
Magnitude and Uncertainty Pruning Criterion for
Neural Networks

Vinnie Ko
University of Oslo

vinniebk@math.uio.no

Stefan Oehmcke
University of Copenhagen
stefan.oehmcke@di.ku.dk

Fabian Gieseke
University of Copenhagen
fabian.gieseke@di.ku.dk

Abstract—Neural networks have achieved dramatic improve-
ments in recent years and depict the state-of-the-art methods
for many real-world tasks nowadays. One drawback is, however,
that many of these models are overparameterized, which makes
them both computationally and memory intensive. Furthermore,
overparameterization can also lead to undesired overfitting side-
effects. Inspired by recently proposed magnitude-based pruning
schemes and the Wald test from the field of statistics, we
introduce a novel magnitude and uncertainty (M&U) pruning
criterion that helps to lessen such shortcomings. One important
advantage of our M&U pruning criterion is that it is scale-
invariant, a phenomenon that the magnitude-based pruning
criterion suffers from. In addition, we present a “pseudo boot-
strap” scheme, which can efficiently estimate the uncertainty of
the weights by using their update information during training.
Our experimental evaluation, which is based on various neural
network architectures and datasets, shows that our new criterion
leads to more compressed models compared to models that are
solely based on magnitude-based pruning criteria, with, at the
same time, less loss in predictive power.

Index Terms—Neural network compression, pruning, overpa-
rameterization, Wald test

I. INTRODUCTION

In recent years, deep neural networks have achieved state-
of-the-art performance for a broad range of tasks and have,
hence, gained big popularity in many fields like computer
vision and natural language processing [1]. Typically, these
powerful models have millions or even billions of parameters,
which require significant computational and memory resources
when deployed. For the training phase, this computational bot-
tleneck can usually be overcome by using powerful hardware
such as graphics processing units, which renders it possible
to train large models based on a lot of data in a reasonable
amount of time. However, during the inference phase, once
the trained model has been deployed, one is often faced with
very limited computational resources. For instance, mobile or
edge computing devices have little to no hardware acceleration
available. In addition, many applications of neural networks—
such as face recognition in video and autonomous driving—
require the inference to be done with minimal latency.

A prominent approach to deal with these scenarios is
pruning. Here, one usually generates a powerful model without
any restrictions on its size and on its computational require-
ments during the training phase. Afterwards, one “compresses”
the model such that it fits into the (main) memory of the

device that should be used for the inference phase. Pruning
neural networks this way can be a critical task for many
real-world applications. In addition, [2] show that there is
significant redundancy in the parameterization of many deep
learning models. This overparameterization not only requires
unnecessary computational resources, but can also lead to
an overfitting of the models. Various approaches have been
suggested in the literature that aim at decreasing the size and
the computational footprint of neural networks [3, 4, 5, 6, 7];
see [8] for an overview. One of the most successful works
for pruning neural networks is provided by [3], who prune
network parameters based on their magnitude, measured as
absolute value.

Contribution: Inspired by the Wald test from the field of
statistics [9], we introduce a novel magnitude and uncer-
tainty (M&U) pruning criterion, which depicts a generalization
of both, the magnitude based criterion used by [3] and the
Wald test statistic. One of the biggest advantages above the
magnitude based pruning criteria [3, 10, 11, 12, 13, 14, 15]
is that our M&U pruning criterion is scale-invariant. Further-
more, it can be easily applied to many papers on pruning
strategies that exploit a magnitude based criterion. Further-
more, we also propose a new “pseudo bootstrap” scheme
that efficiently estimates the weight uncertainties based on
update information obtained during the training process. Our
experiments show that using our M&U pruning criterion
outperforms the previous pruning criterion and results in
compressed models with less loss in predictive power.

II. RELATED WORK

The attempt to prune neural networks started with [16]
and [17], who used a second-order Taylor expansion to deter-
mine the saliency of each parameter. Their methods require the
computation of (the inverse of) the Hessian matrix regarding
the loss function. [18] consider pruning as a statistical model
selection problem and apply diverse model selection tools from
the field of maximum likelihood theory.

Since the recent success of deep learning, there has been a
number of new approaches for reducing the computation and
memory footprint of neural networks. One approach, quan-
tization, aims to reduce the numerical precision required to
represent each parameter (or neuron). For example, [19], [20],
and [21] compress networks by using 8-bit precision, 3-bit

978-1-7281-0858-2/19/$31.00 © 2019 IEEE

ar
X

iv
:1

91
2.

04
84

5v
1

 [
cs

.L
G

]
 1

0
D

ec
 2

01
9

precision, and vector quantizations, respectively. There are
more quantization based methods that expanded on these
approaches [22, 23, 24, 25]. Other strategies to reduce the
computational burden resort to low-rank decompositions of
tensors [26, 27, 28]. In another category, [29] uses distilling
approach to obtain a small ‘student’ network that can mimic
what the bigger ‘teacher’ network does.

The strategy that has received the most attention in recent
years is probably the pruning of parameters based on certain
criteria. Particularly, [3] achieve state-of-the-art results by
pruning weights based on their magnitudes (i.e., based on
the absolute values of the parameters) and by retraining
the network afterwards. The same authors further improve
on their results by combining their absolute value based
pruning scheme with quantizing and Huffman encoding tech-
niques [10]. Extensions of this pruning strategy have also
been proposed for neural machine translation (NMT) [30]
and for recurrent neural networks (RNN) [31], respectively.
Yet, those two follow-up works keep the same criterion as
the one originally proposed by [3] for ranking the weights to
be pruned, i.e., they use the absolute values of the weights.
Finally, there are also attempts to prune specific classes of
weights [15, 32, 33, 34]. These approaches have the advantage
that the resulting pruned networks have less irregular network
connections and are, hence, better suited for parallel imple-
mentations.

III. BACKGROUND

In this section, we briefly recap the theory behind statistical
hypothesis testing and look into the similarities between the
Wald test statistic and the magnitude based criterion [3].

A. Asymptotic Normality

Consider a regression model g with independent and depen-
dent variable pairs (x1,y1), . . . , (xn,yn). Further, let X =
[x1, . . . ,xn]T denote a tensor containing all n observations
of independent variables. The arbitrary regression model g can
then be written as

E[Y] = g(X,w), (1)

where w = [w1, . . . , wp]T are the parameters of the model,
which are commonly called weights in case of neural networks.
The parameter p indicates the total number of parameters of
the model.

For now, we assume that there exists a unique set of optimal
parameters w?, which will give the best approximation of y.
We can then obtain ŵ, our estimate of w?, by minimizing
a loss function with the optimization technique of choice
(e.g., stochastic gradient descent, mini-batch gradient descent,
momentum based methods, etc.).

When the loss function is the negative log-likelihood, or
an equivalent quantity such as cross entropy, gradient descent
can be seen as a numerical realization of maximum likeli-
hood (ML) estimation. In this case, we can apply the results
from classic literature on ML theory [35, 36, 37] and we

have for n → ∞, the following convergence in distribution
property:

√
n (ŵ −w?)

d→ N (0,VML). (2)

Here VML is the covariance matrix as defined in ML theory.
In the field of statistics, this type of convergence to a normal
distribution is called asymptotic normality [38]. In the model
robust case, VML is equal to the so-called sandwich estimator

VML = I−1
w Kw I−1

w , (3)

where Iw is the Fisher information and where Kw is the
covariance matrix of the score function [37]. In statistics, the
score function is defined as the first derivative of the log-
likelihood function with respect to its parameters. It indicates
how sensitive a likelihood function is w.r.t. its parameters. For
exact definitions of the quantities in Equation (3), we refer
to the literature in maximum likelihood theory, for instance
by [37]. When one assumes that the model is true, in other
words, that the current candidate model is the true model that
generated the data, we have Kw = Iw and Equation (3)
simplifies to

VML = I−1
w . (4)

For more details on the impact of this ‘true model’ assumption
and the comparison between Equations (3) and (4), we refer
to the corresponding literature [39, 40, 41].

Even though stochastic gradient descent (SGD) and its mod-
ified versions can be considered as numerical realization of
ML estimation, the details of SGD lead to properties different
from the ones obtained via ML. The recent work by [42]
obtains, for the first time, a full analytical characterization
of the asymptotic behavior of SGD procedures, including an
asymptotic normality and analytical expression for the covari-
ance matrix, which is different from that of ML estimators.
They also show the loss of asymptotic statistical efficiency for
SGD estimators. Although the work of [42] is a great step
forward towards understanding the asymptotic properties of
SGD estimators, its result cannot be directly applied to non-
vanilla versions of SGD without necessary extension work. For
example, combining the SGD estimator with training strategies
like Dropout [43] and Dropconnect [44] or using momentum
based modifications such as RMSprop [45] or Adam [46]
would invalidate the asymptotic covariance matrix from [42].

Based on [37] and [42], it is not unreasonable to assume that
the modified versions of the SGD estimator are still consistent
and have asymptotic normality with a finite, but unknown
covariance matrix V , i.e., that we have

√
n (ŵ −w?)

d→ N (0,V). (5)

B. Statistical Hypothesis Testing

With the asymptotic normality property as defined in Sec-
tion III-A, one can perform statistical hypothesis testing on
the parameters w. The natural null hypothesis would be

H0 : wj = 0, (6)

i.e., is the j-th parameter of the model significantly different
from 0? The three commonly used statistical hypothesis test-
ings are the Wald test [9], the likelihood ratio test [47], and
the score test [48]. Note that all three tests are asymptotically
equivalent [49]. Yet, the Wald test has a practical advantage
over the other two since it does not require nested models
for testing the null hypothesis on individual weights. Here,
“nested” means that one can obtain one model by constraining
some of the parameters of another model.

Given Equations (5) and (6), the Wald test statistic for the
parameter wj is given by

z =
ŵj

SE(ŵj)
=

ŵj√
V̂j,j

, (7)

where SE(ŵj) indicates the standard error of ŵj and V̂ the
estimate of the covariance matrix from Equation (5).1 The test
statistic z follows the standard normal distribution [49]. The
corresponding p-value can be obtained via p = 2(1−Φ(|z|)),
where Φ is the cumulative distribution function of the standard
normal distribution.

C. Wald Test and Absolute Value Based Pruning

In statistics, one of the most canonical ways of removing
redundant parameters is by performing null hypothesis testing
as described above and by dropping the parameters that have
a p-value above a certain threshold (e.g., 0.05 or 0.01). Since
p = 2(1 − Φ(|z|)) is a monotonic function of |z|, one can
skip the step of converting |z| into a p-value. Instead, one can
directly use

|z| = |ŵj |
SE(ŵj)

=
|ŵj |√
V̂j,j

, (8)

and can compare it with the threshold values in |z|-scale,
which can be obtained by transforming the threshold p-values
via the function Φ−1(1−p/2). Here, we can realize two things.
Firstly, Equation (8) is highly similar to the magnitude based
pruning criterion suggested by [3] and also used by [10], [30],
and [31]. In those works, only the absolute value of each
parameter is considered and the parameters with absolute
values below a certain threshold are removed. We denote this
criterion as the ABS pruning criterion from now on. The only
difference between the Wald test statistic (Equation (8)) and
the ABS pruning criterion is the standard error term in the
denominator.

In this sense, the Wald test statistic can actually be inter-
preted as evaluating parameters based on their absolute value,
while compensating for their uncertainty. For example, if ŵj

has high uncertainty, there is higher chance that we observe a
large value of ŵj “by chance”. Dividing by the standard error
compensates for this uncertainty.

1Since we defined V as a finite, but unknown covariance matrix, its estimate
V̂ is an unknown and arbitrary estimate.

IV. MAGNITUDE AND UNCERTAINTY PRUNING CRITERION

Inspired by Wald test, we evaluate the importance of param-
eters by taking both their magnitudes and their uncertainties
into account. By using this combined criterion, we can prune
to the desired proportion of parameters in a model, specific
layer, feature map, or any selected part of a model. In addition,
we also introduce a “pseudo bootstrap” approach to efficiently
estimate the uncertainties of the weights by keeping track of
their changes during the training process.

A. Definition

Based on our observation of the similarity between the Wald
test statistic and the ABS pruning criterion in Section III-C as
well as based on the interpretation of the Wald test statistic,
we define our M&U pruning criterion as

τj =
|ŵj |

λ+ σ̃ŵj

. (9)

Here, σ̃ŵj
is an uncertainty estimate of ŵj , a quantity that

should reflect how uncertain the estimated parameter ŵj is.
We will cover possible choices for σ̃ŵj

in Sections IV-C
and IV-D. The hyperparameter 0 ≤ λ is a user-defined
parameter that determines the balance between magnitude
and uncertainty. When λ → ∞, no uncertainty is taken into
account and the M&U pruning criterion becomes equal to the
ABS pruning criterion used by [3]. As λ decreases, more and
more uncertainty is taken into account. In case of λ = 0, the
criterion τj has the same functional form as the Wald test
statistic. If one chooses σ̃ŵj

such that it is an analytically
justified estimate of the standard error, τj is simply the Wald
test statistic. This implies that M&U pruning criterion can be
seen as a generalization of the Wald test statistic and the ABS
pruning criterion.

B. Scale Invariant Property

Pruning strategies that are based on the magnitude based
pruning criterion [3, 10, 11, 12, 13, 14, 15, 30, 31] suffer
from the so-called scale issue by their nature.

Consider a very simple model (e.g. linear regression) with
2 input variables X1 and X2. Assume that the weights are
w1 = 10 and w2 = 0.1. One can be easily tricked to think
that X1 is more important than X2. However, if we divide
X2 by 1000 (e.g. m to km), w2 will get much bigger and
this will change which weight is pruned by the magnitude
based pruning criterion. In contrast, akin to the Wald test
statistic, our M&U pruning criterion cancels out this change
of scale effect by standardizing with σ̃ŵj

. Moreover, we
introduce in Section IV-E a reparametrization trick that makes
the hyperparameter λ robust to the change of scale.

C. Choosing Uncertainty Estimates

The first thing to note is that σ̃ŵj
is not the standard error,

but concerns a much more general concept of uncertainty
estimate. Ideally, the standard error is a very suitable candidate
as an uncertainty estimate σ̃ŵj

, like in the original Wald
test statistic formula. However, there is at the moment no

asymptotic theories developed for non-convex neural networks
with commonly used estimation methods such as Adam [46]
or RMSprop [45].

In rare cases, when the optimization task induced by a neu-
ral network is convex (or piecewise convex) with the negative
log-likelihood, or an equivalent quantity such as cross entropy
as loss function, one can take analytically derived asymptotic
variance formulas such as Equation (3), Equation (4), or other
ones [42] and estimate these uncertainty measures via their
sample equivalent (e.g., by replacing the expectation with a
sum over the samples). However, estimating those quantities
has a number of numerical bottlenecks. For example, to obtain
the sample equivalent of Iw, one needs to calculate the
Hessian matrix, which requires the second derivative of the
log-likelihood function with respect to all the parameters in the
model. Although modern deep learning software offers highly
optimized automatic differentiation for the first derivative,
many of the automatic differentiation implementations do not
support the second derivative. In case they do support it, the
corresponding implementations are not as highly optimized as
those for the first derivative.

Another computational bottleneck is the computation
of Kw. Computation of this matrix requires the first derivative
of the log-likelihood with respect to the model parameters, for
every sample separately. This is highly inefficient for most
deep learning software packages since optimized for mini-
batch operations. Yet, the biggest computational obstacle is
that one needs to take the inverse of Iw. For a network with,
say, a million parameters, inverting this matrix is infeasible in
practice even using significant computational resources.

D. Pseudo Bootstrap

We introduce two possible alternatives to compute the
uncertainty estimate σ̃ŵj

. The first alternative is to make
use of bootstrapping [50]. There have been extensive studies
done on both theoretical and numerical properties of this
approach [51, 52, 53, 54] and it is a canonical method in
statistics for estimating the standard error in case an analytical
estimate is not feasible. The disadvantage is that we need to
train the same model multiple times, which is a big increase
in the computational costs.2

The second alternative is a novel estimation scheme, called
pseudo bootstrap, which uses uncertainty information gathered
during the training process. This idea stems from the fact
that the training process with mini-batch SGD has similarities
with the bootstrap resampling strategy: Each mini-batch we
draw during training can be seen as a bootstrap sample with
replacement and of smaller size. In addition, the iterative
weight update process of mini-batch SGD can be seen as
training with bootstrap samples, where each bootstrap training
instance uses the parameter values from the previous instance
as parameter initialization.

2Since neural networks are usually trained with large number of obser-
vations, the Jackknife resampling method [55], which requires repeating the
training process equal to the number of total data points, is not suitable.

Algorithm 1 Pseudo bootstrap, our proposed novel algorithm for a fast
estimation of the uncertainty of each weight in neural network. The algorithm
described below computes a single weight wj and has to be repeated for all
the weights in the neural network.
Require: B ∈ N: Weight collection size
Require: w = [w1, . . . , wp]: Parameter vector of the given neural network.
Require: niter: The total number of weight update iterations that is going

to be made during the training phase. Note that this is the total number
of iterations and not the total number of epochs.

1: wj,{B}: An empty vector of length B.
2: iiter ← 0 (Initialize training iteration count)
3: iB ← 0 (Initialize weight collecting count)
4: while training the target model with mini-batch SGD do
5: iiter ← iiter + 1
6: if niter −B < iiter ≤ niter then
7: iB ← iB + 1
8: wj,{B}[iB]← wj (Record current value of wj .)
9: end if

10: end while
11: σ̃ŵj

= std(wj,{B}) (Compute uncertainty estimate of ŵj by using its
‘fluctuations’ during the training.)

12: return σ̃ŵj

The pseudo bootstrap approach is sketched in Algorithm 1:
To obtain the uncertainty estimate σ̃ŵj

, the algorithm monitors
how ŵj has changed during the last B iterations of mini-
batch SGD training and by storing that information in the
‘weight collection’ wj,{B} = [wj,1, . . . , wj,B] (see Lines 4–
10). After the training, we simply obtain the uncertainty
estimate via σ̃ŵj

= std(w{B}) (see Line 11). Note that other
“collecting strategies” such as recording weight values through
the entire training process with a certain interval between them
have been tested. However, the best results were obtained by
recording the weight values during the last iterations.

E. Reparameterization of λ

The hyperparameter λ determines the tradeoff between
magnitude and uncertainty. It is therefore crucial to consider
reasonable values for λ. Note that the actual impact of λ
on the balance between magnitude and uncertainty depends
largely on which scale wj is. For instance, if we decide to use
batch normalization and the absolute value of wj suddenly
becomes much smaller, then a previously “optimal” value for
λ (e.g., λ = 1) might not be optimal anymore. To deal with
this problem, we suggest to reparametrize λ via

λ = λ∗ · std(w{layerk}) (10)

when one prunes within layer k. Here, λ∗ is a fixed global
assignment for λ and std(w{layerk}) depicts the standard
deviation of the weights within the k-th layer.3

V. EXPERIMENTS

We implemented our M&U pruning criterion in Py-
Torch [56] and evaluated our approach via four experiments
that were based on the Fashion MNIST, CIFAR-10, MNIST,
and ImageNet datasets, respectively. Experiment 1 was re-
peated 100 times, Experiment 2 and 3 were repeated 20 times,

3Naturally, instead of considering w{layerk}, one can also consider the
standard deviation based on all the weights via w{model} such that λ is
scaled by the whole model (or by a specific part of a certain layer).

Prune level:
50.0%

0.51%

0.54%

0.56%

0.58%

ABS

M&Ub

M&Upb

Prune level:
70.0%

-0.24%

-0.16%

-0.07%

0.02%

ABS

M&Ub

M&Upb

Prune level:
80.0%

-2.06%

-1.98%

-1.90%

-1.83%

ABS

M&Ub

M&Upb

Prune level:
85.0%

-3.67%

-3.62%

-3.57%

-3.53%

ABS

M&Ub

M&Upb

Prune level:
90.0%

-8.39%

-8.04%

-7.69%

-7.34%

ABS

M&Ub

M&Upb

Prune level:
92.5%

-15.26%

-14.83%

-14.40%

-13.96%

ABS

M&Ub
M&Upb

Prune level:
95.0%

-29.98%

-29.04%

-28.10%

-27.16%

ABS

M&Ub

M&Upb

Prune level:
96.0%

-38.95%

-37.83%

-36.72%

-35.60%

ABS

M&Ub

M&Upb

Prune level:
97.0%

-46.72%

-45.97%

-45.22%

-44.47%

ABS

M&Ub

M&Upb

Prune level:
98.0%

-55.91%

-55.09%

-54.27%

-53.45%

ABS

M&Ub

M&Upb

Prune level:
98.5%

-60.87%

-60.36%

-59.86%

-59.35%

ABS

M&Ub
M&Upb

Fig. 1. Result of Experiment 1. The y-axis of each plot shows the loss in test accuracy due to pruning (with retraining afterwards). It was
computed as the test accuracy of the pruned model subtracted by the test accuracy of the unpruned original model. Blue circles with ‘M&Ub’
indicate that our M&U pruning method with σ̃boot

ŵj
was used. Orange triangles with ‘M&Upb’ mean that our M&U pruning method with

σ̃pboot
ŵj

was used. Black crosses with ‘ABS’ mean that the ABS pruning criterion from [3] was used. The test accuracy of the unpruned
model was 81.21%.

and Experiment 4 was repeated 10 times. The reported results
are averaged results over those repetitions.

Since the majority of pruning strategies utilize the magni-
tude based pruning criterion, it is most informative to compare
our method directly to the ABS criterion from [3]. Our
M&U pruning criterion can be easily extended to replace
the pruning criterion part of, for example, automatic gradual
pruning [12], structured pruning [13, 15], dynamic network
surgery [11] and more. Note further that our M&U pruning
criterion should be seen as a companion rather than a competi-
tor to other model compression approaches such as distilling
[29] and quantization [19], since it can be combined with those
techniques.

A. Experiment 1: Comparison of Uncertainty Estimates

The Fashion MNIST dataset consists of 28x28 grayscale
images, each with a label from one of 10 classes [57]. To
make the bootstrap estimation computationally feasible, we
kept the size of this experiment as small as possible. Thus,
we only used a balanced subset of 6,000 examples from the
training data. From this subset, 600 examples were set apart for
validation during training. For testing, the entire test set was
used. We employed a very small feedforward convolutional
neural network (CNN) with two convolution layers and three
fully connected layers, combined with max pooling, ReLU
activation function and dropout. The first fully connected layer
got a feature map of size 6 x 6 x 6 as input. The two hidden
layers had 32 and 48 neurons, respectively, and the model had

a total amount of 9,660 parameters. We chose cross entropy
as loss function and the model was trained for 500 epochs via
RMSprop.

Firstly, since the total number of parameters was small, we
tried to estimate the covariance matrix of w with analytical
expressions (3) and (4). However, Iw and Kw were not
invertible most of the time. As alternative, we obtained the
psuedo inverse of those matrices. Yet, the pseudo inverse
contained almost always negative diagonal elements. As a
sanity check, we estimated the expectation of the score vector
and many of its elements had values that were far away
from 0. This suggests that the maximum likelihood theory
did not hold in this case. This was expected, since many of
the assumptions from [36] and [42], including convexity, were
broken. Secondly, we estimated σ̃ŵj

with bootstrap. We drew
100 bootstrap datasets and trained 100 independent instances
of the model. With the weights from those 100 trained models,
we obtained the bootstrap based uncertainty estimate σ̃boot

ŵj
.

Lastly, we obtained the pseudo bootstrap based uncertainty
estimate σ̃pboot

ŵj
, with the method described in Section IV-D

and B = 200. We tried different values of λ∗ and empirically
choose λ∗ = 10−1 for σ̃boot

ŵj
and λ∗ = 10−4 for σ̃pboot

ŵj
.

With the obtained σ̃ŵj
and λ, we pruned a% of parameters

by using our M&U pruning criterion from each fully connected
layer. The values of a that were tested can be found in
Figure 1. For comparison, we also pruned the model by using
the ABS pruning criterion [3]. After pruning, each model was

Prune level:
50.0%

-13.93%

-13.37%

-12.80%

-12.24%

ABS

M&Upb

Prune level:
70.0%

-23.73%

-23.29%

-22.85%

-22.41%

ABS

M&Upb

Prune level:
80.0%

-18.17%

-18.07%

-17.96%

-17.86%
ABS

M&Upb

Prune level:
90.0%

-18.59%

-18.27%

-17.96%

-17.65%

ABS

M&Upb

Prune level:
92.5%

-20.67%

-20.48%

-20.28%

-20.09%

ABS

M&Upb

Prune level:
95.0%

-29.62%

-29.25%

-28.88%

-28.51%

ABS

M&Upb

Prune level:
96.0%

-37.78%

-37.21%

-36.64%

-36.07%

ABS

M&Upb

Prune level:
97.0%

-43.68%

-43.43%

-43.17%

-42.92%
ABS

M&Upb

Prune level:
97.5%

-47.15%

-46.90%

-46.66%

-46.42%

ABS

M&Upb

Prune level:
98.0%

-53.50%

-53.27%

-53.03%

-52.80%

ABS

M&Upb

Prune level:
98.5%

-61.30%

-60.84%

-60.37%

-59.90%

ABS

M&Upb

Fig. 2. Result of Experiment 2. The y-axis is the same as in Figure 1. Orange triangles with ‘M&Upb’ mean that our M&U pruning method
with σ̃pboot

ŵj
was used. Black crosses with ‘ABS’ mean that the ABS pruning criterion from [3] was used. The test accuracy of the unpruned

model was 79.98%.

retrained for 200 epochs.
Figure 1 shows the results of this experiment. One can

observe that our M&U pruning criterion either with σ̃boot
ŵj

or σ̃pboot
ŵj

yielded a better (i.e., smaller) test accuracy drop
compared to the ABS pruning criterion. The difference was
rather small when the pruning level was relatively low, but the
gap between the two increased as the pruning level increased.
Using σ̃boot

ŵj
gave the most optimal result (defeated ABS 10

out of 11 times), but using σ̃pboot
ŵj

also gave better results than
the ABS pruning criterion (defeated ABS 8 out of 11 times).

B. Experiment 2: CIFAR-10

We further examined the performance of our M&U pruning
criterion on the CIFAR-10 dataset [58]. Unlike Experiment 1,
we utilized the whole training set, where 5,000 examples of
the training set were used as validation set during training.
We employed a smaller version of AlexNet [59]; the model
has three convolution layers with ReLU activation function
and max pooling, which yield feature maps of size 128*4*4
as output. The network also has four hidden layers with
512, 512, 512, and 256 neurons. As the rapid drop in test
accuracy suggests, this model has relatively low degree of
overparameterization. We chose cross entropy as loss function
and the model was trained for 1,000 epochs with RMSprop.
Due to large amount of computation required for σ̃boot

ŵj
, we

only used σ̃pboot
ŵj

with B = 200. We empirically chose λ∗ = 1.
We pruned parameters of each fully connected layer by us-

ing our M&U pruning criterion or the ABS pruning criterion;
the pruning levels are shown in Figure 2. After pruning, the

model was retrained for 200 epochs. Figure 2 shows the results
of this experiment. Our M&U pruning criterion with σ̃pboot

ŵj

gave a better test accuracy than the ABS criterion in 9 out of
11 times.

C. Experiment 3: Overparameterization

To explore the case of high overparameterization, we used
the MNIST dataset [60] with a MLP model. The MLP model
had three hidden layers with 512, 1024, and 512 neurons,
respectively. The model was trained for 1,000 epochs with
RMSprop.

Due to the large amount of computation required for σ̃boot
ŵj

,
we only used σ̃pboot

ŵj
with B = 200. We empirically chose

λ∗ = 1. For this experiment, we used the iterative pruning
strategy described in [3]. We pruned the parameters of each
fully connected layer by using our M&U pruning criterion
or the ABS pruning criterion with the pruning levels shown
in Figure 3. After pruning, the model was retrained for 200
epochs. Figure 3 shows the results of this experiment. Since
the model is highly overparameterized, the performance drop
was minimal, even when we pruned 99% of the weights. In
fact, pruning up to 95% of the weights increased the test
accuracy of the model, possibly because pruning decreased
overfitting. Our M&U pruning criterion with σ̃pboot

ŵj
gave a

better test accuracy than using the ABS pruning criterion in
10 out of 11 times.

Note that since the model was highly overparameterized,
one could prune a large number of the weights without
sacrificing too much predictive power. For example, Figure 3

Prune level:
50.0%

-0.03

0.08

0.20

0.32

ABS

M&Upb

Prune level:
70.0%

0.99

1.31

1.63

1.95

ABS

M&Upb

Prune level:
80.0%

3.15

3.41

3.67

3.94

ABS

M&Upb

Prune level:
85.0%

3.77

3.82

3.86

3.91

ABS

M&Upb

Prune level:
90.0%

3.19

3.25

3.31

3.38

ABS

M&Upb

Prune level:
92.5%

3.11

3.28

3.45

3.62

ABS

M&Upb

Prune level:
95.0%

0.87

0.93

1.00

1.06

ABS

M&Upb

Prune level:
97.0%

-2.91

-2.59

-2.28

-1.96

ABS

M&Upb

Prune level:
98.0%

-12.22

-11.83

-11.44

-11.05

ABS

M&Upb

Prune level:
98.5%

-19.06

-18.76

-18.46

-18.16

ABS

M&Upb

Prune level:
99.0%

-34.87

-34.13

-33.39

-32.65

ABS

M&Upb

Fig. 3. Result of Experiment 3. The y-axis is the same as in Figure 1. Note that the unit of the y-axis is basis point, and not percent. Orange
triangles with ‘M&Upb’ mean that our M&U pruning method with σ̃pboot

ŵj
was used. Black crosses with ‘ABS’ mean that the ABS pruning

criterion from [3] was used. The test accuracy of the unpruned model was 98.5160%.

shows that could prune 99% of the weights while loosing only
0.33% of the test accuracy (note that the unit of the y-axis in
Figure 3 is basis point, and not percent). The performance
difference between our M&U pruning criterion and the ABS
pruning criterion might seem small due to this minimal test
accuracy drop throughout all pruning levels. But when one
takes this into account, one can see that our M&U pruning
criterion still outperforms the ABS criterion consistently.

D. Experiment 4: ImageNet

ImageNet ILSCVR-12 dataset [61] has 1.28M training
images, spread over 1.000 classes. To make 10 repetition of
the experiment feasible, we used a subset that consists of 100
classes. We used VGG-11 [62] architecture, shrank with the
reduced number of classes. Like in Experiment 3, we used
σ̃pboot
ŵj

with B = 200. We empirically chose λ∗ = 10−3. We
pruned the parameters of each fully connected layer by using
our M&U pruning criterion or the ABS pruning criterion with
the pruning levels shown in Figure 4. After pruning, the model
was retrained for 40 epochs. Figure 4 shows the results of this
experiment. Our M&U pruning criterion with σ̃pboot

ŵj
gave a

better test accuracy than using the ABS pruning criterion in
6 out of 6 times.

VI. CONCLUSION AND DISCUSSION

Motivated by the Wald test statistic, we derived the
M&U pruning criterion for neural networks. Our M&U prun-
ing criterion takes both magnitude and uncertainty into account
and can balance between them through the hyperparameter

λ. It can be considered as a generalization of both the
Wald test statistic and the magnitude based criterion [3]. Our
M&U pruning criterion is free from the scale variant issue,
which the magnitude based pruning criterion suffer from. We
also suggested a reparametrization of λ that makes finding
reasonable values for λ easier. Further, we introduced ‘pseudo
bootstrap’, a very efficient method of measuring uncertainty
of weights by tracking their updates during training. The
experiments suggest that our M&U pruning criterion outper-
forms the criterion suggested by [3] most of the time, in
terms of test accuracy of the pruned model, with the best
result achieved by using σ̃boot

ŵj
. Thus, using our M&U pruning

criterion can lead to models that require less memory and
at smaller computational cost, while minimizing the loss of
predictive power. In addition, Our MnU pruning criterion can
easily be applied to the pruning strategies that utilize the
magnitude based pruning criterion.

In the future, we wish to investigate numerical and the-
oretical properties of pseudo bootstrap and compare it to
that of the ‘usual’ bootstrap. Due to limited amount of GPU
resources, we had to keep our models relatively small. We
would like to investigate the performance of our method on
bigger and deeper neural network models. Further, it will be
fruitful to combine our pruning criterion with other types of
compression methods such as quantization, Huffman coding,
and regularization.

30% 40% 50% 60% 70% 80%
Prune level

-1.00%

-0.80%

-0.60%

-0.40%

-0.20%

Te
st

 a
cc

ur
ac

y
dr

op

ABS
M&Upb

Fig. 4. Result of Experiment 4. Since the drop in test accuracy was at similar level across all the pruning levels we tested, a line plot is
used. Orange triangles with ‘M&Upb’ mean that our M&U pruning method with σ̃pboot

ŵj
was used. Black crosses with ‘ABS’ mean that the

ABS pruning criterion from [3] was used. The test accuracy of the unpruned model was 72.6820%.

ACKNOWLEDGMENT

This work is supported by Google Cloud Platform through
their research credits program.

We acknowledge support from the Danish Industry Foun-
dation through the Industrial Data Analysis Service (IDAS).

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learn-
ing. MIT press, 2016.

[2] M. Denil, B. Shakibi, L. Dinh, N. De Freitas et al.,
“Predicting parameters in deep learning,” in Advances in
neural information processing systems (NeurIPS), 2013,
pp. 2148–2156.

[3] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both
weights and connections for efficient neural network,”
in Advances in neural information processing systems
(NeurIPS), 2015, pp. 1135–1143.

[4] C. Louizos, M. Welling, and D. P. Kingma, “Learning
sparse neural networks through l 0 regularization,” in
International Conference on Learning Representations
(ICLR), 2018.

[5] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and
Y. Chen, “Compressing neural networks with the hashing
trick,” in International Conference on Machine Learning
(ICML), 2015, pp. 2285–2294.

[6] S. Srinivas and R. V. Babu, “Data-free parameter pruning
for deep neural networks,” in British Machine Vision
Conference (BMVC), 2015.

[7] K. Ullrich, E. Meeds, and M. Welling, “Soft weight-
sharing for neural network compression,” in International
Conference on Learning Representations (ICLR), 2017.

[8] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey
of model compression and acceleration for deep neural
networks,” arXiv preprint arXiv:1710.09282, 2017.

[9] S. D. Silvey, “The lagrangian multiplier test,” The Annals
of Mathematical Statistics, vol. 30, no. 2, pp. 389–407,
1959.

[10] S. Han, H. Mao, and W. J. Dally, “Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding,” in International Con-
ference on Learning Representations (ICLR), 2016.

[11] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery
for efficient dnns,” in Advances in neural information
processing systems (NeurIPS), 2016, pp. 1379–1387.

[12] M. Zhu and S. Gupta, “To prune, or not to prune: ex-
ploring the efficacy of pruning for model compression,”
arXiv preprint arXiv:1710.01878, 2017.

[13] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level
pruning method for deep neural network compression,”
in International Conference on Computer Vision (ICCV),
2017, pp. 5058–5066.

[14] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning
structured sparsity in deep neural networks,” in Advances
in neural information processing systems (NeurIPS),
2016, pp. 2074–2082.

[15] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf,
“Pruning filters for efficient convnets,” in International
Conference on Learning Representations (ICLR), 2017.

[16] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain
damage,” in Advances in neural information processing
systems (NeurIPS), 1990, pp. 598–605.

[17] B. Hassibi, D. G. Stork, and G. J. Wolff, “Optimal
brain surgeon and general network pruning,” in IEEE
international conference on neural networks, 1993, pp.
293–299.

[18] U. Anders and O. Korn, “Model selection in neural
networks,” Neural networks, vol. 12, no. 2, pp. 309–323,
1999.

[19] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving
the speed of neural networks on CPUs,” 2011.

[20] K. Hwang and W. Sung, “Fixed-point feedforward deep
neural network design using weights+ 1, 0, and- 1,”
in 2014 IEEE Workshop on Signal Processing Systems
(SiPS). IEEE, 2014, pp. 1–6.

[21] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing
deep convolutional networks using vector quantization,”
arXiv preprint arXiv:1412.6115, 2014.

[22] M. Courbariaux, Y. Bengio, and J.-P. David, “Binarycon-
nect: Training deep neural networks with binary weights
during propagations,” in Advances in neural information
processing systems (NeurIPS), 2015, pp. 3123–3131.

[23] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and
Y. Bengio, “Quantized neural networks: Training neural
networks with low precision weights and activations,”
The Journal of Machine Learning Research (JMLR),
vol. 18, no. 1, pp. 6869–6898, 2017.

[24] Z. Lin, M. Courbariaux, R. Memisevic, and Y. Bengio,
“Neural networks with few multiplications,” in Interna-
tional Conference on Learning Representations (ICLR),
2016.

[25] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi,
“Xnor-net: Imagenet classification using binary convo-
lutional neural networks,” in European Conference on
Computer Vision (ECCV). Springer, 2016, pp. 525–542.

[26] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and
R. Fergus, “Exploiting linear structure within convolu-
tional networks for efficient evaluation,” in Advances in
neural information processing systems (NeurIPS), 2014,
pp. 1269–1277.

[27] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets,
and V. Lempitsky, “Speeding-up convolutional neu-
ral networks using fine-tuned cp-decomposition,” arXiv
preprint arXiv:1412.6553, 2014.

[28] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding
up convolutional neural networks with low rank expan-
sions,” arXiv preprint arXiv:1405.3866, 2014.

[29] G. Hinton, O. Vinyals, and J. Dean, “Distilling the
knowledge in a neural network,” in NIPS Deep Learning
and Representation Learning Workshop, 2015. [Online].
Available: http://arxiv.org/abs/1503.02531

[30] A. See, M.-T. Luong, and C. D. Manning, “Compres-
sion of neural machine translation models via pruning,”
in The SIGNLL Conference on Computational Natural
Language Learning (CoNLL), 2016.

[31] S. Narang, E. Elsen, G. Diamos, and S. Sengupta,
“Exploring sparsity in recurrent neural networks,” in
International Conference on Learning Representations
(ICLR), 2017.

[32] S. Anwar, K. Hwang, and W. Sung, “Structured pruning
of deep convolutional neural networks,” ACM Journal on
Emerging Technologies in Computing Systems (JETC),
vol. 13, no. 3, p. 32, 2017.

[33] S. Changpinyo, M. Sandler, and A. Zhmoginov, “The
power of sparsity in convolutional neural networks,”
arXiv preprint arXiv:1702.06257, 2017.

[34] V. Lebedev and V. Lempitsky, “Fast convnets using

group-wise brain damage,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 2554–
2564.

[35] G. Casella and R. L. Berger, Statistical Inference.
Duxbury Pacific Grove, CA, 2002.

[36] L. Le Cam, “Maximum likelihood: an introduction,”
International Statistical Review, vol. 58, no. 2, pp. 153–
171, 1990.

[37] H. White, “Maximum likelihood estimation of misspeci-
fied models,” Econometrica: Journal of the Econometric
Society, pp. 1–25, 1982.

[38] A. W. Van der Vaart, Asymptotic Statistics. Cambridge
University Press, 2000.

[39] J. W. Hardin, “The sandwich estimate of variance,” in
Maximum likelihood estimation of misspecified models:
Twenty years later. Emerald Group Publishing Limited,
2003, pp. 45–73.

[40] G. Kauermann and R. J. Carroll, “The sandwich variance
estimator: Efficiency properties and coverage probability
of confidence intervals,” 2000.

[41] ——, “A note on the efficiency of sandwich covariance
matrix estimation,” Journal of the American Statistical
Association, vol. 96, no. 456, pp. 1387–1396, 2001.

[42] P. Toulis, E. M. Airoldi et al., “Asymptotic and finite-
sample properties of estimators based on stochastic gra-
dients,” The Annals of Statistics, vol. 45, no. 4, pp. 1694–
1727, 2017.

[43] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov, “Dropout: a simple way to pre-
vent neural networks from overfitting,” The Journal of
Machine Learning Research (JMLR), vol. 15, no. 1, pp.
1929–1958, 2014.

[44] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fer-
gus, “Regularization of neural networks using dropcon-
nect,” in International Conference on Machine Learning
(ICML), 2013, pp. 1058–1066.

[45] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Di-
vide the gradient by a running average of its recent
magnitude,” COURSERA: Neural networks for machine
learning, vol. 4, no. 2, pp. 26–31, 2012.

[46] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in International Conference on Learning
Representations (ICLR), 2015.

[47] J. Neyman and E. S. Pearson, “On the problem of the
most efficient tests of statistical hypotheses,” Philosoph-
ical Transactions of the Royal Society of London. Series
A, Containing Papers of a Mathematical or Physical
Character, vol. 231, no. 694-706, pp. 289–337, 1933.

[48] A. K. Bera and Y. Bilias, “Rao’s score, Neyman’s c
(α) and Silvey’s LM tests: an essay on historical de-
velopments and some new results,” Journal of Statistical
Planning and Inference, vol. 97, no. 1, pp. 9–44, 2001.

[49] R. F. Engle, “Wald, likelihood ratio, and lagrange multi-
plier tests in econometrics,” Handbook of econometrics,
vol. 2, pp. 775–826, 1984.

[50] B. Efron and R. J. Tibshirani, An Introduction to the

http://arxiv.org/abs/1503.02531

Bootstrap. CRC press, 1994.
[51] P. J. Bickel, D. A. Freedman et al., “Some asymptotic

theory for the bootstrap,” The annals of statistics, vol. 9,
no. 6, pp. 1196–1217, 1981.

[52] B. Efron, “Bootstrap methods: another look at the jack-
knife,” in Breakthroughs in statistics. Springer, 1992,
pp. 569–593.

[53] A. C. Davison and D. V. Hinkley, Bootstrap methods and
their application. Cambridge university press, 1997,
vol. 1.

[54] J. Shao and D. Tu, The jackknife and bootstrap. Springer
Science & Business Media, 2012.

[55] B. Efron, The Jackknife, the Bootstrap, and Other Re-
sampling Plans. Siam, 1982, vol. 38.

[56] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and
A. Lerer, “Automatic differentiation in pytorch,” 2017.

[57] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms,” arXiv preprint arXiv:1708.07747, 2017.

[58] A. Krizhevsky and G. Hinton, “Learning multiple layers
of features from tiny images,” Citeseer, Tech. Rep., 2009.

[59] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
in Advances in neural information processing systems
(NeurIPS), 2012, pp. 1097–1105.

[60] Y. LeCun, “The mnist database of handwritten digits,”
http://yann. lecun. com/exdb/mnist/, 1998.

[61] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale
Visual Recognition Challenge,” International Journal of
Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252,
2015.

[62] K. Simonyan and A. Zisserman, “Very deep convolu-
tional networks for large-scale image recognition,” in
International Conference on Learning Representations
(ICLR), 2015.

	I Introduction
	II Related Work
	III Background
	III-A Asymptotic Normality
	III-B Statistical Hypothesis Testing
	III-C Wald Test and Absolute Value Based Pruning

	IV Magnitude and Uncertainty Pruning Criterion
	IV-A Definition
	IV-B Scale Invariant Property
	IV-C Choosing Uncertainty Estimates
	IV-D Pseudo Bootstrap
	IV-E Reparameterization of

	V Experiments
	V-A Experiment 1: Comparison of Uncertainty Estimates
	V-B Experiment 2: CIFAR-10
	V-C Experiment 3: Overparameterization
	V-D Experiment 4: ImageNet

	VI Conclusion and Discussion

