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Abstract—Secure online transaction is an essential task for e-
commerce platforms. Alipay, one of the world’s leading cashless
payment platform, provides the payment service to both mer-
chants and individual customers. The fraud detection models
are built to protect the customers, but stronger demands are
raised by the new scenes, which are lacking in training data and
labels. The proposed model makes a difference by utilizing the
data under similar old scenes and the data under a new scene
is treated as the target domain to be promoted. Inspired by this
real case in Alipay, we view the problem as a transfer learning
problem and design a set of revise strategies to transfer the source
domain models to the target domain under the framework of
gradient boosting tree models. This work provides an option for
the cold-start and data-sharing problems.

Index Terms—fraud detection, transfer learning, fine tuning,
gradient boosting tree

I. INTRODUCTION

Two cousins prepared masks and weapons to rob some
money. However, they broke into 3 convenience stores before
getting caught, only to got 1700 yuan. They are despairing
that the money cannot even afford their travelling expenses
and tools. This is a real criminal case in Hangzhou,China, a
cashless city. The mobile payment spreads all over the city
where can pay for almost everything without a wallet.

The robberies nowadays take place more online and harm
the public interest. Alipay1, one of the leading payment
platforms, provides the users with convenient payment service
as well as the security assurance. The data scientists take
efforts to build up models and confront the frauds.

With the develop of Alipay, potential challenges arise [1].
In the fraud detection problem, it is intractable to accumulate
enough training data for the models. Especially, the positive
samples are collected by case reports from the victims, which
indicate the invocatable losses have come into being. On
one hand, the data scientists need labels to train the fraud
detection models, on the other hand, they are eager to protect
the users from frauds. Therefore making full use of existing

1https://global.alipay.com/

data is crucial. While providing online payment service to the
merchants, the risk management mechanism is set up for each
individual merchant, but some small merchants even do not
have enough samples to train a usable model. The merchants
would like to share the anti-fraud expertise across to form a
stronger guard. Another practical scenario is how to quickly
build up a risk management system for a new marketplace. In
face of the cold start problem, it’s a natural choice to refer to
the data under similar scenes.

Transfer learning is born to solve these problems. It helps
to transfer the information from the source domain, with
abundant data, to the exhausted target domain. In this way, the
source domain data are reused wisely and the data required to
build up a practical model on the target domain is reduced.

Nevertheless, there are implicit restrictions in previous
cases. Due to data privacy protection regulations, e.g. Gen-
eral Data Protection Regulation(GDPR)2, cross-boarder data-
sharing is under increasingly strict supervision. The merchants
are also unwilling to leak any customer infomation to their
competitors. So the model-based transfer learning is the only
solution, instead of feature-based and instance-based ones.
What’s more, the model-based methods also work well when
the storage capacity and transmission throughout on the target
domain are limited.

Most of the model-based transfer learning algorithms are
based on the neural network, which are good at dealing with
the image, audio and natural language data. However, the fraud
detection features are well-defined and the feature number
is relatively small. Neural network is not the optimal choice
here, in that the parameters are hard to tune and the model is
hard to interpretate. Gradient Boosting Desition Tree(GBDT)
is an ensemble model with appealing characteristics, e.g. the
ability to handle nonlinearity and not requiring the tedious
feature pre-processing. It is a popular option for the machine
learning tasks and the following variants optimize the original
algorithm in both performance and speed. Many excellent

2https://eugdpr.org/978-1-5386-5541-2/18/$31.00 ©2018 IEEE
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implementations, such as XGBoost3 and LightGBM4, are
released and widely adopted.

In this paper, we focus on the above mentioned real-
world fraud dection problem and propose an adapted tree
boosting workflow for transfer learning. We implement the
algorithm on top of XGBoost and get a competitive result in
the experiment. The rest of the paper is organized as follows.
Section II provides a brief review of related work on transfer
learning. After that, section III formalizes the basic transfer
learning settings as the preliminary. And the key insights
and necessary computation details of GBDT and XGBoost
are also introduced. In section IV, we first analyze the data
and describe the main framework. Then intuitions and related
operations to revise a source tree model are explained in detail.
Section V contains our experiments and discussions, followed
by the conclusion in section VI.

II. RELATED WORK

Transfer learning approaches are designed to transfer the
helpful information from the source task to a similar target task
and the information is exploited to promote the performance
on the target task. Four classic paradigms are proposed based
on what to transfer [2]. Instance-based methods reuse the
souce domain data by instance weighting and importance
sampling [3]–[6]. These methods work well when the data
distributions in the source domain and the target domain are
sufficiently approximate. Feature-based methods transform the
features from both domains to a proper feature space to reach
the goal [7]–[12]. They try to find a feature representation
that minimizes the difference between the domains. Relation-
based methods help the relational domains and focus on the the
relation mapping between the domains [13]–[15]. Model-based
methods assume that the source model can contribute to the
target model and they share parameters between the domains
[16]–[18]. Common approaches including adapting models
with the biased regularizers [19]–[22], ensemble strategies
[23]–[26] and utilizing source model as priors [27]–[29].

Model-based methods, which we adopt in this work, stand
out in the situation where the source domain is referential
but the samples are not available to the target domain. There
are attempts for different models in this field. Zhao et al.
proposes TransEMDT that integrates a decision tree and the
k-means clustering algorithm to build a personalized activity
recognition model [17]. A decision tree is trained offline and
unlabeled samples from a new user are then used to adapt
the model. Another similar work is based on extreme learning
machine [30]. SVM is a popular base model. ASVM(Adapted
SVM) [31] and its extension [32] train a Gaussian kernel
SVM as source model and regularize it with target samples.
Many recent researches integrate neural network into transfer
learning in order to learn the feature representation or share the
model parameters. The adaptation layers and domain related
losses are introduced to design customized neural network

3https://github.com/dmlc/xgboost
4https://github.com/microsoft/LightGBM

architectures [33]–[36]. Though the deep neural networks get
fruitful results in natural language, audio and image data,
tree models are more competitive when the features are well-
constructed in limited feature dimensions. Considering the tree
models are easy to train and interpretate, we select tree model
as the base learner.

The tree-based transfer learning is widely explored for
streaming data mining. The methods are designed to process
massive, high-speed streams and modify the decision tree with
new samples. In [37]–[39], the decision tree is constructed
on the streaming data and proved to be asymptotically nearly
identical to the tree of a conventional learner. The algorithm is
optimized in both time(worst-case proportional to the number
of attributes) and space(proportional to the size of the tree
and associated sufficient statistics). Núñez et al. proposes an
incremental decision tree that automatically adjusts its internal
parameters [40]. Target concepts in streaming data change over
time and a time window with adaptive size is introduced to
solve the problem. A local performance measure is calculated
and when the performance on a leaf decreases, the size of its
local window is reduced. These methods process the changing
batch data rather than a constant target dataset.

The model-based transfer learning framework raised by
Segev et al. [41] is similar to this work, in that it also consists
of several revise strategies operating on the transfered model.
Two algorithms are applied to revise the tree structures of the
random forest trained in the source domain. The SER(structure
expansion/reduction) algorithm first expands the leaf node
by utilizing the samples falling into it. Then the reduction
operates on the intermediate nodes in a bottom-up order and
generalizes the rules by pruning. In order to prune the tree,
two types of errors are recorded: subtree error on a node is
the empirical error of the its descendants and leaf error is the
error when the node is regarded as a leaf node. If the leaf
error is smaller than subtree error, the subtree dominated by
this node is then pruned into a leaf node. The STRUT(structure
transfer) algorithm is designed from a new perspective. The
scales of features are observed to be quite different between
the domains, so the associated decision thresholds should be
modified. A final MIX method is employed to combine the
two result forests generated by SER and STRUT as a voting
ensemble. This framework is different from ours because of the
different essence of base models. Random forest is a typical
bagging model and a bunch of decision trees vote together to
get the prediction. Boosting tree models outperforms random
forest and could be utilized differently in transfer learning.

A well-known transfer learning algorithm based on boosting
tree models is the TrAdaBoost [42]. It inherits the key idea
of AdaBoost [43] and adjusts the weights of training samples.
The wrongly predicted samples in source domain are regard
as misleading data and their effects are weaken in the fol-
lowing iterations. Besides the normal AdaBoost adopted in
target domain, TrAdaBoost defines a multiplier to decrease
the weights of misclassified source samples. After several
iterations, the most helpful diff-distribution data are picked
out as supplement for the same-distribution data. AdaBoost is



equivalent to GBDT with exponential loss function. We choose
the more generic GBDT as base model and carry out the work
under a model-based transfer learning paradigm.

III. PRELIMINARY

Our method serves the scarce dataset as a transfer learning
framework in order to provide a usable machine learning
model. We take the gradient boosting tree algorithm as the
basis of this framework. In this section, we briefly introduce
some necessary notations and concepts used in the algorithm.

A. Transfer Learning Settings

The key definition domain in transfer learning consists
of 3 factors: D = (X ,Y, P ), where X and Y stands for
the d-dimension feature space and label space respectively.
P represents the probability distribution of the data, which
is a virtual oracle without the explicit representation. There
are 2 basic domains in transfer learning. Source domain
contains abundant labeled data and target domain, on the
contrary, provides scarce information. The transfer learning
tasks attempt to transfer the knowledge included in source
domain data to the target domain.

We introduce s and t as subscript to represent the source
domain and target domain as Ds and Dt. There are various
data hypotheses for different transfer learning algorithms.
Obeying our real-world scenario, we follow the restriction that
the source domain and target domain share the same feature
space X and label space Y , i.e. we have Xs = Xt = X and
Ys = Yt = Y .

Supposing that there are ns instances in source domain and
nt instances in target domain. Xs is employed to denote the
feature matrix in source domain where Xs is an ns×d matrix
and Xs = {xi}ns

i=1. Dataset Ds consists of feature matrixes
and related label vectors Ds = {Xs, Ys}. Similarly, we have
the feature matrix in target domain Xt = {xj}nt

j=1 and Dt =
{Xt, Yt}.

The marginal distributions of features are always different
between Ds and Dt in transfer learning, Ps(xs) 6= Pt(xt).
Further, the conditional probability distribution of labels are
different in our settings, Qs(ys|xs) 6= Qt(yt|xt). Further, We
apply the model-based transfer method. Our final goal is to get
a classifier for target domain Ft : xt 7→ yt. To reach the goal, a
model is first built in the source domain Fs : xs 7→ ys. We then
take Fs as the knowledge transferred from the source domain
and make some adaptations to guide the model building in
target domain.

B. Gradient Boosting Decision Tree

The machine learning tasks are generally solved as function
estimation problems. A proper loss function L(y, F (x)) is
defined to measure the difference between the labels and the
predictions. Then the optimization goal of function estimation
is minimizing the expected value over the joint distribution of
all training samples.

F ∗ = arg min
F

Ex,yL(y, F (x)) (1)

GBDT carries out the estimation in a nonparametric way
and applies numerical optimization in function space [44]. The
prediction F (x) at each point x is regarded as a parameter and
the minimizing objective is deduced as follows directly with
respect to F (x).

φ(F (x)) = arg min
F (x)

Ex,yL(y, F (x))

= arg min
F (x)

Ex[Ey(L(y, F (x))|x)]

= arg min
F (x)

Ey[L(y, F (x))|x]

(2)

The optimal F ∗ is solved as a numerical optimization. The
gradient descent method is applied and F ∗ is denoted in an
additive form. Where f0 is the initial value and followed
by M boosting values{fm}M1 . At each step, the descent
direction is determined by the gradient gm, which is in infinite-
dimensional space. Then the step size ρm is computed by
minimizing the objective in the negative gradient direction.

F ∗ =

M∑
m=0

fm (3)

gm = {gim} = {∂Ey[L(y, F (x))|xi]
∂F

|F=Fm−1} (4)

ρm = arg min
ρ

Ex,yL(y, Fm−1 − ρgm) (5)

fm = −ρmgm (6)

However, real-world datasets contain finite training samples
and F ∗ cannot be estimated at each xi. In order to smooth
the estimation among the samples and generalize to the
data beyond training set, a function h with parameter α is
introduced to fit the gradients at each step.

gim = gm(xi) ' h(xi;αm) (7)

The optimization turns into finding the best hm =
{h(xi;αm)}N1 that most parallel to −gm ∈ RN , where N
is the number of samples. The parameter αm is obtained by
solving that:

αm = arg min
α,β

N∑
i=1

[−gm(xi)− βh(xi;α)]2 (8)

With the direction h(xi;αm) and finite dataset, the step size
in (5) and optimal estimation in (1) is updated:

ρm = arg min
ρ

N∑
i=1

L(yi, Fm−1(xi) + ρh(xi;αm))(9)

Fm(x) = Fm−1(x) + ρmh(xi;αm) (10)

Function h is also called the base learner. F ∗ is searched
in the function space which is restricted by h(xi;α). GBDT
chooses decision tree as the base learner. A tree model is
parameterized by each leaf node region Rj and its weight
bj , then a tree model with J leaf nodes is represented as

h(x; {bj , Rj}Jj=1) =

J∑
j=1

bjI(x ∈ Rj) (11)



where the function I indicates whether a sample x falls into
the leaf node j.

By solving (8), the leaf weight is the weighted average of
the latest gradients.

bjm =

∑
xi∈Rjm

wigim∑
xi∈Rjm

wi
= ḡm (12)

With this weight estimation, the split operation can be
evaluated by computing the gain of objective in (8). By
traversing the features and values, the tree is construct node by
node and the structure is finally determined. The line search
multiplier ρm can be merged in bjm and (10) is expressed as:

Fm(x) = Fm−1(x) + ρm

J∑
j=1

bjmI(x ∈ Rj)

= Fm−1(x) +

J∑
j=1

γjmI(x ∈ Rj)

(13)

According to (9) the leaf weight is updated as:

γjm = arg min
γ

∑
xi∈Rj

L(yi, Fm−1(xi) + γ) (14)

C. XGBoost

The gradient decent in GBDT is a first-order optimization
algorithm. The variants, such as XGBoost [45] and Psmart
[46], add regularizer Ω to the objective and the objective at
m iteration is

O(m) =

N∑
i=1

L(yi, Fm−1(xi) + fm(xi)) +Ω(fm) (15)

The objective takes the second-order taylor expansion ap-
proximation of objective and regularizes the number of leaf
nodes J and leaf weights γ. It can be regrouped by leaf:

O(m) '
N∑
i=1

[gimfm(xi) +
1

2
himf

2
m(xi)] + (ηJ +

1

2
λ

J∑
j=1

γjm)

=

J∑
j=1

[(
∑

xi∈Rjm

gim)γjm +
1

2
(

∑
xi∈Rjm

him + λ)γ2jm] + ηJ

=

J∑
j=1

[Gjmγjm +
1

2
(Hjm + λ)γ2jm] + ηJ

(16)
where Gjm and Hjm is the first-order and second-order
derivative summation on leaf j.

Then the optimal weight and related objective are:

γjm = − Gjm
Hjm + λ

(17)

O(m) = −1

2

J∑
j=1

G2
jm

Hjm + λ
+ ηJ (18)

Formula (18) is employed to evaluate the split and construct
the tree. After that, the leaf weight is calculated by (17).

LogLoss is a common loss function for classification prob-
lem and it is calculated by label y and output probability ŷ,
where ŷ = 1

1+eFm
.

L(y, ŷ) = −yln(ŷ)− (1− y)ln(1− ŷ) (19)

With this definition, the first-order derivative gm and
second-order derivative hm used in the following revise al-
gorithms can be formalized:

gm =
∂L

∂Fm

= y · 1

1 + e−Fm
· e−Fm · (−1) + (1− y) · 1

1 + eFm
· eFm

= −y · (1− 1 + e−Fm) + (1− y) · 1

1 + e−Fm

= −y +
1

1 + eFm

= ŷ − y

hm =
∂L

∂2Fm
= (−1)

e−Fm·(−1)

(1 + e−Fm)2
= (1− ŷ) · ŷ

(20)

IV. MECHANISM

To face the fact that there are no sufficient data to obtain
practical models under new scenes. Data, especially the labels,
are time-consuming and costly to collect. So it’s natural to
seek for some help from the accumulated data under similar
scenes, namely source domain data in transfer learning. In
this section, we start from our scenario and design a transfer
learning framework to utilize the treasurable data based on the
XGBoost.

A. Data Analysis

Both of the data in our source domain and target domain
are drawn from the oversea e-commerce transactions, but in
different marketplaces. Here, the features are defined based on
the fraud detection expertise and describe the characteristics
distinguishing the samples with different labels. Obviously,
these characteristics can be shared across different fraud scenes
in a degree.

However, the data distributions can be various in several
ways. Different fraud groups take charge of different regions
and different fraudsters may follow different fraud tricks.
Another point is that their behaviors are completely related
to the local risk management strategies. The region-wise
strategies are formulated differently, so the fraudsters have to
adjust their actions along with the strategies even for the same
vulnerability.

Several drift modes show up in Fig.1, which compares the
feature distributions between domains :
• Only the range of feature value is changed, while the

shape of distribution remains similar(fid35)
• The shape of feature distribution changes(fid39 & fid45)
• The feature lose efficacy and is not so active under the

new scene(fid18)
Additionally, we can also observe the predictive power

change of the features from the IV(Information Value) metric.



Fig. 1. Feature distribution between domains

As shown in TABLE I, the top IV features on different
domains vary a lot and one third of the top IV features on
the source domain become less predicative(marked as red).
Besides the relative rank, the overall value scale of IV and
the IV of the same feature are also different. This reveals the
relation change between the features and the labels.

TABLE I
THE IV COMPARISON OF TOP 20 FEATURES ON SOURCE DOMAIN

feat id IVs ranks IVt rankt rank diff

43 1.412 1 0.9 3 2
44 1.412 2 0.9 4 2
5 1.268 3 0.374 26 23
17 1.01 4 0.629 7 3
34 0.749 5 0.5 11 6
37 0.65 6 0.283 31 25
35 0.634 7 0.488 13 6
36 0.629 8 0.341 27 19
38 0.507 9 0.565 9 0
6 0.369 10 0.384 23 13
45 0.337 11 1.024 1 10
47 0.337 12 1.024 2 10
46 0.264 13 0.797 5 8
31 0.236 14 0.449 15 1
8 0.228 15 0.232 34 19
28 0.224 16 0.423 17 1
1 0.219 17 0.38 24 7
30 0.208 18 0.428 16 2
41 0.206 19 0.596 8 11
15 0.202 20 0.271 32 12

In fact, both of the labels and features can be shifty from
our analysis of the data difference between the domains. Fig.2
visualizes the typical drifting cases. The fraudsters change
their operandi over time and are active at different regions. So
the feature drifting in Fig.2-a often takes place from one scene
to another. Meanwhile, the label drifting in figure Fig.2-b may
result from the rule change in the definition of “bad” under
different scenes. Sometimes, even our datasets are subsamples
from the same oracle, a drift can be brought out with the
limited sample counts as in Fig.2-c and Fig.2-d.

Though there are distribution changes and relation changes
among the domains, the fraudsters do share similar patterns

Fig. 2. Feature and label drift between domains

and attributes, which is in harmony with the basic supposition
of transfer learning. In particular, the data experts would like to
refer to mature scenes and make the defense plans under some
new scenes with rare data or labels. The experts manually
extract the similarities and this process works out as a good
initialization of cold starting, which proves the feasibility
of utilizing transfer learning methods to help with the data
deficiency.

B. Model-based Transfer

In our case, we have to protect the privacy of the original
data and the data are in separated projects. So we turn to
model-based transfer learning, a light-weight transfer from the
source domain to the target domain.

GBDT is a common choice in machine learning tasks.
Besides the high performance and efficiency, GBDT and its
variants also provides the model interpretability [47] and the
easiness of parameter tuning. The most direct transfer is first
train a model on the source dataset. Then the model is trans-
ferred to target domain and further trained based on the target
dataset. The final model is a fine-tuned version, which inherits
the informative patterns in source domain and fits in with the
target dataset. Sharing the model directly is a good solution
if the target dataset stay the same as the source dataset, but it
may be fruitless due to the data drifting in previous analysis.
Considering the above reasons, we choose XGBoost as the
basic learner of this transfer learning framework and make
adaptations to the source trees before continuing training.

Algorithm 1 shows the main workflow of our training
process. Given a training dataset D, the wrapper function
TrainXGB trains T trees with L levels based on a base
model M . It calls the XGBoost API and takes advantage
of this highly optimised toolkit. There are two strategies
listed to conduct the training process, namely OneRound and
MultiRound respectively. The function names indicate the
number of times needed for transferring models between the
domains.

• OneRound: train a batch of trees on the source domain
and transfer them to the target domain in bulk. Then



on the target side, the trees are revised one by one and
become the base model for further training.

• MultiRound: iteratively train on the source domain and
revises on the target domain to grow each source tree.
Instead of the batch process, multiple model exchanges
take place during the base model training. Then continue
training with only target dataset.

The main difference is how to train the source model.
The OneRound strategy captures more patterns in the source
domain and maintains a lower transmission cost. The Multi-
Round strategy fits the target domain better and considers the
statistics change after tree revising. Which strategy to apply
is a hyper parameter to be decided based on the datasets.

Algorithm 1 Transfer Learning XGB
1: function ONEROUND(Ds,Dt, Ts, Tt, Ls, Lt)
2: Ms = TrainXGB(Ds, Ts, Ls,M = None)
3: // transfer Ms to the target domain
4: M ′s = [ ]
5: for i = 1, 2, ..., Ts do
6: tree = ReviseOneTree(M ′s,Ms[i− 1],Dt)
7: M ′s.append(tree)
8: end for
9: Mt = TrainXGB(Dt, Tt, Lt,M = M ′s)

10: return Mt

11: end function
12: function MULTIROUND(Ds,Dt, Ts, Tt, Ls, Lt)
13: Ms = [ ]
14: M ′s = [ ]
15: for i = 1, 2, ..., Ts do
16: Ms = TrainXGB(Ds, 1, Ls,M = Ms)
17: // transfer Ms[i− 1] to the target domain
18: tree = ReviseOneTree(M ′s,Ms[i− 1],Dt)
19: M ′s.append(tree)
20: // transfer M ′s[i− 1] to the source domain
21: Ms[i− 1] = M ′s[i− 1]
22: end for
23: Mt = TrainXGB(Dt, Tt, Lt,M = M ′s)
24: return Mt

25: end function

C. Revise Strategies

In Algorithm 1, the function ReviseOneTree takes current
revised model M

′

s and next source tree Ms[i−1] as input, then
conduct the revise strategies based on the target dataset Dt. In
this section, we discuss some practical strategies, inspired by
the data drifting analysis, and related implementation details.

1) Re-split: As shown in Fig.1 and Fig.2-a, the most com-
mon feature drifts are scale change and shape change, which
fade the branches of the source model. From our observation,
the original split values usually result in an unbalanced sample
division and the source patterns then become useless. It’s
obvious that the value is no longer the best split point under the
new data distribution. To maintain the efficacy, recomputation
of split value is necessary.

The original split features, which construct the backbone of
the valuable patterns, are reserved while re-spliting the target
dataset. Reviewing the computation of split gain in XGBoost
in Formula (18), the first-order and second-order derivatives
rely on current predict values and labels. Firstly, the g and h of
each sample could be computed, with which we get the split
gain for every possible feature values. Then we traverse the
whole tree in a top-down order and revise all the split values.

When the data drifting belongs to the scale change but the
labels are rare, a simpler method also works out fine. We can
first compute the fractile of split value in source dataset and
get the same fractile in target dataset as new split value.

2) Re-weight: After getting the tree structure, XGBoost
assigns a score to each leaf node with Formula (17). The leaf
score is determined by the sample labels fallen into the it. To
deal with the label drift problem in Fig.2-b and eliminate the
effects of the distribution change, we have to re-weight the
leaves. It’s easy to embed the score computation in the steps
of re-split.

3) Rare Branch: A common case, when we apply the revise
strategies, is that some of the branches only contain a small
amount of samples. We lose the statistical significance to re-
split and may overfit on the these samples. In this way, the
revise neither make better use of the source dataset nor result
in a reasonable final model. So the sample count on every
subtree should be recorded and taken into consideration while
executing the strategy.

For the branches with no sufficient samples, two new
operations are needed: prune and discount. Prune means that
we set up a least sample threshold and drop a rare branch
directly. By doing so, a intermediate node becomes a leaf node.
This method can cut off the source patterns that is invalid.
However, for the cases in Fig.2-c and Fig.2-d, rare branch is
caused by the limited dataset and the related pattern may work
well on future samples. Because we are not confident of the
rare branches, a discount factor is multiplied to the original
weight, as a hyper parameter to be determined. This factor
reflects the confidence that a source pattern will take effect on
the target domain. We tempted to maintain the original branch
information, only to get a bad result. The reason is that the
original scores are confused with the revised scores, but they
are not comparable. With the factor, we weaken the source
scores.

TABLE I shows that some features may lose efficacy and
fail to be a good split feature. When we traverse the samples
and compute the new split gain, no positive result could
be found and the feature cannot bring information gain by
dividing the samples. So we have to treat it just as the rare
branches and apply the prune/discount strategies.

4) Implementation: The basic train and predict process are
provided by the XGBoost toolkit. To implement the revise
strategies, a data structure is in need to restore the necessary
tree structure and the intermediate split statistics. A parser
is designed to initialize the data structure from the dumped
XGBoost model file.



In order to continue training an XGBoost model, the data
structure should also support reverse model transformation.
However, no API is released in XGBoost to load a dumped
model. In this case, we employ the Treelite5 to solve this
problem. Treelite is compatible with the most popular GBDT
toolkit, e.g. XGBoost, LightGBM and Scikit-learn6. It allows
us to define a Treelite model and generate a mocked binary
model, which XGBoost is able to load.

V. EXPERIMENT

The experimental dataset contains the card(debit card or
credit card) transaction samples from one of the oversea e-
commerce platform partners of Alibaba, which utilizes the
risk management system of Alipay to detect the real-time
transaction frauds, e.g. card-stolen cases. There are nearly 5
million successful transaction samples from 5 contries in total,
which consists of basic transaction information, fraud labels
and 48 well-designed features.

The features are designed to describe different risk factors.
For example, whether the shipping information and device of
the payment are reliable, the consistency of the user behaviors
and the buyer-seller relation, etc. The fraud labels are collected
in the following 3 ways:
• Chargeback from the card issuer banks: the card issuer

receives claims on unauthorized charges from the card
holders and report related transaction frauds to the mer-
chants

• Third-party data: the fraud data, gathered from banks
worldwide, from the venders work as a good supplement

• Label propagation: the device and card information are
also utilized to mark similar transactions

A. Experiment setup

Because some scenes are new or the labels need time
to be fed back, the bad rate in different contries are quite
different(TABLE II). We take the mature scene with highest
bad rate as the source domain and the rest scenes as the target
domain. In order to simulate the common case of real-world
applications, we take 30% of the target domain as training
data. In this way, the training data in target domain cannot
build a robust model and the evaluation is more reliable with
more positive labels. To better understand the data, We run a
basic XGBoost model in the dataset in advance. Because of
the low bad rate, we apply the negative sampling method to
get a better performance. After this, the bad rate of the training
data on both domains is about 3%.

Here list the main metrics we care about:
• AUC: basic discriminability measurement for classifica-

tion problem, area plotted with TPR against the FPR
• Top-Recall: recall of the samples whose scores rank on

the top, in practice, the 1‱ recall is in use
While evaluating the dataset with the class imbalance problem,
AUC will be high and the gap between models will be minor.

5https://github.com/dmlc/treelite
6https://scikit-learn.org/stable/

TABLE II
EXPERIMENTAL DATASET STATISTICS

scene id neg# pos# bad rate domain

3 1227023 1872 0.152% Source

1 777364 368 0.047%
2 1285753 74 0.006%
4 371938 96 0.026%
5 1299483 464 0.036%

3734538 1002 0.027% Target

In this case, Top-Recall is a better measurement. What’s more,
it plays a import role in fraud detection, because the follow-
up actions are taken on the most suspicious users. To provide
a better user experience, it’s necessary to ensure the model
performance at the top.

From the description in section IV-C, the algorithm involves
many parameters. One part of the parameters are related to
XGBoost, we focus on the most important two: the tree
number and the tree depth. And these XGBoost parameters
on source and target domains should be tuned respectively.
Other parameters, like learning rate and sample rate, we fix
them up globally and initialize them with the aforementioned
basic XGBoost model. Another part of the parameters control
the revise process, e.g. whether execute the re-split, re-weight,
prune and the proper discount of bare branches.

The Baseline Model 1(BM1) trains model with training set
only on the target dataset. The Baseline Model 2(BM2) trans-
fers the source model without any revise. We can conclude
the gain of transfer learning and the effects of tree revision
by comparing the model performance with BM1 and BM2
respectively.

B. Revise Analysis

We recorded the statistics on each tree node during training
the XGBoost model on source domain and compared them
with the statistics in the revising process. Here, the first tree
serves as an example, we’d like to analysis our observations
on the revise strategies.

1) Re-split: The intermediate nodes with more than 1
sample on the target domain are listed in TABLE III. We
print out the split value, split gain and sample number on
both domains. The score is calculated just as the leaf node
and it reflects the label distribution in the node.
• There are nodes(marked as red) that cannot get a positive

split gain. The reasons could be lacking in samples(node
12) or pattern difference between domains(node 19). It’s
pointless to split on and the following path should be
skipped.

• Observing the nodes with statistical significance (con-
taining more than 3000 samples), the new split values
are quite different from the old ones. The original split
values tend to get imbalanced samples divisions with the
drifted features.

• We rank the nodes with positive re-split gains by the
score difference. As we can see, the node with low



score difference(marked as green) tends to be statistically
significant. It indicates our datasets have minor label drift.
What’s more, large score differences(marked as blue) are
mainly caused by lacking of samples.

2) Re-weight: The leaf nodes are listed in TABLE IV
and we ignore the nodes with no samples. Only 2 nodes
are statistical significant (marked as blue) and their score
difference is low. Most of the leaf nodes are effected by
the limited target dataset and result in high score differences
(marked as red). It’s a wise choice to count more on the
reasonable source model in this situation.

3) Prune or Discount: If we prune the rare branches and
intermediate nodes with no gains, only 15 nodes are remained.
The source patterns cannot take effect beyond doubt and the
general metrics also prove this. So the discount strategy beats
the prune strategy and works out better on the rare branches.

According to the above analysis, the revise strategies are
determined for current scene. Both of the re-split and re-weight
operations should be executed. The selection of discount value
is not sensitive as long as it can differentiate the inherited
source model weight and revised weight. Empirically, we set
the discount value as 0.1.

C. Result
Besides the 2 baseline models, two revise mechanism men-

tioned in IV-B are tested, denoted as OR (OneRound) and MR
(MultiRound).

We tune the models by grid search (the tree depth in target
domain is fixed as 5):
• tree depth in source domain (denoted as dep in the result

table): 3, 4, 5
• tree number in source domain: 2, 4, 6, 8, 10, 20, 30, 40,

60, 80
• tree number in target domain: 40, 80, 120, 160, 200, 240
For each paramater combination, the experiment was re-

peated 5 times and the average value was recorded. TABLE
V shows the result of the models.
• All the transfer models promote the model performance

on this dataset. Less than 10 trees are needed to reach
the promotion.

• The AUCs are high and close due to the low bad rate.
OneRound mechanism offers the best 1‱ recall value
and lift the BM1 by 11.607%. The multi-round mecha-
nism may fail to capture more source pattern information
with frequent revisions.

• The BM2 gets a better result with shallower source
tree depth. In this way, it keeps the patterns to be
more generic. With revise operatioins, our models make
reasonable changes and remain more informative source
patterns.

D. Deployment
We deploy the OneRound revision algorithm as a toolkit in

PAI (Platform of Artificial Intelligence)7, which is a machine

7https://www.alibabacloud.com/press-room/alibaba-cloud-announces-
machine-learning-platform-pai

learning platform of Alibaba Group and contains a lot of large-
scale data mining algorithms.

In order to access the models in both domains, PAI offers a
model pool via a specific OSS(Alibaba Cloud Object Storage
Service)8, which is a cost-effective, highly secure, and highly
reliable cloud storage solution.

According to the phases needed, we implement three new
components:
• TLXGB-SRC-TRAIN: Call the XGBoost API to train

a batch of trees and push the model to the model
pool (record the returned model path for the following
process).

• TLXGB-TGT-TRAIN: Fetch the source model from
model pool, revise & continue train the model and push
the model to the model pool(record model path)

• TLXGB-PREDICT: Load a model from model pool and
call the XGBoost API to predict the samples

Fig.3 shows the workflow of the components. Only the
TLXGB-SRC-TRAIN runs on the source domain and we have
to change the running project to target domain after that.
Because of the data isolation, TLXGB-TGT-TRAIN cannot
read the output table on source domain. We add a reconstruc-
tion SQL to the output table, copy it to a SQL component
in the target project and reconstruct the configs(e.g. model
path). Then continue the process with TLXGB-TGT-TRAIN
and TLXGB-PREDICT. Finally, we can connect the prediction
result to a evaluation component BINARY-CLS-EVAL and get
the performance metrics.

Fig. 3. Workflow of the TLXGB toolkit

The online prediction service is provided by the real-time
scoring server, whose service is triggered by each payment
and output a final score with the corresponding features fed.
Timeliness is import for the server and the whole process is
limited to 100ms. JPMML9 is a widespread evaluator and is

8https://www.alibabacloud.com/help/doc-detail/31817.htm
9https://github.com/jpmml/jpmml-evaluator



TABLE III
RE-SPLIT STATISTICS OF INTERMEDIATE NODES

node id feat id split vals split gains inst#s scores split valt split gaint inst#t scoret ∆score

0 5 140689.5 542.19208 62400 -0.18799 439902.5 46.88963 10200 -0.18793 6.1646E-05
1 43 11.5 136.56732 61119 -0.19069 61.5 12.62515 10137 -0.18900 0.001692
7 34 0.23066 46.87704 9607 -0.17848 0.60413 10.84173 3464 -0.18281 0.004331
15 41 6860329 5.63867 5475 -0.19095 72 11.60792 3445 -0.18365 0.007300
3 17 4318 136.20298 10933 -0.17016 30515.5 37.96496 3635 -0.17824 0.008079
24 40 0.14558 4.19831 67 0.10423 0.31587 4.07152 25 0.11724 0.013016
5 45 26.5 170.83625 650 0.05076 4.5 2.56277 40 0.07273 0.021963
8 34 0.23045 149.07564 1326 -0.10947 0.50828 14.16933 171 -0.08343 0.026045
2 43 0.5 398.10758 1281 -0.05899 4 21.77838 63 -0.01493 0.044063
17 42 834.5 9.89684 712 -0.17151 1.5 25.89931 163 -0.09701 0.074502
23 10 5.5 27.48077 261 -0.09132 2.5 0.43209 13 0.01176 0.103085
16 5 17783.5 61.63551 4132 -0.16180 26892.5 0.32298 19 -0.02609 0.135712
11 5 770377.5 53.27773 328 -0.05060 642766 2.31006 38 0.08571 0.136317
30 36 -0.44286 5.05051 12 0.00000 -0.46204 2.42667 21 -0.15200 0.152000
18 45 77.5 93.29868 614 -0.03689 12 -0.67879 8 0.13333 0.170227
14 34 0.47958 10.55379 516 -0.18538 0.06995 -0.74462 22 -0.15385 0.031538
6 43 23.5 12.37396 631 -0.17165 25.5 -0.74872 23 -0.15556 0.016098
19 0 73687 5.37106 48096 -0.19672 5148309 -0.79935 6500 -0.19490 0.001828
9 21 281.5 10.05906 48572 -0.19640 29182 -0.79935 6501 -0.19490 0.001505
4 17 16899 57.01518 50186 -0.19515 5454684 -0.79935 6502 -0.19490 0.000249

TABLE IV
RE-WEIGHT STATISTICS OF LEAF NODES

node id inst#s scores inst#t scoret ∆score

39 48067 -0.19678 6499 -0.19489 0.00189
32 47 -0.10588 3154 -0.18746 0.08158
31 5428 -0.19161 291 -0.14034 0.05127
36 5 0.06667 141 -0.12828 0.19494
49 21 0.02400 23 0.14074 0.11674
35 707 -0.17356 22 0.09231 0.26587
62 7 -0.09091 20 -0.16667 0.07576
33 3739 -0.16976 17 -0.00952 0.16023
37 490 -0.07611 7 0.12727 0.20339
48 137 -0.15177 7 -0.01818 0.13359
47 124 -0.02187 6 0.04 0.06187
50 46 0.13600 2 -0.06667 0.20267
34 393 -0.08514 2 -0.06667 0.01847
38 124 0.11563 1 0.04 0.07563
61 5 0.11111 1 0.04 0.07111
40 29 -0.09091 1 -0.04 0.05091

TABLE V
THE EXPERIMENT RESULT

Model AUC 1‱ Recall AUC Lift 1‱ Recall Lift

BM1 0.92535 0.16092 - -

BM2-dep3 0.92951 0.17672 0.449% 9.821%
BM2-dep4 0.93057 0.17098 0.563% 6.250%
BM2-dep5 0.92825 0.16810 0.313% 4.464%

OR-dep3 0.92886 0.17098 0.379% 6.250%
OR-dep4 0.92799 0.17098 0.284% 6.250%
OR-dep5 0.92869 0.17960 0.360% 11.607%

MR dep3 0.93069 0.17241 0.577% 7.143%
MR dep4 0.92855 0.17672 0.345% 9.821%
MR dep5 0.92999 0.17098 0.501% 6.250%

embeded in the server. The PMML (Predictive Model Markup
Language)10, an XML-based format, provides a way for ana-
lytic applications to describe and exchange predictive models
produced by data mining and machine learning algorithms.

We apply the toolkit to the card-stolen fraud detection scene.
Similary to the experimental dataset, the algorithm promotes
the 1‱ recall impressively by 26.7%. In order to deploy
the final model in the scoring server, we wrap the JPMML-
XGBoost11 and some post-process scripts to convert XGBoost
models to PMML.

VI. CONCLUSION

The cold-starting problem under a new scene and data-
sharing problem with privacy concerns can be solved by
transfer learning algorithms. To deal with a real-world fraud
detection modeling in Alipay, we proposed a set of revise
strategies to expand the XGBoost as a transfer learning frame-
work. Detailed analysis of the strategies are displayed. The
experimental result prove it to be practical and this method
promotes the model performance at the top. This model-based
transfer learning framework is further deployed on PAI and
work as an internal shared component.

There are several open issues to be investigated. A prac-
tical extension is allowing the domains to maintain different
feature spaces. The process for rare branches also need futher
exploration and find a better way to cope with the uncon-
fident subtrees. The revise associated parameters control the
revise strategies and the parameter values rely on the data
distribution. How to determine the parameter automatically is
worthwhile studying. Furthermore, if the datasets are equiv-
alent and how to conduct a multi-task learning among the
domains, which is a typical scenario in private data-sharing
modeling.

10http://dmg.org/pmml/v4-4/GeneralStructure.html
11https://github.com/jpmml/jpmml-xgboost
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