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Abstract—Graph embedding has become a key component
of many data mining and analysis systems. Current graph
embedding approaches either sample a large number of node
pairs from a graph to learn node embeddings via stochastic
optimization or factorize a high-order node proximity/adjacency
matrix via computationally intensive matrix factorization tech-
niques. These approaches typically require significant resources
for the learning process and rely on multiple parameters, which
limits their applicability in practice. Moreover, most of the
existing graph embedding techniques operate effectively in one
specific metric space only (e.g., the one produced with cosine
similarity), do not preserve higher-order structural features of the
input graph and cannot automatically determine a meaningful
number of dimensions for the embedding space. Typically,
the produced embeddings are not easily interpretable, which
complicates further analyses and limits their applicability. To
address these issues, we propose DAOR, a highly efficient and
parameter-free graph embedding technique producing metric
space-robust, compact and interpretable embeddings without
any manual tuning. Compared to a dozen state-of-the-art graph
embedding algorithms, DAOR yields competitive results on both
node classification (which benefits form high-order proximity)
and link prediction (which relies on low-order proximity mostly).
Unlike existing techniques, however, DAOR does not require any
parameter tuning and improves the embeddings generation speed
by several orders of magnitude. Our approach has hence the
ambition to greatly simplify and speed up data analysis tasks
involving graph representation learning.

Index Terms—parameter-free graph embedding, unsupervised
learning of network representation, automatic feature extraction,
interpretable embeddings, scalable graph embedding.

I. INTRODUCTION

Representation learning has become a key paradigm to learn
low-dimensional node representations from graphs. These au-
tomatically generated representations can be used as features
to facilitate downstream graph analysis tasks such as node
classification and link prediction. The main idea behind graph
embedding techniques is to project graph nodes onto a low-
dimensional vector space such that the key structural properties
of the graph are preserved. The most commonly preserved
property in this context is the proximity between nodes in
the graph [1]. For example, DeepWalk [2] and Node2vec [3]
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preserve up-to-k-order node proximity by sampling random
walk sequences from an input graph using a context window
of a certain size; HOPE [4] and NetMF [5] capture high (up-to-
infinite)-order node proximity by factorizing high-order node
proximity matrices, measured by the Katz index [6], for exam-
ple. The resulting embedding vectors from those techniques,
capturing node proximity in graphs, are known to achieve good
results on many downstream graph analysis tasks, such as node
classification, node clustering (a.k.a. community detection)
and link prediction.

Among various graph analysis applications, community de-
tection is one of the most popular tasks. Network communities
(i.e., node clusters or granules [7]) represent groups of nodes
that are densely connected inside each group and loosely con-
nected between different groups [8]. In essence, community
detection techniques intrinsically capture node proximity in the
graph to generate such node clusters. In the context of graph
embeddings, community detection naturally implies that nodes
in a cluster should be projected closer to each other than to
the nodes from other clusters in the vector space. For example,
DeepWalk [2] performs node sampling using random walks,
such that nodes from the same cluster (intra-cluster nodes)
are linked tighter together than nodes from different clusters
(inter-cluster nodes) and have a higher probability to be closer
in random walk sequences. In the case of HOPE [4], the node
proximity is defined by the Katz index [6] that computes the
weighted sum of all paths between two nodes. There, intra-
cluster nodes also have a higher proximity measure than inter-
cluster nodes, since there are more paths linking nodes in
the same cluster than paths linking nodes between different
clusters.

In this paper, by revisiting existing graph embedding tech-
niques, we raise the following question: “Can we generate
node embeddings from clusters produced via community de-
tection? More precisely, we explore how to generate node
embeddings in a graph leveraging the latest advances in
community detection techniques, analyzing and addressing
emerging issues in the embedding learning process.

In the current literature, the graph embedding problem
has also been investigated to specifically preserve community
structures in a graph by applying hybrid approaches [9], [10].
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These approaches consist in specific graph embedding models
jointly learning node embeddings and performing community
detection, where the two steps are performed iteratively until
convergence. However, such hybrid methods preserving com-
munity structures lose other inherent advantages from modern
community detection techniques:
• Parameter-free community detection does not require any
manual tuning, while current embedding techniques (hybrid
or not) impose significant human efforts. Parameter-free pro-
cessing could significantly simplify the application of graph
embeddings in practice compared to current graph embedding
techniques, which require manual tuning of multiple parame-
ters (including the number of embedding dimensions).
• Metric-Robustness: community detection typically does not
rely on any specific metric space (e.g., cosine, Jaccard, or
Hamming spaces), which provides an opportunity to obtain
metric-robust node embeddings. More precisely, as existing
graph embedding techniques are designed to learn node
embeddings in a specific metric space (e.g., cosine [2] or
Hamming [11]), they are often limited to the specified metric
space. To ensure the applicability of learned embeddings in a
wide variety of settings, it might hence be beneficial to learn
embeddings that are robust to different metric spaces.
• Efficient community detection techniques usually have linear
or near-linear runtime complexity and are able to handle large
graphs consisting of billions of nodes [12], which may signif-
icantly speedup the embedding learning process. Specifically,
existing graph embedding techniques usually either sample
a large number of node pairs from a graph to learn node
embeddings via stochastic optimization, or factorize a high-
order proximity/adjacency matrix, which requires significant
computational resources. Therefore, it might be desirable to let
graph embedding techniques benefit from the high-efficiency
of state-of-the-art community detection techniques.

In this paper, we bridge the gap between community de-
tection and node embeddings. More specifically, our main
contributions can be formulated as follows: a) we propose a
mechanism to generate node embeddings from given commu-
nity structures (i.e., a set of clusters) and b) we identify the
key features of community detection algorithms required to
efficiently produce effective graph embeddings. Both of these
contributions are applied on top of the Louvain [12]-based
DAOC1 [13] clustering algorithm and constitute our novel
graph embedding framework called DAOR2.

II. RELATED WORK

A. Graph embedding
Graph embedding techniques project graph nodes onto a

low-dimensional vector space such that the key structural
properties of the graph are preserved [1]. Existing techniques
can be classified into four categories. First, graph-sampling
based techniques design specific embedding models to learn
node embeddings from sampled node pairs from an input
graph. The node pairs are often sampled by scanning random
walk sequences from an input graph using a context win-
dow of size k to capture up-to-k-order node proximity [2],

1https://github.com/eXascaleInfolab/daoc
2https://github.com/eXascaleInfolab/daor

[14], [15], or directly sampled to capture 1st- and 2nd-order
node proximities [16]. Second, factorization-based techniques
decompose specific node proximity matrices, such as high-
order transitional matrices [17], high-order proximity matri-
ces measured by the Katz index, personalized PageRank or
Adamic-Adar [4], to output node embeddings. Third, hashing-
based techniques resort to similarity-preserving hashing tech-
niques [18], [19] to create node embeddings, capturing high-
order common neighbors between nodes in a graph. Due to the
high efficiency of the hashing process, these techniques show
significant speedup in the embedding learning process com-
pared to the techniques of the two previous categories [19].
Fourth, a few meta techniques are designed to preserve higher-
order structural features by hierarchical coarsening of the
input graph prior to the embedding process [20]. As they
capture higher-order node proximity in the graph, modern
graph embedding techniques have shown good performance
on various graph analysis tasks, including node classification,
node clustering and link prediction.

In the current literature, the graph embedding problem
has also been investigated to specifically preserve commu-
nity structures in a graph [9], [10]. These hybrid techniques
combine the objectives of both node embedding learning and
community detection. More precisely, community detection
and node embedding learning are tightly coupled and are
performed alternatively to enhance each other in the learning
process. The resulting node embeddings preserve the com-
munity structures of the input graph. However, such hybrid
approaches are not able to directly reuse results of exist-
ing community detection techniques, loosing their advantages
as outlined in the introduction, i.e., they typically are not
parameter-free, metric-robust, or particularly efficient (as we
show in Section VI).

In this paper, instead of jointly learning node embedding
and detecting communities in a graph, we take an alternative
solution to bridge the gap from detected communities to node
embeddings. Specifically, we a) design a new mechanism to
generate node embeddings directly from given community
structures (i.e., clusters) and b) analyze the various aspects of
community detection techniques required for effective node
embeddings generation from the clusters. We implement these
contributions in a novel graph embedding framework called
DAOR2.

B. Community detection for graph embedding

To the best our knowledge, only matrix factorization-based
(MF) community detection methods have been used to directly
generate graph embeddings. Spectral clustering is a matrix
factorization approach [3], which was the first community
detection method used for graph embedding. It can be applied
in two variations: a) conventional spectral clustering [21] (in-
troduced in [22], [23] and operating on a Laplacian matrix) and
b) spectral optimization of modularity [21], [24] (introduced
in [25] and operating on a modularity matrix). Node embed-
dings in this context are represented as the top-d eigenvectors
(i.e., latent dimensions) of the respective matrix. Conven-
tional spectral clustering is equivalent to nonnegative matrix
factorization (NMF) [26]. The latter is another community



detection method [27], which is applied jointly with spectral
optimization of modularity to learn node embeddings [10].

The Gausian mixture model (GMM) is a statistical
inference-based community detection method [28], which
can be used jointly with a conventional node representation
learning (e.g., Deepwalk [2] and SDNE [29]) to perform
graph embedding [9]. It is worth noting that GMM by itself
explicitly learns the “random mixtures over latent communities
variables” [28] (i.e., node embeddings) but suffers from a
large number of parameters and does not take into account the
low-order proximity of the nodes when generating the graph
embeddings.

In essence, community detection by modularity maximiza-
tion [30], statistical inference [31], normalized-cut graph par-
titioning [32] and spectral clustering are equivalent under cer-
tain conditions [33]. According to [34], community detection
through generalized modularity maximization is equivalent to
the provably correct but computationally expensive maximum
likelihood method applied to the degree-corrected stochastic
block model [35], [36]. The latter inspired us to develop a
novel graph embedding framework, which is able to generate
node embeddings directly form the detected communities,
and to extend an efficient community detection method based
on parameter-free optimization of generalized modularity to
produce effective embeddings.

III. PRELIMINARIES

Network communities represent groups of tightly-coupled
graph nodes with loosely inter-group connections [8], where
the group structure is determined by a clustering optimization
function. The resulting clusters can be overlapping, which
happens in case they share some common nodes called
the overlap. Also, the clusters can be nested, forming a
hierarchical structure inherent to many complex real-world
systems [37]. Each cluster represents a coarse-grained view
on (i.e., an approximation of) its member nodes or subclusters
being called a granule [38]. The main notations used in this
paper are listed in Table I.

TABLE I
NOTATIONS

#i Node <i> of the graph (network) G
ci Cluster <i> of the graph G
n The number of nodes in the graph G
m The number of links in the graph G
k The number of clusters (communities) in the graph G
w Weight of the graph G
wi Weight of #i
ẇi Weight of ci: ẇi = wci

Q Modularity
∆Qi,j Modularity Gain between #i and #j
γ Resolution parameter
s The number of salient clusters (features), s ≤ k
d The number of embedding dimensions: d = |D|, d ≤ s

Modularity (Q) [39] is a standard measure of clustering
quality that is equal to the difference between the density of
the links in the clusters and their expected density:

Q =
1

2w

∑
i,j

(
wi,j −

wiwj
2w

)
δ(Ci, Cj), (1)

where wi,j is the accumulated weight of the links between
nodes #i and #j; wi is the accumulated weight of all links
of #i; w is the total weight of the graph; Ci is the cluster
to which #i is assigned; and the Kronecker delta δ(Ci, Cj)
equals to 1 when #i and #j belong to the same cluster (i.e.,
Ci = Cj), and 0 otherwise.

Modularity gain (∆Q) [12] captures the difference in mod-
ularity when merging two nodes #i and #j into the same
cluster, providing a computationally efficient way to optimize
Modularity:

∆Qi,j =
1

2w

(
wi,j −

wiwj
w

)
. (2)

Modularity is commonly used as a global optimization cri-
terion but suffers from the resolution limit problem [40], [41],
which corresponds to its inability to detect clusters smaller
than a certain size. To address this problem, generalized
modularity was proposed with a resolution parameter γ [42],
[43]:

Q =
1

2w

∑
i,j

(
wi,j − γ

wiwj
2w

)
δ(Ci, Cj). (3)

The optimal value of the resolution parameter is γ́ [34]:

γ́ =
p̌− p̂

log p̌− log p̂
,

p̌ =
2w̌∑

c ẇ
2
c/(2w)

, p̂ =
2w − 2w̌

2w −
∑
c ẇ

2
c/(2w)

,
(4)

where w̌ is the total internal weight of all clusters (i.e.,
accumulated weight of all intra-cluster links). The generalized
modularity is equivalent to the standard modularity when γ =
1; it tends to find larger (macro-scale) clusters if γ ∈ [0, 1) and
smaller clusters otherwise. We use the generalized modularity
gain (∆Q) as an underlying optimization function for the
meta-optimization strategy MMG of the DAOC [13] clustering
algorithm on top of which our framework, DAOR, is built.

IV. TRANSFORMING CLUSTERS INTO NODE EMBEDDINGS

Community detection algorithms only generate clusters as
groups of nodes, which hence requires some post-processing
to produce node embeddings, namely to: a) form latent em-
bedding dimensions from the clusters (i.e., extract features)
and b) quantify node membership in each dimension (i.e.,
generate the embedding vector for a node). In addition, it is
often desirable to manually control the number of embedding
dimensions d. These aspects are described in the following
and are illustrated in Fig. 1.

Fig. 1. Transformation of the hierarchy of overlapping clusters consisting of
n nodes and k = 5 + 2 clusters (2 nodes-outliers, which are grouped as OL
together with the outlier cluster C3) into d = 4 dimensional node embeddings.



A. Feature Extraction from Clusters
Intuitively, a straightforward approach for feature extraction

from clusters is to consider each cluster as a dedicated feature
representing one embedding dimension [24]. This approach
can be used to discriminate between the nodes (given a fine-
grained structure of clusters), but on the other hand, may not
correlate with the graph embedding objective of providing
a low-dimensional representation of the nodes. Fixing the
number of clusters to the required number of dimensions
d is possible when considering flat clustering [24] but not
for hierarchical cases. For hierarchical clustering, producing
d dimensions can be expressed with an inequality in the
general case, i.e. producing at most d clusters at the top
level. Therefore, some technique to identify a small number
s ≥ d of salient clusters, which are then regarded as features,
is required. This number s can either be parameterized or,
ideally, inferred as the optimal tradeoff between the number
of clusters and their quality. In addition, there exists a fun-
damental constraint on the structure of the clusters used to
create the embedding space. Namely, each graph node should
be connected to at least one feature to be present in the
embeddings.

The exact way salient clusters (features) are identified
depends on the structure of the clusters (e.g., hierarchical,
multi-resolution, overlapping, non-overlapping) and on the
ability to control the number of formed clusters k ≥ s by the
community detection algorithm. In the following, we discuss
salient clusters identification for the most general case, i.e., for
clustering techniques that are multi-resolution, hierarchical and
overlapping. Features extraction is presented in Algorithm 1.
We traverse all clusters on each level of the formed hierarchy
of clusters starting from the top level, and fetch as salient
clusters: a) the top-level clusters of the hierarchy (line 6) (to
cover all nodes) and b) all the nested clusters satisfying the
following requirements (line 17):
- having a higher weight density than each of their direct
super-clusters (ancestors), since the nested salient clusters are
expected to represent the mutual core structure [44] of their
ancestors, and
- weighting less than the most lightweight ancestor (discounted
by a factor).
The weight discounting factor rw (line 29) is required to
prevent fetching too many similar clusters that are nested into
each other. The factor rw ∈ [0.5, 1) retains an approximation
of the nested cluster to its ancestor, while rw → rwmin = 0.5
reduces the number of salient clusters. However, considering
the availability of overlapping clusters and known weight of
the overlap wCovp

< wC for the cluster C, we refine rw

as rw = 0.5 +
(b−1)×wcovp

2 b×wc
, where b ≥ 2 is the overlap

factor equal to the number of clusters sharing the overlapping
nodes in C. Also, the number of overlapping clusters can be
estimated according to the Pareto principle [45], [46], which
makes reasonable to take rw = 0.5×1.2 = 0.6 when the exact
value cannot be evaluated.

B. Dimension Formation from Features
Embedding dimensions are formed from the salient clusters

extracted above, which implicitly yields the recommended

Algorithm 1 Features extraction
1: function FEATURES(hier)
2: scls← [] . Salient clusters (features), dynamic array
3: clsts← {} . Ancestor cluster statistics, hash map
4: for all lev ∈ hier do
5: for all cl ∈ lev do
6: res← count(cl.ances) = 0 . Salient flag
7: dens← cl.weight/count(cl.nodes) . Density
8: savdens← 0; savwgh← 0 . Statistics to be stored
9: if not res then

10: hits← 0 . Saliency hits
11: for all ac ∈ cl.ances do . Traverse ancestors
12: ast← clsts[ac] . Ancestor statistics
13: if savdens < ast.dens and (not savwgh or

savwgh > ast.wgh) then
14: savdens← ast.dens
15: savwgh← ast.wgh
16: end if
17: if not res and dens ≥ ast.dens and

cl.weight ≤ ast.wgh then
18: hits← hits+ 1
19: end if
20: ast.reqs← ast.reqs+ 1
21: if ast.reqs = count(ac.des) then
22: clsts.erase(cl) . Remove outdated
23: end if
24: end for
25: end if
26: if not res and hits = count(cl.ances) then
27: res← true
28: end if
29: savwgh← cl.weight ∗ wrstep
30: clsts[cl]← (savdens, savwgh) . dens,wgh,reqs=0
31: if res then
32: scls.add(cl)
33: end if
34: end for
35: end for
36: return scls . The resulting salient clusters
37: end function

number of dimensions for the input graph based on its statisti-
cal properties. The embedding vector vi ∈ V of size d = |D|
for each graph node #i is then produced by quantifying the
degree of belonging of the node to each dimension Dj as the
node weight wi,Dj

belonging to this dimension. This weight
corresponds to the aggregated weight of the node links to other
nodes being members of all salient clusters composing the
dimension:

V = {
wi,Dj

wi
| i = 1..n, j = 1..d},

wi,Dj
=

∑
k∈nodes(Dj)

wi,k .
(5)

We perform this embedding vectors generation efficiently by
resorting to a single scan over the members of each salient
cluster. The node weights are then aggregated to form the
dimension values. The embedding vectors are obtained by
transposing the resulting matrix: V = DT .

a) Constraining the Number of Dimensions: In the case
of a connected graph without clusters-outliers, the most salient
clusters d are fetched from the t ≤ d ≤ s top level clusters of



the hierarchy and from the d−t densest of the remaining s−t
salient clusters. When the clustering algorithm does not allow
to control the number of top level clusters or when the graph
is disconnected and the number of components is larger than d
resulting in t > d, then the dimensions are formed as follows.
According to the so-called “Rag Bag” formal constraint of
clustering quality [47], [48], the t− (d− 1) most lightweight
clusters should be grouped together to the last dimension
and the d− 1 heaviest clusters fill the remaining dimensions.
However, the presence of outliers on the top levels prevents to
effectively generate dimensions from the salient clusters. To
solve this issue, the outliers can be separated from the valid
clusters based on their weights, which are either evaluated
from the statistical distributions or approximately estimated as
follows. In case there is no prior information about the data, a
rule of thumb is to take the estimated minimal size of clusters
as the square root of the number of nodes [49]. Generalizing
the rule of thumb to the weighted graphs, the number of z < t
root clusters, each having a weight less that the square root of
the graph weight w can be moved to the “outliers” dimension.
The resulting dimensions are composed of the t− z top level
clusters of the hierarchy, the d−1− (t−z) densest remaining
salient clusters, each having a weight wi ≥

√
w, and a single

dimension of outliers to cover all remaining graph nodes (see
Fig. 1 for an illustration).

b) Dimension Interpretability: The resulting embedding
space is inherently easier to interpret than spaces derived from
other techniques, as its dimensions are taken from (salient)
clusters representing ground-truth semantic categories, with
accuracy being evaluated using extrinsic quality metrics [47].
This opens the door to new features and applications in
the fields of granular and privacy-preserving computations.
For example, only a subset of the dimensions having some
required semantics can be fetched for evaluation, which has
the advantage of reducing the amount of processing data while
avoiding to leak or share information beyond the required
features.

V. COMMUNITY DETECTION

In this section, we first discuss the properties of a com-
munity detection algorithm that are required to perform an
effective and efficient graph embedding. Then, we select
one of the most suitable state-of-the-art community detection
algorithms for our task and propose its extension to satisfy the
required properties.

As an effective graph embedding technique should preserve
both low- and high-order node proximities, the community
detection algorithm used for the graph embedding should
be able to produce clusters with various resolutions (i.e., at
different granularities). Moreover, the more resolutions are
covered, the wider the range of node proximity orders that
can be captured, since each embedding dimension consists
of at least one cluster as described in Section IV-B. A low-
dimensional representation of graph nodes implies a small
number t of coarse-grained (macro-scale) clusters, since the
number of generated dimensions d ≥ t (see Section IV). This
number t should be a parameter of the technique when a
specific number d of embedding dimensions is required, with

a default value defined according to the statistical properties
of the input graph.

In addition, the following properties of community detection
algorithms are also required to generate high-quality embed-
dings, to simplify and speedup the generation process:
• Each graph node should potentially belong to multiple

features (i.e., should be represented in multiple dimen-
sions), which requires the clustering to be soft (i.e., fuzzy
or overlapping).

• It is desirable to have graph embedding techniques ap-
plicable to any input graph without any manual tuning;
hence, the clustering should be parameter-free and effi-
cient (to be applicable to large graphs).
- An unsupervised parameter-free processing is sensitive
to the quality of the input data, so a robust clustering
algorithm is required. Robustness is typically reached by
applying a consensus (also called ensemble) clustering
method [50]–[52].
- From a practical perspective, it is desirable to have con-
sistent embeddings for the same input graph irrespective
of the order in which the nodes are processed or whether
their IDs are modified. The clustering algorithm should
hence be deterministic and input-order invariant.
- Considering the hierarchical nature of complex networks
modeling real-world systems [37], [53], the effective clus-
tering algorithm should be hierarchical. In particular, an
agglomerative hierarchical clustering addresses also the
efficiency criterion by reducing the number of processed
items at each iteration, since each hierarchy level is built
using clusters from the previous level directly.

Following the above requirements, DAOC1 [13] is, to the
best of our knowledge, the only parameter-free clustering
algorithm that is simultaneously deterministic, input order
invariant, robust (as it uses a consensus approach) and ap-
plicable to large weighted networks yielding a fine-grained
hierarchy of overlapping clusters [54]. Moreover, it is based
on a MMG meta-optimization function, where generalized
modularity gain can be used as the target optimization function
to perform clustering at the required resolution. However,
DAOC a) yields a hierarchy of clusters only for a single
value of the resolution parameter (γ = 1 operating with
the non-generalized modularity), treating the hierarchy levels
as scales (i.e., resolutions in terms of nested clusters rather
than distinct values of γ) similar to [12], [55], and b) does
not bound the size of the top (root) level of the forming
hierarchy to produce the required number t ≤ d of clusters
as described in Section IV-A. Therefore, we propose two
extensions addressing these issues in the following.

A. Hierarchical multi-resolution clustering

Even though a multi-resolution structure of non-overlapping
clusters is not necessary hierarchical [56], [57] (i.e., a node
might be a member of several clusters that are not nested into
each other), it can be represented as a hierarchy of overlapping
clusters [58] (where the overlap addresses the case of a
node shared by non-nested clusters). However, a hierarchical
overlapping structure created with a single resolution may sub-
stantially differ from the respective multi-resolution structure



(i.e., the produced clusters may differ vastly) as illustrated in
Fig. 2, where the strength on nodes interaction is represented
with the width of the links and the number of interactions
with the size of the nodes (i.e., their weight). A large value of
the resolution parameter can penalize heavily-weighted nodes
according to Eq. (3), resulting in grouping together linked
lightweight nodes. Such a behavior makes sense in many real-
world cases, for example when employees working on the
same project interact more frequently with their supervisor
than between each other but the supervisor may not be a core
of the group, participating also in other projects. Therefore,
it is essential to incorporate the resolution parameter when
generating the hierarchy levels, similar to [56], [59], [60].

Fig. 2. A possible overlapping hierarchical clustering with the fixed resolution
parameter of the weighed subgraph consisting of three nodes is shown on the
left-hand side of the figure. A possible multi-resolution clustering for the same
subgraph is shown on the right-hand side. The size of the nodes and the width
of the links correspond to their weights.

In [56], [60], the authors operate with the analog of the
resolution parameter called resistance parameter, which can
not be transformed to the resolution parameter γ according
to [42] and, hence, cannot be used with the generalized
modularity defined in Eq. (3). In [59], the scale factor α is
proposed, which can be directly transformed to the resolution
parameter: γ = (1 − α)/α. However, the computational
complexity of the proposed method is O(n

√
n)×O0 in average

and O(n2)×O0 in the worst case, where n is the number of
nodes in the graph and O0 is the complexity of the original
clustering algorithm without the multi-scaling technique. This
boosting of the computational complexity makes this technique
inappropriate for large graphs. Hence, we propose our own
approach to produce a hierarchy of multi-resolution clusters
for large graphs based on DAOC.

The main idea behind our efficient multi-resolution hier-
archical clustering is the dynamic variation of the resolution
parameter γ during the hierarchy construction process. More
precisely, DAOC is an agglomerative clustering algorithm,
which builds the hierarchy bottom-up with micro-scale clusters
on the bottom levels. These clusters should be constructed on
a high value of the resolution parameter (γ � 1) according
to Eq. (3). The resolution should then gradually decrease to
the lowest value γ > 0 yielding macro-scale clusters located
on the top (root) level of the hierarchy. The bounds for γ can
be estimated based on the resolution limit analysis conducted
in [40], where the equation is defined for the marginal case
when all clusters have a perfect balance between the internal
and external degrees being on the limit of detectability. That
equation takes the following shape when adapted to the

generalized modularity:

ˇ̇m < ˇ̇mmax =
m

4γ
, (6)

where ˇ̇m is the number of internal links in a cluster and m is
the total number of links in the graph. To estimate the upper
bound of γ, we need to bind ˇ̇m and m, which could be done
relying on the two following heuristics. First, in case there is
no prior information about the data, a rule of thumb is to take
the estimated maximal number of clusters as the square root
of the number of nodes [49]: k̃max =

√
n. Then, considering

that the number of internal links constitutes half of all the
links of a cluster in the marginal case described by Eq. (6):

2m = 2 ˇ̇m× k, k . k̃max =⇒ m . ˇ̇m
√
n. (7)

Second, most real-world systems are modeled by sparse
graphs [53]. The number of links in a sparse graph does not
exceed n3/2. Thereby, Eq. (6) extended with Eq. (7) takes the
following shape:

ˇ̇m <
ˇ̇m
√
n

4γ
=⇒ γ <

√
n

4
.

3
√
m

4
≤

3
√
w/w̆min

4
= γmax.

(8)
where w̆min is the minimal weight of a link. Eq. (8) provides
a definition for the upper bound of γ in a weighted graph. The
lower bound of gamma is evaluated dynamically based on the
optimal value of the resolution parameter given in Eq. (4) for
each level of the hierarchy: γmin = γ́. Typically, γ́ ≥ 1 for
large real-world networks [34], so γmin = 0.5 .. 1 is taken for
the first iteration before γ́ is evaluated.

In summary, γ is decreased from γmax to γmin with a fixed
ratio rγ and represents a trade-off between the number of
captured resolutions when rγ → 1 versus a lower number
of iterations (i.e., higher efficiency) and higher quality on
coarse resolutions when rγ → 0. The quality of the forming
macro-clusters is affected by the amount and size of the fine-
grained clusters since the former are constructed iteratively
from the latter, and the actual multi-resolution structure is not
necessary hierarchical [56], [57]. In theory, rγ should allow
the growth of the cluster weight by a factor less than two to
still retain the cluster semantics (super/sub-cluster ordering).
Otherwise, the super/sub-cluster association is transformed
into an overlapping clusters relation, losing the hierarchical
structure. The limitation of the cluster weight growth to a
factor 2 corresponds to rγ > 2−2 = 0.25 according to
Eq. (3), which is a hard theoretical bound. In practice, a larger
value of rγ is required considering the possibility of multiple
mutually overlapping clusters as discussed in Section IV-A:
rγ & r2wmin

= 0.36. The upper bound of rγ corresponds to the
lower bound of the cluster weight growth factor, which can be
taken as 10−20% according to the Pareto principle [45], [46]
or 10/90 gap [61]: rγ ≤ 1.1−2 = 0.826. Thus, the operational
range of the gamma ratio is as follows: rγ ∈ [0.36, 0.826], and
we pick rγ = 0.6. This selected value is not supposed to be
tuned by the users. Higher values of rγ yield a larger number
of salient clusters, which is not desirable, and lower values
may cause the loss of some important salient clusters. The
exact theoretical rγ depends on the number of overlapping
clusters on the next iteration, which is generally speaking



unknown.

B. Bounding the number of clusters
DAOC generates a hierarchy of clusters as long as the value

of the optimization function is improving (i.e., ∆Q ≥ 0),
which might result in any number of clusters at the top level of
the hierarchy. If a specific number of clusters is required (e.g.,
for a fair comparison of various graph embedding techniques
on the same number of dimensions), we propose the following
extensions of the hierarchy generation process:
• The hierarchy generation is interrupted early if the num-

ber of clusters at level i, |hi| reaches the required number
d.

• The hierarchy generation is forced to continue until the
number of clusters reaches the required number d even
if the value of the optimization function ∆Q becomes
negative. In that case, the clustering objective becomes
the minimal loss of the optimization function value:
max ∆Q < 0.

The proposed extensions of the clustering algorithm are
summarized in Algorithm 2. The early termination of the
hierarchy construction process happens on lines 11, 19. The
forced continuation of the hierarchy construction corresponds
to a boolean parameter d 6= 0 for the original DAOC clustering
on line 7. This parameter prevents the completion of the
clustering process when the optimization function ∆Q cannot
be further improved.

Algorithm 2 Hierarchical multi-resolution clustering with
optionally bounded number of clusters.

1: function CLUSTER(nodes, d)
2: rg ← 0.6 . Gamma ratio
3: gamma← 3

√
weight(nodes)/min_weightln(nodes)/4

4: gmin← 0.5 . Min gamma
5: hier ← [] . List of the hierarchy levels
6: while nodes do . Stop if the nodes list is empty
7: cls← daocHierLev(nodes, gamma, d)
8: if gamma ∗ (rg + 1)/2 ≥ gmin and (not cls or
count(cls) ≤

√
count(nodes)) then . Decrease gamma

9: gamma← gamma ∗ rg
10: else
11: nodes← cls . Consider early termination
12: end if
13: if cls then . Initialize the next-level nodes
14: hier.append(cls) . Extend the hierarchy
15: gmin← gammaOptim(cls) . Update min gamma
16: if not d or count(cls) > d then
17: nodes← cls . Update the processing nodes
18: else
19: nodes← [] . Early termination
20: end if
21: end if
22: end while
23: return hier . The resulting hierarchy of clusters
24: end function

VI. EXPERIMENTAL EVALUATION

In this section, we conduct an extensive set of experiments
to evaluate our proposed method on two typical graph analysis
tasks, i.e., node classification and link prediction. We start by
introducing our experimental setup including the datasets and
baselines we use before presenting our experimental results.

A. Experimental Setup
1) Datasets: We conduct experiments on the following five

graphs, which are widely used in the current literature for
evaluating graph embedding techniques. Table II summarizes
the key characteristics of the graphs.
• BlogCatalog (Blog) [24] is a social network of bloggers.
Each node represents a user, while the labels of a node
represent the topics the corresponding user is interested in.
• Protein-Protein Interactions (PPI) [3] is a graph of the PPI
network for Homo Sapiens. The labels of a node refer to its
gene sets and represent the corresponding biological states.
• Wikipedia (Wiki) [3] is a co-occurrence network of words
appearing in a sampled set of the Wikipedia dump. The labels
represent part-of-speech tags.
• DBLP [62] is a collaboration network capturing the co-
authorship of writers. Each node represents an author, and
the labels of a node refer to the publication venues of the
corresponding author.
• YouTube [63] is a social network of users on YouTube.
Each node represents a user, and the labels of a node refer
to the groups (e.g., “anime”) that the corresponding user is
interested in. This graph is used only to evaluate the efficiency
of the embedding techniques, since the ground-truth categories
include only 3% of the graph (as opposed to a 100% coverage
for the other graphs).

TABLE II
CHARACTERISTICS OF THE EXPERIMENTAL GRAPHS

Dataset Blog PPI Wiki DBLP YouTube
Nodes 10,312 3,890 4,777 13,326 1,138,499
Links 333,983 76,584 184,812 34,281 2,990,443
Labels 39 50 40 2 47

2) Baselines: We compare our proposed technique against
ten state-of-the-art graph embedding techniques from three
categories.

a) Graph-sampling based techniques: DeepWalk [2],
Node2Vec [3], LINE [16] and VERSE [64]. For DeepWalk
and Node2Vec, we set the walk length to 40, the number of
walks per node to 80, and the context window size to 10. For
Node2Vec, we also tune the return parameter p and the in-out
parameter q with a grid search over p, q ∈ {0.25, 0.05, 1, 2, 4}.
For LINE, we set the total number of samples to 1 billion for
Blog, PPI, Wiki and DBLP and to 10 billions for YouTube.
For VERSE, we tune the damping factor α of personalized
PageRank using the method suggested by the authors.

b) Factorization-based techniques: GraRep [17],
HOPE [4] and NetMF [5]. For GraRep, we search the
optimal k over {1, 2, 3, 4, 5, 6}. When d/k is not an integer,
we learn the first k− 1 sets of dd/ke-dimension embeddings,
and the last set of embeddings of dimension d−(k−1)dd/ke.
For HOPE, we search the optimal decay parameter β from
0.1 to 0.9 with a step of 0.2. For NetMF, we tune the implicit
window size T within {1, 10}.

c) Similarity-preserving hashing based techniques: INH-
MF [65], NetHash [18] and NodeSketch [19]. For INH-
MF, we set the ratio for subspace learning to 100%, to let
it achieve optimal performance w.r.t. the quality of the learnt
node embeddings. For NetHash, as suggested by the authors,



TABLE III
NODE CLASSIFICATION PERFORMANCE USING KERNEL SVM, WHERE THE TOP-3 RESULTS FOR EACH DATASET ARE HIGHLIGHTED WITH BOLD NUMBERS

Method Micro-F1 (%) Macro-F1 (%)
Blog PPI Wiki DBLP Blog PPI Wiki DBLP

·DeepWalk 39.60 17.24 46.05 83.46 21.93 10.28 6.62 83.16
:Node2Vec 37.95 16.04 50.32 93.25 20.22 9.57 9.86 93.12
·LINE 35.49 15.01 48.22 86.83 16.60 8.70 8.47 86.54
·VERSE 39.61 15.90 41.39 92.79 22.85 9.76 4.14 92.66
:GraRep 36.21 5.83 56.22 91.41 16.91 1.52 12.14 91.25
:HOPE 31.37 14.69 56.68 91.47 11.74 8.13 13.30 91.30
:NetMF 40.04 15.03 57.62 93.59 23.43 8.74 14.35 93.46
·INH-MF 36.13 15.50 45.03 93.27 18.88 9.55 6.90 93.16
:NetHash 35.80 18.85 47.57 97.61 18.72 12.91 8.05 97.57
:NodeSketch 38.16 21.04 59.07 98.83 21.84 15.55 16.31 98.81
·HARP-DWalk 36.52 15.46 43.06 92.66 19.56 9.04 5.59 92.53
·HARP-LINE 30.27 12.67 42.79 88.07 13.06 6.25 5.38 87.84
DAOC 21.3 12.56 42.43 89.24 6.47 7.25 5.66 89.03
DAOR 33.05 19.07 53.24 87.86 17.25 13.94 15.97 87.64

· the algorithm meta parameters are tuned once for all datasets to maximize accuracy
: the algorithm parameters are tuned for each dataset to maximize accuracy

we search the optimal tree depth in {1, 2, 3}. For NodeSketch,
we search the optimal order of proximity k up to 6 and the
optimal decay parameter α from 0.0001 to 1 on a log scale.

d) Meta techniques: HARP [20]. We configure HARP to
learn from the embeddings of DeepWalk (HARP-DWalk) and
LINE (HARP-LINE) using the following parameter settings.
For HARP-DWalk, we set the walk length to 10, the number of
walks per node to 40, the context window size to 10 and the
sampling ratio to 0.1. For HARP-LINE, we set the context
window size to 1, the number of iterations to 50 and the
sampling ratio to 0.001.

B. Node Classification Task
Node classification tries to predict the most probable la-

bel(s) for some nodes based on other labeled nodes. In
this experiment, we consider a multi-label setting, where a
node is assigned one or multiple labels. Our evaluation was
performed using an open-source graph embeddings evaluation
framework, GraphEmbEval3, which uses the same evaluation
scheme as in [2], [3], [17]. More precisely, we randomly
pick a set of nodes as labeled nodes for training, and use
the rest for testing. To fairly compare node embeddings with
different similarity measures, we train a one-vs-rest kernel
SVM classifier with a pre-computed kernel (cosine, Jaccard
or Hamming kernel according to the embedding techniques)
to return the most probable labels for each node. We report the
average Macro-F1 and Micro-F1 scores from 5 repeated trials.
A higher value of these metrics implies better performance.

Our method, DAOR, shows competitive results without
requiring any tuning (unlike conventional embedding tech-
niques, which require extensive tuning, as described above).
We also evaluated embeddings generated using DAOC without
our proposed extension for multi-resolution clustering. The
improvement of DAOR over DAOC verifies the effectiveness
of our proposed extensions for graph embedding.

3https://github.com/eXascaleInfolab/GraphEmbEval

C. Link Prediction Task

Link prediction is a typical graph analysis task that predicts
potential (or missing) links between nodes in a graph. For
this task, we use the same setting as in [4]. Specifically, we
randomly sample 20% of the links out of the graph as test data,
and use the rest of the graph for training. After learning the
node embeddings based on the training graph, we predict the
missing links by generating a ranked list of potential links. For
each pair of nodes, we use the cosine, Jaccard or Hamming
similarity (according to the embedding techniques) between
their embedding vectors to generate the ranked list. As the
number of possible pairs of nodes is too large, we randomly
sample 0.1% pairs of nodes for evaluation. We report the
average precision@N and recall@N from 10 repeated trials.

Table IV shows the results of the link prediction task. Our
proposed method, DAOR, is among the top-3 best-performing
techniques being unsupervised and parameter-free. The impact
of our proposed multi-resolution clustering is especially visible
on this task, were DAOR significantly outperforms DAOC.

D. Robustness to the Metric Space

Node embedding robustness to different metric spaces is
shown in Table V on the node classification task for our
method DAOR versus the two other best-performing methods
from Table III that technically can be evaluated with another
metric space (NodeSketch is omitted because it uses a non-
linear Hamming metric space, where cosine distance cannot
be formally evaluated). For all input graphs, DAOR shows the
best worst-case performance, i.e., DAOR yields much more
accurate results in its least accurate non-primary metric space
than the other methods do. Moreover, Hamming distance is
directly applicable to DAOR without any preliminary bina-
rization, unlike the algorithms operating in the cosine metric
space.

E. Runtime Performance

In this experiment, we investigate the efficiency of the graph
embedding learning process. Our evaluation was performed

https://github.com/eXascaleInfolab/GraphEmbEval


TABLE IV
LINK PREDICTION PERFORMANCE, WHERE THE TOP-3 RESULTS FOR EACH DATASET ARE HIGHLIGHTED WITH BOLD NUMBERS

Method Precision@100 Recall@100
Blog PPI Wiki DBLP Blog PPI Wiki DBLP

·DeepWalk 0.0200 0.0159 0.0090 0.0423 0.0301 0.2227 0.0493 0.6749
:Node2Vec 0.0927 0.0137 0.0267 0.0321 0.1378 0.1958 0.1514 0.5174
·LINE 0.0070 0.0073 0.0031 0.0392 0.0103 0.0923 0.0167 0.6186
·VERSE 0.0404 0.0206 0.0212 0.0436 0.0602 0.2723 0.1118 0.6906
:GraRep 0.0014 0.0011 0.0054 0.0001 0.0020 0.0118 0.0286 0.0011
:HOPE 0.0023 0.0073 0.0027 0.0248 0.0035 0.0960 0.0149 0.4034
:NetMF 0.0175 0.0174 0.0084 0.0218 0.0266 0.2287 0.0474 0.3126
·INH-MF 0.0158 0.0158 0.0084 0.0252 0.0227 0.2209 0.0454 0.4052
:NetHash 0.0015 0.0134 0.0020 0.0387 0.0022 0.1899 0.0101 0.5958
:NodeSketch 0.0729 0.0250 0.0176 0.0462 0.1080 0.3331 0.0942 0.7595
·HARP-DWalk x 0.0142 0.0101 0.0407 x 0.1978 0.0536 0.6459
·HARP-LINE x 0.0026 0.0021 0.0309 x 0.0331 0.0117 0.5029
DAOC 0.0001 0.0099 0.0059 0.0027 0.0001 0.1301 0.0314 0.0444
DAOR 0.0958 0.0175 0.0164 0.0032 0.1438 0.2345 0.0892 0.0548

· the algorithm meta parameters are tuned once for all datasets to maximize accuracy
: the algorithm parameters are tuned for each dataset to maximize accuracy

x the algorithm is crashed on coarsening small disconnected components

TABLE V
NODE EMBEDDING ROBUSTNESS TO THE METRIC SPACE, WHERE THE

NATIVE METRIC SPACE FOR EACH ALGORITHM IS HIGHLIGHTED IN BOLD

Method Metric Micro-F1 (%)
Blog PPI Wiki DBLP

DAOR

jaccard 33.05 19.07 53.24 87.86
cosine 30.41 13.62 47.20 87.42
hamming 23.87 14.13 45.52 86.98
binham 23.89 10.25 41.36 87.17

NetMF
cosine 40.04 15.03 57.62 93.59
hamming 17.54 6.55 40.93 70.32
binham 19.82 7.05 42.85 74.91

HOPE
cosine 31.37 14.69 56.68 91.47
hamming 17.02 5.95 40.89 59.94
binham 18.23 6.21 40.89 74.36

binham - Hamming metric applied after a binarization of each dimension
using its median value

using an open-source graph embeddings evaluation frame-
work, GraphEmbEval3. on a Linux Ubuntu 16.04.3 LTS server
with an Intel Xeon CPU E5-2620 v4 @ 2.10GHz CPU (16
physical cores) and 132 GB RAM. The training and execution
termination constraints for each algorithm were set to 64 GB
of RAM and 240 hours CPU time (we terminate the process
when either of those thresholds are met).

Table VI shows the end-to-end embedding learning time.
To discount the impact of the multi-threaded implementation
of some of the methods, we dedicate a single logical CPU
per each method implementation and report the total CPU
time. Our method, DAOR, is faster than existing state-of-
the-art techniques by several orders of magnitude; it exhibits
near-linear scaling when increasing the number of links in
the graph. DAOR is also much more scalable than DAOC
(on which DAOR is built) due to its specific multi-scaling
approach that boosts the number of nodes reaching con-
sensus of the optimization function early on lower levels
of the hierarchy. Moreover, unlike other graph embedding
techniques, DAOR execution time decreases when increasing

TABLE VI
NODE EMBEDDING LEARNING TIME (IN SECONDS), WHERE THE TOP 3

RESULTS FOR EACH DATASET ARE HIGHLIGHTED IN BOLD

Method Blog PPI Wiki DBLP YouTube
DeepWalk 3375 1273 1369 4665 747060
Node2Vec 1073 383 1265 504 -
LINE 2233 2153 1879 2508 29403
VERSE 1095 203 276 1096 245334
GraRep 3364 323 422 10582 -
HOPE 239 100 78 283 15517
NetMF 487 124 708 213 -
INH-MF 509 39 98 378 -
NetHash 721 201 134 35 12708
NodeSketch 70 8 17 8 2439
HARP-DWalk 1436 299 483 958 336200
HARP-LINE 1274 106 189 90 13951
DAOC 7.9 0.3 1.8 0.2 4893
DAOR 1.6 0.2 0.4 0.2 57.1

- the algorithm was terminated by timeout

the number of embedding dimensions, which is due to the
early termination of the clustering as described in Section V-B.

VII. CONCLUSIONS

In this paper, we presented a novel highly efficient and
parameter-free graph embedding technique, DAOR 2, which
produces metric-robust and interpretable embeddings without
requiring any manual tuning. Compared to a dozen state-of-
the-art graph embedding algorithms, DAOR yields competitive
results on diverse graph analysis tasks (node classification and
link prediction), while being several orders of magnitude more
efficient.

In future work, we plan to recommend the minimal, max-
imal and optimal number of embedding dimensions, and
conduct a comprehensive study on their quality and inter-
pretability. Also, we plan to integrate further state-of-the-art
community detection algorithms in addition to DAOC.
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of overlapping and multi-resolution clustering algorithms on large
datasets,” in BigComp, 2019, pp. 1–8.
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[53] A.-L. Barabási and M. Pósfai, Network science. Cambridge Press, 2016.
[54] A. Lutov, M. Khayati, and P. Cudré-Mauroux, “Clubmark: a parallel iso-
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