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Abstract—Many organizations store and process data at dif-
ferent locations using a heterogeneous set of formats and data
management systems. However, data analyses can often provide
better insight when data from several sources is integrated
into a combined perspective. DataCalc is an extensible data
integration platform that executes ad-hoc analytical queries
on a set of heterogeneous data processors. The platform uses
an expressive function shipping interface that promotes local
computation and reduces data movement between processors. In
this paper, we provide a detailed discussion of the architecture
and implementation of DataCalc. We introduce data processors
for plain files, JDBC, the MongoDB document store, and a custom
in memory system. Finally, we discuss the cost of integrating
additional processors and evaluate the overall performance of
the platform. Our main contribution is the specification and
evaluation of the DataCalc code delegation interface.

I. INTRODUCTION

Big data defines the shape and challenges of modern day
data processing. For instance, capable and cheap hardware
architectures enable new applications that use physical and
virtual sensors to produce unprecedented amounts of data.
Therefore, many professions depend on large scale data anal-
ysis to drive research and to guide decision making. This
“democratization” of data processing has led to a much more
diverse set of requirements that have to be considered by
state-of-the-art data management systems. In that sense, the
influential Beckman Report on Database Research [Abadi
et al., 2016] already identifies “coping with diversity in data
management” as one of five primary challenges in big data.
The reason is that novel big data applications often make use
of data types that are not easily translatable to the traditional
relational model. Therefore, data is stored in a large variety
of formats and gets processed by a myriad of systems with
special purpose application programming interfaces. In this
environment it quickly becomes difficult to analyze data across
the boundaries of specialized big data systems.

To tackle this challenge, we recently proposed the data inte-
gration platform DataCalc that enables a set of heterogeneous
data processors to collaborate in the execution of analytical
workloads [Luong et al., 2019]. DataCalc translates queries
into the novel intermediate representation DC that provides
a unified and extensible high-level representation for a large
number of data analysis applications. DC is a small and highly

structured functional programming language whose domain
specific built-in functions and limited number of syntactic
forms make it an excellent target for algebraic rewrites, such
as relational optimizations. DC expressions are delegated to
data processors which carry out computations on their local
data stores. The term data processor encompasses any system
that can execute at least one DC function and return its result
to the DataCalc runtime. This broad description captures a
diverse set systems, such as traditional DBMS, big data cluster
processing runtimes, special purpose accelerators, and many
other data processing system that offer some external appli-
cation programming interface (API). Processors can accept or
reject DC functions on a case to case basis. This affords a
high degree of flexibility in the creation of new processors
and in adapting the runtime behaviour of existing ones. A
new processor can start off with support for basic data loading
functions and if the need arises, additional capabilities such
as filters and projections can be added later on.

Our Contribution and Outline.

In this paper, we present a technical in-depth discussion
of our novel extensible data integration platform DataCalc
and show how this platform can be used to execute SQL
queries. SQL and the relational algebra are well known in
the big data community and therefore we see it as a good
starting point for our exploration of DataCalc and its novel
intermediate representation DC. In particular, we make the
following contributions:

1) We describe a flexible data integration model that dele-
gates query processing to attached processors.

2) We introduce the novel intermediate program represen-
tation DC that facilitates domain specific optimization.

3) We evaluate our system with regard to the cost of
developing additional data processors and its runtime
performance on a set of star schema queries.

The remainder of the paper is structured as follows: In Sec-
tion II, we discuss related works from industry and research. In
Section III, we introduce the main components of DataCalc.
Based on that, we investigate several data processors in
Section IV. Afterwards, Section V contains the evaluation and
in Section VI we conclude the paper with a summary of our
contributions.
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II. RELATED WORK

Apache Calcite [Begoli et al., 2018] is a framework for
query optimization and federated query execution with a strong
emphasis on extensibility. The framework includes a SQL
compiler that translates queries into an internal tree representa-
tion, planners that apply tree rewrites to optimize queries, and
a lightweight execution model that delegates parts of queries
to available execution engines. Each of these components is
open to modification. The internal query representation can
be extended with new functions and operators, optimization
can be augmented with additional rewrites, and new engines
can be integrated into the execution model. As will become
clear in the subsequent sections, Calcite has had a direct
and strong influence on the design of DataCalc. At this
point, the primary difference between the two systems are
the intermediate representations that are used to represent
queries internally. Calcite’s intermediate representation and
query planner are currently hard-wired to static relational
schemas. That is, operations have to be expressed in terms
of relations and column expressions and data sources have
to provide schema information for their data objects. DC, on
the other hand, is not limited to any particular application
domain and does not require static schemas. Instead, it can
represent any abstract data type by including its functions as
built-ins of the language. Typing is delegated to processors
which can, optionally, use their internal catalogs to infer types
for DC expressions. In this sense, we propose DataCalc as a
research project that explores how a system such as Calcite
could benefit from a more open-ended query representation.

The combination of several data processing domains in a
unified system is a primary goal of DataCalc. A prominent
example for the attention that this topic is receiving in the
industry is the PartiQL query language that has been recently
announced by Amazon AWS [Papakonstantinou et al., 2019]
as “one query language for all your data”. PartiQL is a
SQL-compatible language that can access structured, semi-
structured, and nested datasets on a growing number of AWS
data storage and management systems. According to the
announcement, the main objective for developing the language
is to decouple application logic from format specific data
accessing methods. Applications that use PartiQL can replace
their physical data sources without modifying their source
code. This facilitates the flexible evolution of applications
in the AWS ecosystem. However, in contrast to DataCalc,
PartiQL is just a query language that is supported by several
independent data sources. Each new source has to provide an
implementation of the language and ad-hoc cross-source data
integration, a core feature of DataCalc, is not (yet) available.

Similar to PartiQL, the goal of Musketeer [Gog et al., 2015]
is to break the coupling between applications and specific
data processing technology. Many big data processing engines,
such as Hadoop1 and Spark2, offer their own specialized
higher-level programming abstractions that create a tight cou-

1https://hadoop.apache.org
2https://spark.apache.org

�������
���������	
���
������
��
����
�����������

������������
�������

�	��
��
������

�������
���������
��������

��
����
�
�����������
�����
�������������������

������
��
������������

��
����
��
�

������
�����
��
�

Fig. 1: DataCalc platform components

pling with the applications that use them. Musketeer breaks
this bond by providing an M to N mapping between system
specific languages and execution engines. Using Musketeer,
an application written in one of these languages can be
executed on all available systems. To limit the complexity
of this mapping, Musketeer relies on a typical compiler
architecture with multiple front-ends, a common intermediate
representation, and a set of back-ends that generate executable
code. We see DataCalc as an alternative to Musketeer with
an intermediate representation that is better suited for domain
specific optimization and that does not depend on a data-flow
execution model. For a more in-depth discussion of the relation
between DataCalc and other approaches we refer to a previous
article of our group [Luong et al., 2018].

III. DataCalc

DataCalc is an extensible platform for ad-hoc data analyses
on a set of heterogeneous data processors. It uses an expres-
sive internal program representation and a flexible evaluation
model to ship analytical workloads to various data processing
engines. This allows DataCalc to use the native compute
resources of connected processors and to reduce the amount
of data that is transferred between those processors. Figure 1
shows the primary software components of the DataCalc
platform in an UML style class diagram. The Runtime
component serves as central coordinator of the platform and
its eval function is the entry point for query execution. The
first step of the execution process is the compilation of a SQL
string into its DC representation. This is accomplished by
the compile function of the Query Compiler. Internally,
DC programs are represented as directed acyclic graphs and
Node is the base type of this graph representation. Next, the
Runtime passes the DC program to the findPlan function
of the Planner which applies a set of transformations to
adapt and optimize the query to the available data processors.
One important type of transformation is the Assignment which
assigns function applications of the DC program to available
processors. These Assignments are added to the Planner
by the Processors when they are first registered with the
Runtime. Once findPlan returns, the Runtime schedules

Final edited form was published in "IEEE International Conference on Big Data". Los Angeles, 9.-12. Dezember 2019, S. 3864–3873. IEEE. ISBN 978-1-7281-0858-2 
https://doi.org/10.1109/BigData47090.2019.9006029

2 
 
 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden



assigned DC expressions for execution by passing them to
the execute function of their Processor. Eventually, the
outer-most function of the DC program is executed and the
Runtime returns the result of that final execute call as
result of the query.

A primary objective of DataCalc is to encourage the inte-
gration of many different data processors into the platform. All
that is required to add a new processor, is an implementation
of the Processor interface and a Transform that assigns
program nodes to the new processor. The Processor and
Transform interfaces are slim and abstract to enable a
wide range of implementations and to allow processors fine
grained control over which parts of a program they want to
execute. For example, processors are not required to provide
any kind of metadata, such as a schema. Further, the execute
function enables a range of evaluation models by hiding data
access behind an abstract Value type. Processors can return
lightweight result values right-away and internally postpone
processing until the contents of those values are actually
required. Finally, the Transform interface gives processors
detailed control over the program elements that they want to
execute. A processors can even replace a call with an equiv-
alent composite expression, assign itself one element of this
composite, and leave the remaining elements for other proces-
sors. For example, a processor that only implements a subset of
SQL’s expression language can replace a FILTER that uses
some supported and some unsupported sub-expression with
two nested FILTERs, one of which is fully supported and
can be assigned.

A. Query compilation and the DC language

The query compiler accepts SQL queries and translates them
into DC, the internal functional language of DataCalc. DC
is a pure, highly structured functional language with a large
number of built-in functions that can represent various pro-
cessing domains, such as the relational algebra. The following
table shows some examples of DC built-ins for several data
types and processing domains. Please note that the graph,
linear algebra, and recursion built-ins are future work, they
are included here only to demonstrate the flexibility of the
representation.

Boolean GT, EQ, LT, AND, OR, NOT, . . .
Math PLUS, MINUS, MULT, DIV, . . .
Relational SCAN, CROSS, FILTER, . . .
Property Graph MATCH, NODE, REL, . . .
Linear Alg. SOLVE, TRANSPOSE, . . .
Recursion ITERATE, UNFOLD, FOLD, . . .

The primary goal of DC is to provide an easy to adopt,
expressive, and future proof basis for code shipping in data
processing systems. We define code shipping as the process
of moving application logic between independent processing
systems, with the goals of preventing data movement and
exploiting distributed compute resources. DC programs do not
have a dedicated textual representation, but are directly con-
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Fig. 2: Query compilation

structed in-memory. However, if an external form is required
DC programs can be serialized to - and parsed from JSON.

Figure 2 shows a simple SQL query and the DC code that
the compiler generates for this query. In DC, the whole query
is represented as a single nested expression. Most elements of
that expression are applications of built-ins and some of these
applications accept a local function definition as one of their
arguments. To emphasize the logical structure of the query, we
have pulled apart some elements of the expression into a tree
like form. The local function definitions, on the other hand, are
represented as lambda expressions with a nested body. Some
of the function applications are annotated with additional static
information. This is represented by an @-sign followed by the
name of the annotation, and some values in curly braces. For
example, many built-ins are annotated with static paths that
identify the data objects and attributes that will be read by
these calls.

The Query Compiler maps different SQL clauses to
their corresponding DC built-ins. Figure 2 gives an impression
of this process. The FROM clause is mapped to a CROSS call
with two SCAN calls as arguments. Next, the WHERE clause
is mapped to FILTER which takes a table and a predicate as
arguments. The table is just the result of the CROSS call and
the predicate is provided by a local function definition. The
predicate function consists of a single parameter, row, and
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Fig. 3: Query planning and execution

a nested body expression that reads from row to compute a
boolean which determines whether the row is accepted into
the result of the FILTER call. Finally, the SELECT clause is
mapped to the AGGREGATE built-in.

B. Planning

In DataCalc, planning is the part of query execution where
a DC program is logically assigned and adapted to concrete
available processors. The process of planning consists of
applying rewrites to the internal DAG representation of a
DC program. Common tasks of rewrites are to replace ex-
pressions with semantically equivalent but somehow preferred
alternative expressions, to attach additional annotations to the
program, or to perform checks on the program. Rewrites
are applied to the DC program by the Planner. Some

rewrites, such as PushDownFilter and CombineJoins,
are independent of any particular processor and are added to
the Planner by the Runtime. Others, such as the important
AssignToX rewrites, are added by processors when they are
registered with the runtime. Currently, we use a simple fix-
point planner that repeatedly applies its rewrites until none
of them produce further updates to the DC program. A more
effective cost based planner remains future work.

The main objective of planning is to effectively use the com-
pute abilities of available processors and to prevent large scale
data shipping. Usually, this is accomplished by delegating as
large as possible DC subexpressions in one go. An example of
this process is depicted in Figure 3. The figure shows, in five
stages, the planning and evaluation of the example program
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that we have already discussed in Section III-A. For the sake of
simplicity, we left out the lambda parameters and concentrate
on the main processing functions. The first version of the
program, in the top-left corner, shows the output of the query
compiler as it is submitted to the planner. Then, the planner
successfully applies five rewrites to generate the second ver-
sion. The iterative planner distinguishes four phases: Prepare,
Assign, Optimize, and Clean-up and it applies the rewrites of
each phase repeatedly until they do not update the program
any more. The DecomposeFilter rewrite belongs to the
Prepare phase and it replaces FILTER calls that have a top-
level conjunction in their predicate with two nested FILTERS
without a conjunction. The purpose of this preparation is to
improve the results of the subsequent FilterPushDown.
ComposeFilter belongs to the Clean-up phase and im-
plements the opposite effect of DecomposeFilter with
the goal to reduce the number of traversals in processors
with limited internal query optimization. The AssignToX
rewrites are applied in the Assign phase. These rewrites
mark DC nodes that can be executed by their processor by
attaching a @proc annotation. In the case of SCAN calls,
processors can use the SCAN’s @path annotation to determine
whether they own the referenced object. For other built-ins,
processors usually check whether they implement the function
and whether the arguments of the application are already
assigned to themselves. The fix-point planner applies rewrites
in reverse order in which they were added. That is, if two
processors can assign a node, the processor that was registered
last, will always receive the call. This approach is another
potential shortcoming of the fix-point planner that we leave
for future works. The @proc annotation has to implement a
matches(Path):Bool function that can be used to detect
whether some @path annotation belongs to the processor.
This path matcher is used by rewrites in the Optimization
phase. For example, FilterPushDown uses the matcher to
decide whether a FILTER call can be moved into a branch
of a CROSS call. The specific semantics of path matching can
be defined by each processor. The only requirement is that
the matcher can detect all paths that belong to its processor.
Some processors, such as SQL databases, can use their internal
catalogs to implement convenient column name short-hand
notations. Others will require paths that are qualified with
some sort of processor ID.

In the second version of the program, no more nodes can
be assigned because the arguments of the CROSS call are
assigned to different processors. At this point, one of the
assigned branches is selected and passed to the execute
function of its processor. We will discuss execution in greater
detail in subsequent sections. It is sufficient to notice that,
in the third version of the program, the highlighted branch
of Processor P2 is replaced with an IMPORT call that is
annotated with the result of the execution. At this point, the
planner restarts the rewriting loop which eventually gener-
ates the fourth version of the program. This time around,
AssignToP1 is the only rewrite that can be applied success-
fully. Fortunately, Processor P1 provides an implementation of

the IMPORT function and therefore, CROSS and the remaining
calls can all be assigned to P1 and the whole program can be
executed in one final go.

C. Execution

Execution is triggered by the planner whenever no more
nodes can be assigned. This is usually the case, if the whole
program is assigned or if the arguments of some built-in calls
are assigned to different processors. The case where no nodes
are assigned after planning represents an error. In principle, the
planner could execute all assigned subtrees in parallel. How-
ever, after some initial testing, we chose a different strategy:
the planner executes a single assigned subtree, replaces that
tree with an IMPORT call that is annotated with the result of
the execution, and restarts the planning loop. This process is
shown in Figure 3 in the transition from version 2 to version 3.
For the example query, this approach is much more efficient
than the parallelized alternative as the date table is much
smaller than the lineorder table. Once P2 is finished, the
small date table can be quickly imported into P1 and then the
whole remaining query can be executed at once. The parallel
approach, on the other hand, would schedule a very expensive
SCAN-FILTER plan on P1 that results in a large intermediate
value. Of course, if there is a choice, the planner has to
decide which subexpression is executed first. Right now this
is decided according to a manually defined processor priority
list. The definition of a more elaborate optimization scheme
is left for future work.

For the most part, the actual data processing happens in
external systems and it is up to the processor components
to translate DC subexpressions into executable code for their
back-ends. We will discuss several examples of this process
in Section IV. However, one important aspect of execution
that is common to all processors is the movement of data
between processors. We have already discussed how executed
expressions are replaced with an IMPORT call that is annotated
with the result of the expression and how processors can
capture the IMPORT by assigning it to themselves. But how
does the actual data movement happen? In general, of course,
processors can implement data imports in any way they see
fit. The Value type that is returned by execute does not
define any operations, however, processors can use Java’s
runtime type information system to detect particular sub-types
of Value and implement custom data movement logic for
these sub-types. This can be especially useful when values
have to be moved between systems that already define some
common data exchanging system. However, to provide a
general fallback solution, DataCalc defines the Value sub-
type TableValue that has to be implemented by all result
values of table processing built-ins. TableValue implements
a lazy batch-iterator interface that uses Apache Arrow3 as
internal data format. Using this interface, processors can
implement generic data importing logic that works for all table
intermediate values. It should be noted that TableValue

3https://arrow.apache.org
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class AssignToLocal extends Rerwite {
boolean updateApplyBuiltIn(ApplyBuiltIn apply) {

switch (apply.getName()) {
case FILTER: case SORT: case LIMIT: {

var matcher = Proc.getMatcher(apply.getArg(0));
Proc.set(apply, Local.ID, matcher);
return true;

}
case SELECT: case AGGREGATE: case GROUP_BY:

// ...
}
return false;

}
}

class LocalSelect implements TableValue {
TableValue inTable;
GraalFunc projectFunc;

@Override
BatchIterator iterator() {

return new SelectIterator();
}

class SelectIterator implements BatchIterator {
BatchIterator inIt = inTable.iterator();
VectorSchemaRoot outBatch = ...;

VectorSchemaRoot loadNextBatch() {
VectorSchemaRoot inBatch = inIt.loadNextBatch();
if (inBatch == null) return null;

RowPointer rowPtr = new RowPointer(inBatch);
while (rowPtr.next()) {

// delegate to Truffle interpretation
Object row = projectFunc.call(rowPtr);
ArrowHelper.append(outBatch, row);

}
return outBatch;

}
}

}

Fig. 4: Components of the Local processor

currently requires all data to be moved through the runtime
process. Direct data exchange between external engines is not
supported in this approach.

IV. DATA PROCESSORS

Data processors perform the actual computational work in
DataCalc. Each processor is represented by a driver object that
implements the Processor interface and that is registered
with the Runtime. In addition, each processor has to provide
a Rewrite that captures DC expressions during planning.

A. Local processor

The Local processor provides implementations of most DC
built-ins as part of its driver component. That is, all processing
takes place in the runtime process. Local does not store data
and therefore does not implement the SCAN function. The
runtime implicitly registers Local as first processor. Therefore,
it has the lowest assignment priority and will only execute
built-ins that are not accepted by any other processor.

Figure 4 shows parts of Local’s assignment rewrite and of
its SELECT built-in. The rewrite uses the name property of
the ApplyBuiltIn object, a sub-class of Node, to identify
the function that is being called. Next, in case of a FILTER,
SORT, or LIMIT, it retrieves the path matcher of the call’s

table argument and then sets a @proc{Local} annotation for
the call. For other built-ins, the assignment logic only differs
with regard to the path matcher. For example, a SELECT
call defines a completely new set of paths and does not
reuse the matchers of its arguments. Notably, Local does not
check the processor assignment of its function arguments.
This is the case because Local can operate on the result
values of all processors. The LocalSelect class is Local’s
implementation of the SELECT built-in function. The class
implements the TableValue interface (see Section III-C)
and accepts another TableValue as its input. The fact that
the built-ins of Local operate on TableValues explains
why they can be directly applied to the results of any other
processor, which all have to implement this interface. Actual
data processing is postponed until a SelectIterator is
created and consumed by some subsequent operation. At that
point, the iterator reads rows from the input table, invokes
the projectFunc to map input to result rows, and appends
those rows to the result batch. The projectFunc object is
an executable version of the function parameter of SELECT.
Local uses the Truffle language implementation framework4

to compile DC function definitions into efficient executable
code.

B. File Processor

The File processor is an extension of the Local processor
that reads data from files and streams them to DataCalc via
HTTP. In the current version, the File processor can read CSV
and Arrow files. Comma separated values (CSV) is a popular
text based file-format for tabular datasets that is easy to use
in ad-hoc application scenarios. The Arrow file format is a
binary format that can be used to serialize Apache Arrow5

datasets to permanent storage. The File processor consists of
a lightweight server application that can be quickly started
on any network connected machine and a DataCalc driver
component. To reduce network traffic, the server executes DC
built-ins such as FILTER or SELECT on its local datasets. It
reuses Local’s function implementations, with the exception
of IMPORT, and adds an implementation of SCAN for CSV
and Arrow files.

The assignment rewrite of File accepts SCAN calls whose
@path annotation starts with a “file.” prefix and other
built-ins if their arguments are already assigned to the File
processor. When the driver is called to execute an expression,
it simply saves the unevaluated expression in a TableValue
object and returns that object as result. Eventually, when a
consumer creates an iterator on the TableValue, the stored
DC expression is serialized to JSON and send to the server.
The server deserializes the JSON document back into the
original expression, translates that expression into a tree of
function implementations, executes that tree and streams back
the results to the iterator.

4https://github.com/oracle/graal/tree/master/truffle
5https://arrow.apache.org
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C. JDBC processor

The JDBC processor uses the Java Database Connectivity
API6 to integrate relational database management systems
into DataCalc. Most RDBMS support JDBC and with this
processor all of these systems are made available in DataCalc
at once. In a nutshell, JDBC provides a SQL client for the Java
programming language. Programs send plain SQL queries to
available databases and receive datasets that are encoded in
standard Java data types. The JDBC Processor translates DC
expressions into SQL queries that can be send off to JDBC.
Depending on the locations of tables, whole DC programs can
be converted into a SQL query that is processed by a single
RDBMS.

The processor’s assignment rewrite uses the JDBC metadata
interface to check the paths of SCAN calls and to implement
column reference shorthands in path matchers. For other
built-ins, it checks whether the call’s table arguments are
already assigned to the JDBC Processor. Similar to the File
processor, execute simply saves the raw DC expression in
a TableValue and returns that value as result. Actual query
processing is deferred until an iterator over the TableValue
is consumed. At that point, the whole DC expression is
translated into a SQL query, send to JDBC, and the result
is transformed into Arrow batches that can be returned by the
iterator.

For the most part, the DC to SQL translation is accom-
plished by recursively mapping DC built-ins to SQL snippets
and concatenating those snippets into complete queries. How-
ever, the translation of relational functions such as SELECT
and WHERE is slightly more complicated because DC allows
arbitrary composition of these functions whereas SQL defines
a limited set of valid query forms. To translate these functions
we introduce a simple state machine that produces valid SQL
queries for any sequence of relational function calls. Figure 5
gives an example of the translation process. In the graph,
the arrows represent function calls and the nodes show the
current state and the SQL query that would be generated at that
point. The graph starts with a SCAN call that simply selects
all attributes of the requested table. The subsequent WHERE
adds some predicates to the query but does not change the
state. The same is true for the third and fourth call which add
another source table and an additional predicate expression.
The fifth call, however, adds a set of projection expressions
and moves the query into the SELECT state. Once a query is in
this state most subsequent relational functions require nesting
of the query. This can be observed in the seventh call that
joins the projected query with another table. In this particular
instance, the query could be unnested quite easily, but this is
not true in general and we leave this kind of transformation
to the optimizer of the target database system.

6https://www.oracle.com/technetwork/java/javase/jdbc
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Fig. 5: Translating DC to SQL using states

D. Mongo processor

The Mongo processor integrates the NoSQL database sys-
tem MongoDB7 with DataCalc. Whereas traditional database
systems are build around the Relation, MongoDB chooses Col-
lections of Documents as primary abstraction. Collections are
named sets of Documents and a Document implements a key-
value mapping where keys are character strings and values can
be primitives, arrays, or nested documents. MongoDB provides
a query language that is optimized for the access of documents.
The core primitive of that language are Query Documents
which define pattern matching constructs for documents but
also include expressions for data transformations. Besides the
significant differences between Query Documents and SQL,
it is possible to translate a number of important DC built-ins
into MongoDB queries.

The Mongo assignment rewrite accepts SCAN calls whose
paths are contained in the MongoDB collection catalog. This
catalog holds the names of all collections but does not define
any schema for the documents in those collections. This is
the case, because MongoDB documents do not have to adhere
to any kind of static schema and each document can define
arbitrary attributes. Because of this, Mongo paths always have
to include a collection name or an alias of such a name.
Otherwise, Mongo would have to match any attribute path.
Besides SCAN, Mongo currently also accepts the SELECT
and FILTER built-ins. Query execution is implemented in
exactly the same way as in the JDBC processor: the raw DC
expression is stored in a TableValue and gets translated
into a MongoDB query once an iterator is consumed. The
results of the query are ransformed into Arrow batches that can
be returned by the iterator’s nextBatch function. Figure 6
shows an example of this translation for a SQL query that

7https://www.mongodb.com
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SELECT (l_extendedprice / l_quantity) / (1.0 + l_tax)
FROM mongo.lineitem
WHERE l_extendedprice <= 10000.0

↓
db.lineitem.aggregate([

{$match: {$expr: {$lte: ["$l_extprice", 10000.0]}}},
{$project: {price:

{$divide: [
{$divide: ["$l_extprice", "$l_quantity"]},
{$add: [1.0, "$l_tax"]}

]}}
}

])

Fig. 6: SQL to MongoDB translation

can be fully mapped to a MongoDB query. The result of
the translation is a MongoDB transformation pipeline that
processes document collections by applying a sequence of
transformations such as filters, projections, or aggregations.

V. EVALUATION

In the previous sections, we have introduced our data
integration platform DataCalc. On this platform, various data
processors collaborate in the evaluation of SQL queries. Now
that we have examined the individual components of DataCalc
in some detail, we want to take a step back and try to get a
better understanding of the overall approach. In particular we
want to investigate the following questions: 1) how expensive
is the development of additional DataCalc processors and 2)
how do query execution times and the amount data transfer
correspond to the placement of data objects.

A. Cost of developing processors

The primary goal of DataCalc is to provide a platform
for the integration many different kinds of data sources and
processors. One aspect that can influence the decision to create
an additional processor is the implied development cost of that
processor. In the following section we try to quantify this cost
by discussing the development of the existing processors and
by investigating how many lines of code (LOC) had to be
written to implement those processors. Of course, the com-
plexity of code can vary widely and therefore LOC numbers
only provide a rough estimate of the “real” development costs.
DataCalc is implemented in Java and the following LOC
numbers always refer to Java code.

Each of the processors that we have developed in this paper
offered unique challenges and required some creative problem
solving. However, we also discovered some general rules that
we expect to be true for all processors. First, development
of a processor always implies a fixed baseline cost that is
independent of the number of DC built-ins that are supported.
For example, each processor has to implement an assignment
rewrite and most processors also need data transformation
code that can translate from native data formats to Arrow
batches. Second, the function based delegation model enables

Fig. 7: Lines of code in each processor

an iterative approach to processor development where basic
functionality is established quickly and advanced features are
added later on. After each iteration, processor performance can
be evaluated to identify the most promising next feature and
developer time can applied efficiently. To give a better overall
impression of development costs, we are going to take a closer
look at each individual processor in the following paragraphs.

The Local processor runs in the same Java virtual ma-
chine as the Runtime, directly operates on Apache Arrow
batches and does not hold its own data sets. In other words,
Local does not require inter process communication or data
transformations. Therefore, the baseline cost of Local consists
of implementing a generic driver class and an assignment
rewrite with about 80 lines of repetitive function recognition
code. Unfortunately, the variable costs of Local are rather
large. This is the case because the processor provides its
own function implementations and each additional function
requires some significant development effort. In total, the
processor currently requires close to 1600 lines of code (LOC).
However, the function implementations are still basic and leave
much room for improvement. High quality implementations
would certainly require a much greater effort.

The File processor delegates workloads to a remote server
component that operates on various file formats. Compared
to Local, this setup results in a significantly increased base
development cost. In the driver component, networking code
contributes the biggest chunk with about 300 LOC. In total,
the driver component consist of roughly 500 lines of baseline
code. The server component currently consists of a total of 800
LOC. About two thirds of that is baseline code that deals with
networking and file access. Similar to Local, the variable cost
of the File processor comes from implementing DC functions.
However, in the current version SCAN is the only function with
dedicated implementations. All other functions are shared with
Local. This enables the File processor to implement most DC
functions with very little additional cost. On the other hand, we
have good reason to believe that the CSV parsing performance
might be further improved with specialized implementations of
functions such as FILTER and SELECT. If the File processor
ever becomes a performance bottleneck for DataCalc we can
allocate additional resources to investigate this possibility.

The JDBC processor uses the Java Database Connectivity
framework to access relational database systems. In total, the
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(a) Single processor execution time (b) Single processor data transfer (c) SQL to DC compile time

(d) Multi processor execution time (e) Multi processor data transfer (f) Multi processor data transfer

Fig. 8: DataCalc system performance

processor currently takes up 1100 LOC with about 300 lines
of baseline code and 800 lines of variable cost code. The
baseline code deals with managing JDBC connections, reading
database metadata, and transforming JDBC result sets into
Arrow batches. The first working version of the processor
added a variable cost of almost zero. It only supported the
SCAN function which can be easily translated into a simple
SELECT * FROM <table> query. The next version added
support for the FILTER function at a cost of roughly 300
LOC. Most of that code is introduced by a Transform that
translates DC into SQL expressions. This transformation is
required for the translation of filter predicates but can be
reused in other functions that use expression. Eventually, at
a cost of about 500 LOC, additional relational functions and
support for arbitrary call sequences were added.

The Mongo processor uses a total of 450 LOC to execute
DC queries on a MongoDB database. About 300 lines of base-
line code manage connections and transform Mongo datasets
into Arrow batches. A basic version, that only supports the
SCAN function, can be achieved with very little variable cost.
Additional functions require a 100 LOC transformation that
translates DC into Mongo expressions. The remaining 50
LOC are used to match functions and to invoke the Mongo
translator. Overall, the Mongo processor is the least expensive.
One reason for this is the straightforward translation from
DC to Mongo’s transformation pipeline syntax. However, the
Mongo processor also implements the smallest number of DC

functions. Figure 7 gives a summary of the LOC numbers that
we have cited in the previous paragraphs. The dark segment
of the bars represents the baseline code and the light segment
the variable code. Overall, we believe that the cited costs are
rather small, especially for existing data processing systems
such JDBC or MongoDB that require very limited upfront
investment.

B. System performance

To investigate the influence of data placement on system
performance we have experimented with queries of the star
schema benchmark (SSB) [O’Neil et al., 2009]. SSB contains
13 analytical queries that are defined over one fact table and
four dimension tables. All experiments have been performed
on a single machine with a SSD, 16 GB DDR3 RAM and a 2.7
GHz Intel Core i5 CPU with two cores. The JDBC processor
is connected to a PostgreSQL 11.4 database and the Mongo
processor to a MongoDB 4.0.3 instance. Both databases run
their default configurations. Test data has been generated with
the SSB dbgen tool at a scale factor of 1 which yields about
one gigabyte of data. This scale is, of course, far from any
big data scenario. However, the primary motivation for the
following experiments is to show that DataCalc works as
intended with regard to code shipping and its implied reduction
of data transfers. This effect can be shown independent from
any particular data sizes. Each experiment is repeated 10 times
and in the subsequent discussion we report the median value
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of these runs. However, the variance between runs has been
less than 10% and we deem it insignificant for our purposes.

Figure 8a shows the sum execution time of all SSB queries
when all datasets are located on a single processor. In the
last column, both Mongo and Local are enabled because
Mongo does not support all required operations to run SSB.
In the remaining columns only a single processor is active.
For the purpose of this test, we extended Local with SCAN
implementation that can load Arrow files from disk. JDBC
runs all queries in less than a second which makes it the fastest
processor by far. Local is about three times slower than JDBC
and both File and Mongo are several times slower than the
other processors. Figure 8b shows the total number of table
cells, that is, scalar values contained in a table, that have been
transferred from an external engine to the runtime. File and
JDBC both have to move the same limited number of cells.
In contrast, Mongo has to transfer four orders of magnitude
more cells because it does not implement join and aggregation
functions. These results confirm that DataCalc can, in fact,
avoid movement of data and therefore works as intended.

Compared to accessing a DBMS directly, DataCalc adds
certain overheads to the execution of queries. For example,
SQL input has to be translated into DC and planning adds
the cost of repeatedly applying transformations. To quantify
this overhead, we compare the execution times of the JDBC
processor with the time it takes to run the SSB queries on a
plain JDBC connection. Indeed, all queries are slightly slower
with the JDBC processor than with the plain connection.
Query 1.1 has the largest difference with 38 ms but the median
difference is only 13ms with a standard deviation of 14ms. To
get a more detailed understanding of the overhead we also
investigated compile times separately. Figure 8c shows the
SQL to DC compile time in relation to code size. The median
compile time over all queries is 10ms with a standard deviation
of 2ms.

In our final experiment, we investigate the behaviour of
DataCalc in an integration scenario. We test four data place-
ment configurations using the JDBC, Mongo, and Local pro-
cessors. We limit our discussion to the SSB queries 4.1,
4.2, and 4.3 because these queries join over all tables. In
configuration A, the fact table lineorder is placed on
JDBC and all dimension tables are placed on Mongo. In
each subsequent configuration (B, C, and D) the next join
partner of lineorder is moved from Mongo to JDBC.
That is, in configuration D, all tables but one are located on
JDBC. The three bottom graphs in Figure 8 show execution
times and data movement of each configuration. Configuration
A is the slowest by far and also requires the most data
movement. The test queries do not define any predicate on
lineorder and therefore the complete table has to be moved
from JDBC to Local before it can be joined with the dimension
tables. Switching to configuration B yields the largest overall
improvement. Queries 4.1 and 4.2 finish more than 70% faster
and, due to a higher selectivity predicate, query 4.3 even
achieves a 90% improvement. Similarly, data movement from
JDBC is reduced by 75%, 72%, and 94%. The data movement

from Mongo changes very little because of the relatively small
size of the newly placed table. The switch to configuration
C and then to D shows similar improvements although at
a smaller magnitude. The following table summarises the
changes in execution time and data movement for all con-
figuration changes.

Execution time Data JDBC Data Mongo
Switch 4.1 4.2 4.3 4.1 4.2 4.3 4.1 4.2 4.3
A → B 72% 72% 91% 75% 72% 94% 0% 0% 1%
B → C 60% 60% 29% 73% 76% 76% 10% 5% 32%
C → D 40% 44% 37% 53% 49% 95% 97% 99% 94%

VI. CONCLUSION

Big Data applications need a powerful and efficient infras-
tructure to meet the demanding processing requirements for
data preparation and analysis. In this environment it quickly
becomes difficult to analyze data across the boundaries of
specialized big data systems. To overcome that, we discussed
the novel extensible data integration platform DataCalc that
enables a set of heterogeneous data processors to collaborate
in the processing of SQL queries in this paper. The platform
translates queries into an internal form that represents rela-
tional operators as function calls. These calls are delegated to
data processors which carry out computations on their local
data stores. In this way, DataCalc can access the data that is
distributed across its processors.
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