gi ∪∂Gi, the determin-
istic flow St(x, v) of (4) will never return to Gi ∪ ∂Gi. This

can be achieved by the friction term b(X,V ). Let U =
k⋃
i=1

Ui

and G =
k⋃
i=1

Gi. Let

K = inf
{
|∇⊥H(x, v)| : (x, v) 6∈ U ∪ U

}
. (46)

From our construction above we see that K > 0 and it is
independent of ε. With the initial Y ε0 = (X0, V0)T , we define
the sequence of stopping times

0 = σε0 ≤ τε1 ≤ σε1 ≤ τε2 ≤ σε2 ≤ ...

where

τεj := inf
{
t > σεj−1 : Y εt ∈ ∂U ∪ ∂U

}
,



and
σεj := inf

{
t > τεj : Y εt ∈ ∂G ∪ ∂U

}
.

Starting from any initial condition Y ε0 = (X0, V0) outside
of G ∪ U , such that there exists constants H1, H2 we have

H1 < H(X0, V0) < H2, (47)

the process Y εt travels for time τε1 before it enters U ∪ U . We
can bound the expected time τε1 in the following proposition
(Lemma 3.3 in [13]).

Proposition 5.4: There exists some ε0 > 0 uniformly for all
Y ε0 = (X0, V0) with H1 < H(X0, V0) < H2, such that for all
0 < ε < ε0,

Exτ
ε
1 ≤ C . (48)

for a finite number C > 0 independent of ε.

Finally by using the arguments of [13, Section 3], we then
have the theorem below as a generalization of Theorem 5.2.

Theorem 5.5: Consider the process Y εt defined as in (34)
with the initial conditions bounded by (47). Assume the
diffusion matrix Σ(Y )ΣT (Y ) is uniformly positive definite
for all choices of Y . Then we have

(i) For any small ρ > 0, with probability at least 1 − ρ,
the process Y εt in (34) converges to the local minimum point
O∗ for sufficiently small ε after passing through all k saddle
points O1, ..., Ok;

(ii) As ε ↓ 0, conditioned on the above convergence of Y εt
to O∗, we have

lim sup
ε→0

ET H,ε(X,V )

ln(ε−1)
≤ k

4γ1

(√
α2 + 4γ1 + α

)
. (49)

Here the stopping time T H,ε(X,V ) is defined in (44), and γ1 is in
Definition 5.2.

The proof of Proposition 5.4 is in Appendix C and the proof
of Theorem 5.5 is in Appendix D.

D. Main Theorem
With the preparation of the previous three subsections, we

now are ready to state our main theorem.
Theorem 5.5 is formulated for the Hamiltonian function

H(X,V ) =
1

2
V 2 + f(X). It is straightforward to reformulate

it in term of x variable and the objective function f .
Corollary 5.6: Consider the process Xε

t defined as in (9)
with the initial position and momentum bounded by (47).
Let x∗ be the unique local minimum of f within an open
neighborhood U(x∗) such that f(x∗) < f(xOk); refer to the
beginning of Section V-C for the saddle points Ok. Then we
have

(i) For any small ρ > 0, with probability at least 1 − ρ,
the process Xε

t in (9) converges to the minimizer x∗ for
sufficiently small ε after passing through all k saddle points
xO1 , ..., xOk ;

(ii) As ε ↓ 0, conditioned on the above convergence of Xε
t

to x∗, we have

lim sup
ε→0

ET f,ε(X,V )

ln(ε−1)
≤ k

4γ1

(√
α2 + 4γ1 + α

)
. (50)

Here T f,ε(X,V ) is defined as in (45).

Finally, we formulate the convergence result for the diffu-
sion approximation of the stochastic heavy ball method (7).
Taking into account that the process (x(t), v(t)) in (7) is
related to the process (X(t), V (t)) in (9) via a time change

(X(t), V (t)) = (x(t/ε), v(t/ε)).

we see that we have the following Theorem immediately from
Corollary 5.6.

Theorem 5.7: Consider the process x(t) defined as in (7).
Let the objective function f(x) satisfy the strong saddle
property in Definition 5.3. Let x∗ be the unique local min-
imum of f within an open neighborhood U(x∗) such that
f(x∗) < f(xOk). Then we have

(i) For any small ρ > 0, with probability at least 1 − ρ,
the process x(t) in (7) converges to the minimizer x∗ for
sufficiently small s > 0 after passing through all k saddle
points xO1 , ..., xOk ;

(ii) Set e > 0 small and let

Tx = inf{t ≥ 0 : x(0) = x , f(x(t)) < f(x∗) + e} . (51)

Then as s ↓ 0, conditioned on the above convergence of x(t)
to x∗, we have

lim sup
ε→0

ETx
ε−1 ln(ε−1)

≤ k

4γ1

(√
α2 + 4γ1 + α

)
. (52)

for any initial x whose function value f(x) is bounded H1 <
f(x) < H2. γ1 is in Definition 5.2.

Remark 5.8: Using similar analysis proposed in this paper,
which also dates back to [18], the first hitting time to a neigh-
borhood of local minimizers for continuous-time SGD (with
stepsize η) is asymptotically bounded by kγ−11 η−1 log η−1,
and our analysis for accelerated SGD (with stepsize ε) reduces
it to � kγ−0.51 ε−1 log ε−1. Compared to [13], such a result
indicates that using the same stepsize, stochastic heavy-ball
method also escapes from all saddles and helps the iteration
to reach the local minimum point at a reduced period of time
by γ−0.51 , showing its comparative advantages for saddle-point
escaping when γ1 is relatively small.

VI. NUMERICAL RESULTS

In this section, we verify the relationship between the
stepsize ε, the friction constant α, the parameter γ1 and the
convergence time Tx, which was previously given in (52) in
Theorem 5.7. We emphasize that there is a strong connection
between our main result and algorithms implemented in dis-
crete time. To be clear, we view the algorithmic scheme as a
discretized SDE, and hence when the stepsize ε is sufficiently
small the scheme can be viewed as numerical solution to the
SDE.

We apply the stochastic heavy ball method to a cubic-
regularized quadratic function of form f(x) = xTΛx+ ‖x‖32.
For simplicity, we consider dimension d = 10 and the diagonal
Λ, whose eigenvalues are strictly larger than 0 or strictly



Fig. 1. The relationship between the learning rate s = ε2 and the stopping
time Tx.

Fig. 2. The relationship between the parameters α, γ1 and the stopping time
Tx.

smaller than 0. Our dimension considered is 10, and the
example of Λ used in simulation code is,

Λ = diag{9, 7, 5, 3, 1,−1,−3,−5,−7,−γ1/2},

where γ1 = 18 by default and may vary accordingly.
We can choose the parameter γ1 = −2λmin > 0. We

consider the noise in stochastic heavy ball method following

Fig. 3. The relationship between the parameter γ1 ≡ α2 and the stopping
time Tx.

unbiased random normal distributions. Convergence time Tx is
measured by the first time f(xt)−f(x∗) < C, where x∗ is the
local minimizer and C = 10−3 is a fixed positive threshold.
We properly initialized x0 near the saddle point 0.

We first verify the relationship between stepsize ε and
convergence time Tx, by holding parameters α and γ1 fixed.
Figure 1 plots the logarithm value of stopping time Tx with
respect to logarithm of different time stepsize s = ε2. It can be
observed that log(Tx) has a negative linear relationship with
log(s), with slope being approximately −1/2. This agrees with
our theoretical time complexity of Tx � ε−1 ln(ε−1) given in
(52) up to a logarithmic factor ln(ε−1) neglected.

Now to investigate how the change in paramters α and
γ1 affects convergence time, we vary each parameter while
fixing the other one and stepsize. From the theoretical time
complexity, we would expect to see a positive relationship
between α and Tx, and a negative relationship between γ1 and
Tx. This is verified by numerical experiment results shown in
Figure 2. As shown in the left figure, the relationship between
α and convergence time Tx appears to be linear, satisfying
the asymptotic linearity implied by theoretical time complexity
(52) when α >> γ1. In the right figure of γ1 and convergence
time Tx, we observed a close to inverse relationship, which is
explained by the theoretical time complexity (52).

To drill further into the constant factor in (52), we vary α
and γ1 together by fixing γ1 ≡ α2, and demonstrate the rela-
tionship. Then based on the theoretical time complexity (52),

the constant factor in our case is
k

4γ1

(√
α2 + 4γ1 + α

)
=

1 +
√

5

4
γ−0.51 and we expect to see a linear relationship

between log(γ1) and log(Tx) with slope −0.5, which is well
displayed in Figure 3.

Together, Figures 1 and 2 exhibit numerical results that are
in accordance with (52), and we have substantiated our main
Theorem 5.7 from a numerical perspective.

VII. CONCLUSION AND FURTHER DISCUSSIONS

Our work connects the behavior of the stochastic heavy-ball
method with a stochastic differential equation that describes



small random perturbations of a coupled system of nonlinear
oscillators. By showing that the perturbed system converges
to local minimizers in logarithmic time, we conclude that
the continuous–stochastic heavy ball method takes (up to
logarithmic factor) only a linear time of the square root of
inverse stepsize to evade from all saddle points and hence it
implies fast convergence of the continuous stochastic heavy–
ball method.
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APPENDIX A
THE STRUCTURE OF THE HAMILTONIAN FLOW NEAR ONE SPECIFIC SADDLE POINT

In this Appendix we study the structure of the Hamiltonian flow near one specific saddle point. According to (28), the linear
part of the Hamiltonian vector field∇⊥H = J∇H should presumably be given by∇J∇H(O) as in (27). By (30), we know that
∇J∇H(O) = J∇2H(O), which is not necessarily a symmetric matrix, and in fact it will even produce complex eigenvalues
that may have either or both nonzero real and imaginary parts (think of the symplectic matrix J itself, the eigenvalues are ±i).
In this case, using (28), we know that the linear part of the Hamiltonian vector field ∇⊥H with dissipation near the saddle
point O is given by the matrix

A = JQ− αI0

Here Q is the symmetric Hessian matrix Q = ∇2H(O).
Let us also note that in [2] the author has to assume that all the eigenvalues of JQ are real and simple, and in our case

it is natural to expect complex eigenvalues. This will be a difference between our case and the case considered in [2], where
all eigenvalues of the matrix A are real and simple. Due to this reason, the linearization idea used in equation (8.1) of [2]
needs some further investigation, which we postpone the discussion to the next section. However, even in the case of complex
eigenvalues (with all eigenvalues having non–zero real parts), the argument of [18] still works, but is only able to help us
analyze the exit behavior near one specific saddle point. To apply this argument, in our case for the system (34), we have to
consider (technically) the eigenvalues and eigenvectors of the matrix A = JQ− αI0.

Let us first imagine that I0 is replaced by a full rank identity matrix I = I2d. Then all complex eigenvalues of A = JQ−αI
differ from the ones of JQ by a shift −α in their real parts. As a consequence, if α > 0 is very large, it is possible that
none of the complex eigenvalues of A have positive real part. In this case, the exit to the boundary of a neighborhood of
the saddle point O takes exponentially long time due to large deviation effects (see [11, Chapter 4]). Geometrically, we see
that the projection of the unstable manifold of ∇⊥H to the X direction will always create an unstable component pointing
from the saddle O. Given the half–rank matrix I0, we see that the friction term b(Y ) = −αI0Y has zero projection to the
X–direction. Such intuitive reasoning can be improved into the following technical result in linear algebra.

Let the saddle point O be O = (X0, 0). Since ∇2
Xf(X0) is a symmetric matrix, we can find an orthonormal basis ξ1, ..., ξd

(viewed as column vectors) in Rd such that ∇2
Xf(O)ξi = λiξi. By Lemma 5.1, X0 is a local maximum or saddle point of

f(x), and thus we see that without loss of generality we can assume that

λ1 ≤ λ2 ≤ ... ≤ λk < 0 < λk+1 ≤ ... ≤ λd (53)

for some 1 ≤ k ≤ d.
Proposition A.1: There exist an invertible 2d×2d matrix P with real or complex terms such that for the matrix A = JQ−αI0

we have
P−1AP = diag(A1, ..., Ad)

with each Ai being a 2× 2 block matrix. Moreover, the invertible matrix P can be taken of the form

P = (u+
1 ,u

−
1 , ...,u

+
d ,u

−
d ) ,

in which u±i are 2d–dimensional real or complex vectors for i = 1, 2, ..., d.
Here for some integers l,m such that 1 ≤ k ≤ l ≤ m ≤ d we have

1) For i = 1, ..., k, we have λi < 0, Ai =

(
µ+
i 0
0 µ−i

)
, µ±i =

−α±
√
α2 − 4λi
2

, µ±i are real, µ+
i > 0 > µ−i , and

u±i =

(
ξi
µ±i ξi

)
are real 2d–dimensional vectors;

2) For i = k + 1, ..., l, we have 0 < λi <
α2

4
, Ai =

(
µ+
i 0
0 µ−i

)
, µ±i are real, 0 > µ+

i > µ−i , µ±i =
−α±

√
α2 − 4λi
2

,

and u±i =

(
ξi
µ±i ξi

)
are real 2d–dimensional vectors;

3) For i = l + 1, ...,m, we have λi =
α2

4
, Ai =

(
−α2 1
0 −α2

)
, µ+

i = µ−i = −α
2

, and u+
i =

(
ξi
−α2 ξi

)
, u−i = ai are two

linearly independent real 2d–dimensional vectors, in which ai satisfies (A− λiI)ai =

(
ξi
−α2 ξi

)
;

4) For i = m + 1, ..., d, we have 0 <
α2

4
< λi, Ai =

(
µ+
i 0
0 µ−i

)
, µ±i are complex and are of the form µ±i =

−α
2
±
√

4λi − α2

2
i, and u±i =

(
ξi
µ±i ξi

)
are complex 2d–dimensional vectors.



Proof: Consider the matrix

A = JQ− αI0 =

(
0 Id

−∇2
Xf(X0) −αId

)
.

Suppose an eigenvector of the matrix A has the form
(
ξ
v

)
with eigenvalue µ (µ may be complex). Here ξ and v are two

column vectors in Rd. Then we have

A

(
ξ
v

)
=

(
0 Id

−∇2
Xf(X0) −αId

)(
ξ
v

)
=

(
v

−∇2
Xf(X0)ξ − αv

)
= µ

(
ξ
v

)
.

This implies that v = µξ and −∇2
Xf(X0)ξ = (µ + α)v = (µ + α)µξ. Therefore ξ must be an eigenvector of ∇2

Xf(X0)
with eigenvalue λ = (µ+ α)µ.

Conversely, if ξ is an eigenvector of ∇2
Xf(X0) with eigenvalue λ, say ∇2

Xf(X0)ξ = λξ, then
(
ξ
µξ

)
is an eigenvector of

A = JQ− αI0 with A
(
ξ
µξ

)
= µ

(
ξ
µξ

)
and the eigenvalue µ satisfies µ(µ+ α) = λ.

From the above we see that there is a correspondence between eigenvectors/eigenvalues of ∇2
Xf(X0) and eigenvec-

tors/eigenvalues of A = JQ− αI0. In fact, each eigenvector ξi (i = 1, 2, ..., d) of ∇2
Xf(X0) with eigenvalue λi corresponds

to two eigenvectors
(

ξ
µ+
i ξ

)
and

(
ξ
µ−i ξ

)
of A = JQ− αI0 with eigenvalues µ+

i and µ−i
2.

The two eigenvalues µ±i are the two roots of the equation

µ2
i + αµi + λi = 0 , (54)

so that

µ±i =
−α±

√
α2 − 4λi
2

. (55)

Let us analyze the eigenvalues µ±i from (55). Recall that we have λ1 ≤ λ2 ≤ ... ≤ λk < 0 < λk+1 ≤ ... ≤ λd. We discuss
the following cases:

1) For i = 1, ..., k, we have λi < 0. The two eigenvalues µ±i are real and µ+
i > 0 > µ−i .

2) For i = k + 1, ..., l, we have 0 < λi <
α2

4
and µ±i are real and 0 > µ+

i > µ−i .

3) For i = l + 1, ...,m, we have λi =
α2

4
and µ+

i = µ−i = −α
2

;

4) For i = m+ 1, ..., d, we have 0 <
α2

4
< λi, and µ±i are complex and are of the form

µ±i = −α
2
±
√

4λi − α2

2
i ;

In summary, the only eigenvalues of A = JQ−αI0 that have positive real parts are µ+
1 , ..., µ

+
k , and all the other eigenvalues

of A = JQ− αI0 have negative real parts.
Recall that λ1 < 0 is the negative eigenvalue with largest absolute value among all eigenvalues λ1 ≤ λ2 ≤ ... ≤ λk < 0. If

we set µ0 =
−α+

√
α2 − 4λ1
2

, then we have max
i=1,2,...,d

Reµ±i = µ0 > 0.

Notice that when α2 6= 4λi, the two eigenvalues µ+
i 6= µ−i , and thus the eigenvectors(
ξi
µ+
i ξi

)
,

(
ξi
µ−i ξi

)
are linearly independent. In fact, if we have

c+i

(
ξi
µ+
i ξi

)
+ c−i

(
ξi
µ−i ξi

)
= 0 ,

2It can happen that µ+i = µ−i , and in that case the two eigenvectors may alternatively be replaced by a two–dimensional invariant subspace. We will
discuss this case later in this proof.



then we have {
c+i + c−i = 0 ,
c+i µ

+
i + c−i µ

−
i = 0 ,

from which we derive c+i = c−i = 0 under µ+
i 6= µ−i . In this case the two dimensional linear invariant subspace

Vi = span
〈(

ξi
µ+
i ξi

)
,

(
ξi
µ−i ξi

)〉
splits further into two independent 1–dimensional subspaces Vi = V +

i ⊕ V −i , with

V ±i = span
〈(

ξi
µ±i ξi

)〉
. The corresponding Jordan block for the invariant subspace Vi is diagonal

(
µ+
i 0
0 µ−i

)
.

If for some i = k + 1, ..., d we have α2 = 4λi, then from the eigenvector
(

ξi
−α2 ξi

)
and the real eigenvalue µ±i = −α

2
of

A = JQ− αI0 we solve the generalized eigenvalue/eigenvector equation

(A− λiI)ai =

(
ξi
−α2 ξi

)
,

and we obtain another vector ai ∈ R2d indepenent of
(

ξi
−α2 ξi

)
. The two–dimensional linear subspace Vi =

span
〈(

ξi
−α2 ξi

)
, ai
〉

forms an invariant subspace of the matrix A = JQ−αI0 for the eigenvalue µ±i = −α
2

, which corresponds

to the Jordan block
(
−α2 1
0 −α2

)
.

Notice that if for some i 6= j and i, j ∈ {k + 1, ..., d} we have α2 = 4λi = 4λj , then the eigenvectors
(

ξi
−α2 ξi

)
and(

ξj
−α2 ξj

)
are linearly independent since ξi and ξj are linearly independent. This implies that the invariant subspace for the

matrix A = JQ− αI0 corresponding to the eigenvalue −α
2

with a possible multiplicity splits into two–dimensional invariant
subspaces as described in the previous paragraph.

Summarizing the above discussion, we see that we can find an invertible matrix of the form

P = (u+
1 ,u

−
1 , ...,u

+
k ,u

−
k ,u

+
k+1,u

−
k+1,

...,u+
l ,u

−
l ,u

+
l+1,u

−
l+1, ...,u

+
m,u

−
m,u

+
m+1,u

−
m+1,

...,u+
d ,u

−
d ) ,

such that u±i =

(
ξi
µ±i ξi

)
for i = 1, 2, ..., k and i = k + 1, ..., l. Here for i = 1, 2, ..., k we have λi < 0, and µ±i are chosen

according to case 1 discussed above; for i = k + 1, ..., l we have 0 < λi <
α2

4
, and µ±i are chosen according to case 2

discussed above. When i = l + 1, ...,m we have 0 < λi =
α2

4
, and in this case µ±i = −α

2
, so that u+

i =

(
ξi
−α2 ξi

)
, u−i = ai

are chosen according to case 3 discussed above. When i = m+ 1, ..., d we have 0 <
α2

4
< λi and in this case u±i =

(
ξi
µ±i ξi

)
and µ±i are chosen according to case 4 discussed above.

Finally by picking the matrix P as above we have

P−1AP = diag(A1, ..., Ad)

with each Ai being a 2×2 block matrix, and Ai =

(
µ+
i 0
0 µ−i

)
for i = 1, 2, ..., k, k+ 1, ..., l,m+ 1, ..., d; Ai =

(
−α2 1
0 −α2

)
for i = l + 1, ...,m.

Remarks.
1) No matter how large α is, the eigenvalues µ+

1 , ..., µ
+
k of A are always real and positive. This means that the number of

unstable directions for the Hamiltonian field ∇⊥H is always equal to the number of unstable directions of the Hessian
matrix ∇2

Xf(X0). In particular, it means that the “partially damped” friction b(Y ) = −αI0Y cannot kill all unstable
directions of ∇⊥H , no matter how large α > 0 is.

2) If α → ∞, then µ+
1 → 0+. It is also very interesting to look at the case of the differential equation for the original

Nesterov’s method (2). We see that in this case, the friction coefficient α becomes time–dependent α(t) = 3/t. At the



beginning, when t is small, we are in the asymptotic regime in which α > 0 is large, so that the process starts to move
according to the unstable direction pointed by the eigenvector that corresponds to µ+

1 > 0 in Proposition A.1.
3) In [25], the authors obtain in their Theorem 4 and Corollary 5 some linear algebra results that are similar to our

Proposition A.1. Yet there are several differences. First, the set–up of [25] does not make use of Hamiltonian structure,
and we have revealed the Hamiltonian structure behind the heavy–ball scheme. Second, we are taking advantage of the
continuous approximation, so that we can make use of very delicate results of Kifer about exit behavior (see [18] and
Theorem 5.2). Third, the analysis of [25] focuses more on showing that the heavy ball method does not converge to
saddle point, which is originated from [20]. In our case, we follow [14], [13] and we reduce the problem to the analysis
of the dynamics given by stochastic differential equations with small diffusion term. Our method in a sense is an attempt
to investigate the question about exit from saddle points raised at the end of [25].

APPENDIX B
PROOF OF THEOREM 5.3

Below we give a proof of Theorem 5.3.
Proof: Let h be the conjugacy mapping in the Linearization Assumption 1. In this case, by considering Yε(t) = h(Y ε(t))

in which h is the linearization homeomorphism that we discussed above, we can transform (34) into the following equation

dYε(t) = [(JQ− αI0)Yε(t) + εΨ(Yε(t))]dt+
√
εΣ(Yε(t))dWt . (56)

Here the additional term Ψ is smooth in Y . As before, we set A = JQ−αI0 and we have the mild solution of (56) written as

Yε(t) = eAtYε(0) +
√
ε

∫ t

0

eA(t−s)Σ(Yε(s))dWs

+ε

∫ t

0

eA(t−s)Σ(Yε(s))ds .

Let us pick an orthonormal basis ζ1, ..., ζ2d in R2d such that ζi =
1√

1 + (µ+
i )2

(
ξi
µ+
i ξi

)
for i = 1, 2, ..., k. Set the orthogonal

matrix

M =
(
ζ1 ζ2 ... ζk ζk+1 ... ζ2d

)
.

Then we have

AM = M

(
diag(µ+

1 , ..., µ
+
k ) 0

0 Ã

)
= MÂ ,

in which Ã is a matrix of size (2d− k)× (2d− k), and Â =

(
diag(µ+

1 , ..., µ
+
k ) 0

0 Ã

)
. In this way we have

eAt = MT

(
diag(eµ

+
1 t, ..., eµ

+
k t) 0

0 eÃt

)
M = MT eÂtM ,

so that

eÂt =

(
diag(eµ

+
1 t, ..., eµ

+
k t) 0

0 eÃt

)
.

Consider Yε(t) =
2d∑
i=1

yεi (t)ζi for some yε(t) = (yε1(t), ..., yε2d(t))
T in R2d with fixed ε > 0 and t ≥ 0. Then the equation

for yε(t) in terms of mild solution takes the form

yε(t) = eÂtyε(0) + ε

∫ t

0

eÂ(t−s)Σ(yε(s))dWs

+ε2
∫ t

0

eÂ(t−s)Ψ(yε(s))ds .



Write Σ(y) =


Σ1(y)
...

Σk(y)

Σ̃(y)

 in which Σ̃(y) is a matrix of size (2d− k)× 2d, Ψ(y) =


Ψ1(y)
...

Ψk(y)

Ψ̃(y)

 in which Ψ̃(y) is a column

vector of size 2d−k, and yε(t) =


yε1(t)
...
yεk(t)
ỹε(t)

 in which ỹε(t) is a column vector of size 2d−k. Then we have, for i = 1, 2, ..., k,

yεi (t) = eµ
+
i tyεi (0) +

√
ε

∫ t

0

eµ
+
i (t−s)Σi(y

ε(s))dWs

+ε

∫ t

0

eµ
+
i (t−s)Ψi(y

ε(s))ds ,

(57)

and

ỹε(t) = eÃtỹε(0) +
√
ε

∫ t

0

eÃ(t−s)Σ̃(yε(s))dWs

+ε

∫ t

0

eÃ(t−s)Ψ̃(yε(s))ds .

By the spectral radius theorem (see [30]) we know that

lim
s→∞

‖eÃs‖1/s ≤ e−µ
−t

for some µ− > 0. This implies that there is some positive constant C(1) > 0 such that

‖eÃs‖ ≤ C(1)e−
µ−
2 s

for all s ≥ 0. From here, we can argue with the same reasoning as in [2, Section 8] and [13, Appendix A]. We see that,
to analyze the exit time and exit distribution of the process yε(t), it suffices to look at the vector consisting of the first
k–components yε(t) = (yε1(t), ..., yεk(t))T . The latter process yε(t) is governed by the equations (57) where i = 1, 2, ..., k.
We can then make full use of the arguments in [2, Section 8] and [13, Appendix A], and we conclude the statement of this
Theorem.

APPENDIX C
PROOF OF PROPOSITION 5.4

Proof: Let us take the Lyapunov function as the Hamiltonian

H(X(t), V (t)) =
1

2
(V (t))2 + f(X(t)) .

Then along the flow of (21) we have

H(X(t), V (t))−H(X(0), V (0)) = −α
∫ t

0

(V (s))2ds . (58)

From the equation (58) we see that when the process Y (t) is a distance away from the X–axis, the Hamiltonian function
H(X(t), V (t)) is strictly decaying. However, if the process Y (t) crosses the X–axis, then V (s) takes 0 value along the
trajectory and it is not guaranteed that the Hamiltonian H(X(t), V (t)) keeps decaying. It is in this aspect that we see the
effect of interacting the friction with the Hamiltonian flow.

A crossing through X–axis happens in the following two cases: (a) It is outside a neighborhood of a critical point O of the
Hamiltonian flow ∇⊥H , that is either a saddle point or a local minimum. Then the friction vanishes at the crossing point, but
the Hamiltonian flow is not zero there, since |∇⊥H| ≥ K > 0, and thus it is the Hamiltonian flow that brings the process
immediately to a region where (V (s))2 is still strictly positive. Combining this with (58) we see that even in this case the
Hamiltonian H(X(t), V (t)) keeps strictly decaying along the flow of Y (t); (b) The flow of Y (t) approaches a critical point O
of the Hamiltonian flow ∇⊥H , that is either a saddle point or a local minimum. In this case, we are entering a neighborhood
of the critical point.

Suppose we start the process Y (t) in (21) from an initial point Y0 = (X0, V0) that stays away from a neighborhood of a
saddle point O of the Hamiltonian flow ∇⊥H . From the above reasoning we see that, in finite time T0 > 0 the process Y (t)
reaches a neighborhood of another critical point of the Hamiltonian flow ∇⊥H , that is either a local minimum point or a
saddle. Combining this with the arguments that lead to Lemma 3.3 in [13], we conclude the validity of this proposition.



APPENDIX D
PROOF OF THEOREM 5.5

Proof: The proof of this Theorem follows the same lines of arguments as those in the proof of Theorem 3.4 in [13]. As
Y εt is a strong Markov process, we see that each of σεj − τεj in distributed in the same way as τε(x,v) in (36). However, we note
that in this case, the initial condition (x, v) in τε(x,v) will in general be random. In this case, based on Theorem 5.3, which is
a uniform version of Theorem 5.2, one can show that each of σεj − τεj is distributed in such a way that for any r > 0 there
exist some ε(1)0 > 0 such that for any 0 < ε < ε

(1)
0 we have

E(σεj − τεj )

ln(ε−1)
≤ 1

2µ
(i)
0

+ r . (59)

Here µ(i)
0 =

−α+

√
α2 − 4λ

(i)
1

2
. Notice that by Definition 5.2, we have −λ(i)1 ≥ γ1, so that µ(i)

0 ≥
−α+

√
α2 + 4γ1
2

. Thus

1

µ
(i)
0

≤ 2

−α+
√
α2 + 4γ1

=
1

2γ1

(√
α2 + 4γ1 + α

)
. (60)

Moreover, it is not difficult to show that there exists some ε(2)0 > 0 such that for any 0 < ε < ε
(2)
0 ,

E(τεj − σεj−1) ≤ C (61)

for some constant C > 0. Now we decompose

T H,ε(X,V ) = σε0 + (τε1 − σε0) + (σε1 − τε1 ) + ... . (62)

We notice the fact that when the deterministic process (21) leaves each of the Gi, it never returns to the same Gi. Therefore,
the expansion (62) will terminate after passing through at most k–saddle points, i.e,

T H,ε(X,V ) = σε0 + (τε1 − σε0) + (σε1 − τε1 ) + ...+ (τεk − σεk−1) + (σεk − τεk) + (τεk+1 − σεk) . (63)

We can then see the validity of this theorem from (63), (59), (61) and (60).
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