
Denoising and Verification Cross-Layer Ensemble
Against Black-box Adversarial Attacks

Ka-Ho Chow, Wenqi Wei, Yanzhao Wu, Ling Liu
School of Computer Science

Georgia Institute of Technology
Atlanta, GA, USA 30332

Abstract—Deep neural networks (DNNs) have demonstrated
impressive performance on many challenging machine learning
tasks. However, DNNs are vulnerable to adversarial inputs
generated by adding maliciously crafted perturbations to the
benign inputs. As a growing number of attacks have been
reported to generate adversarial inputs of varying sophistication,
the defense-attack arms race has been accelerated. In this paper,
we present MODEF, a cross-layer model diversity ensemble
framework. MODEF intelligently combines unsupervised model
denoising ensemble with supervised model verification ensemble
by quantifying model diversity, aiming to boost the robustness of
the target model against adversarial examples. Evaluated using
eleven representative attacks on popular benchmark datasets,
we show that MODEF achieves remarkable defense success rates,
compared with existing defense methods, and provides a superior
capability of repairing adversarial inputs and making correct
predictions with high accuracy in the presence of black-box
attacks.

Index Terms—adversarial deep learning, ensemble defense,
ensemble diversity, robustness

I. INTRODUCTION

The recent advances in deep neural networks (DNNs) have
powered numerous applications in different domains due to
their outstanding performance compared to traditional machine
learning techniques. However, it has been shown that DNNs
can be easily fooled by adversarial inputs [1] and become a
double-edged sword as their vulnerability to adversarial attacks
has posed serious threats to many security-critical applications,
such as biometric authentication and autonomous driving. As
a number of defenses are being proposed, more attacks of
varying sophistication have been put forward, accelerating the
defense-attack arms race. Some even argue that designing new
attacks requires much less efforts than developing effective
defenses. Thus, improving the robustness and defensibility
against adversarial attacks is crucial.

Adversarial examples are generated by maliciously perturb-
ing benign examples sent to the target DNN model through
querying its prediction API, aiming to fool and mislead the
target model to misclassify by producing incorrect predictions
randomly (untargeted attack) or purposefully (targeted attack).
Given a D-dimensional benign example x ∈ RD and a K-
class classification target model TM : RD → RK such
that the prediction is given as Cx = argmax1≤i≤K TMi(x),
the generation process of the adversarial example x′ can be
formulated as

min ||x− x′||p s.t. Cx′ = y∗, Cx′ 6= Cx, (1)

where p is the distance metric and y∗ denotes the target class
label for targeted attacks and any incorrect class label for
untargeted attacks. For image inputs, the distance metric p
can be 0, 2, or ∞ representing L0, L2, and L∞ norms where
L0 norm counts the number of pixels of x that are changed,
L2 norm is the Euclidean distance between x and x′, and L∞
norm denotes the maximum change to any pixel of x.

Related Work. Existing defense proposals are mostly
attack-dependent and can be broadly divided into three cate-
gories. Adversarial training counters known attacks by retrain-
ing the target model using adversarial examples generated by
each attack algorithm [2]–[4]. Input transformation defenses
apply noise reduction techniques to input data to reduce
the sensitivity of the target model to small changes due to
adversarial perturbations. However, to distinguish adversarial
examples from benign ones, they rely on finding a dataset-
specific or attack-specific threshold [5]–[7]. Gradient masking
defenses aim to harden the process of generating adversarial
examples by hiding the gradient information from attackers,
such as distillation training techniques [8]. But they either
significantly reduce the benign accuracy of the target model
or are vulnerable to attack transferability [9], [10].

In this paper, we present MODEF, a cross-layer MOdel
Diversity Ensemble Framework by integrating unsupervised
model denoising ensemble with supervised model verifica-
tion ensemble, aiming to protect the target model against
adversarial attacks. From a manifold learning perspective [11],
natural high-dimensional data concentrate close to a nonlinear
low-dimensional manifold, and adversarial attacks can be
considered as a malicious process to drag benign examples
away from the manifold where they concentrate. MODEF first
exploits denoising autoencoders to learn such manifold and to
map adversarial examples back to their corresponding benign
form. Different from prior works using denoising autoencoders
as an input preprocessing-based defense [12], [13], MODEF
leverages multiple denoisers to boost defensibility by joint
force and quantifies model diversity to enable strategic teaming
of denoisers with diverse denoising effects. To further improve
the robustness and repair those adversarial examples escaped
from the denoising autoencoders, the denoised example is sent
to our second layer of model verification ensemble, which
exploits the weak spots of attack transferability using a team
of failure-independent models, for prediction verification and
repairing. We further enhance the defensibility of MODEF

ar
X

iv
:1

90
8.

07
66

7v
2

 [
cs

.L
G

]
 2

6
O

ct
 2

01
9

with defense structure randomization by creating a pool of
models and enabling strategic randomized ensemble teaming.
By promoting such uncertainty at runtime, it allows MODEF
to combat adversarial attacks with higher robustness.

In summary, MODEF advances existing works from three
perspectives. First, it provides three model diversity ensemble
defenses against adversarial examples: the model denoising
ensemble, the model verification ensemble, and the denoising-
verification cross-layer ensemble, each improves the previous
layer by empowering the target model with higher robust-
ness. Second, MODEF is by design attack-independent and
can generalize well over attack algorithms. MODEF does
not use dataset-specific or attack-specific magic parameters,
such as the detection thresholds, to distinguish adversarial
examples from benign ones. Furthermore, MODEF enables
strategic defense structure randomization to improve its de-
fensibility against adversarial examples and hardens black-
box attacks [9]. Extensive experiments on popular benchmark
datasets with eleven representative attacks are used to validate
that MODEF can significantly improve the robustness of a
target DNN model against adversarial attacks.

The remainder of this paper is organized as follows. We first
briefly review the representative attacks and the benchmark
datasets used in this paper in Section II. Then, we introduce
the Model Denoising Ensemble Defense in Section III and
the Model Verification Ensemble Defense and the Denoising-
Verification Cross-Layer Ensemble Defense in Section IV, fol-
lowed by experimental evaluation in Section V. We conclude
the paper in Section VI.

II. ADVERSARIAL EXAMPLES

Adversarial examples are generated over their correspond-
ing benign examples by adding maliciously crafted perturba-
tions that can fool the target model to misclassify during the
model prediction (testing) phase. For the attack threat model,
if the adversary can generate adversarial examples by only
accessing the prediction API of the target model with no
knowledge of the target model training process, we call such
attack the black-box attack. In this paper, we focus on defense
strategies against black-box attacks.

We generate adversarial examples using seven represen-
tative attack algorithms: FGSM [1], BIM [3], CW0, CW2,
CW∞ [10], DeepFool [14], and JSMA [15] which cover a
wide spectrum of techniques including both L∞, L2, and
L0 distortions. We build those attacks on top of EvadeML-
Zoo [6] using the same set of hyperparameters. For each
targeted attack, we study two attack targets representing
two ends of the targeted attack spectrum: the most-likely
(ML) attack class in the prediction vector (i.e., y∗ =
argmax1≤i≤K,i6=Cx TMi(x)) and the least-likely (LL) attack
class (i.e., y∗ = argmin1≤i≤K TMi(x)). Thus we have a total
of eleven different attacks.

Table I summarizes the evaluation of the attacks for two
popular benchmark datasets: MNIST and CIFAR-10. MNIST
consists of 70, 000 gray-scale images of ten handwritten digits,
each image is 28 × 28 × 1 in size with 60, 000 images for

TABLE I: Evaluation of the attacks on MNIST and CIFAR-10.
Configuration Cost (s) ASR MR Prediction

Confidence
Distortion

Attack Mode L∞ L2 L0

M
N

IS
T

L∞

FGSM UA 0.003 0.46 0.46 0.9475 0.302 5.931 0.563
BIM 0.01 0.92 0.92 0.9982 0.302 4.819 0.522

CW∞
ML 57.2 1.00 1.00 0.9999 0.226 3.235 0.416
LL 50.1 1.00 1.00 0.9998 0.279 4.655 0.507

L2 CW2
ML 0.3 1.00 1.00 0.9999 0.603 2.151 0.443
LL 0.3 1.00 1.00 0.9999 0.733 3.207 0.458

L0

CW0
ML 65.1 1.00 1.00 0.9999 0.983 3.667 0.029
LL 61.8 1.00 1.00 0.9999 0.995 5.122 0.061

JSMA ML 0.6 0.93 0.93 0.7137 1.000 3.728 0.031
LL 0.7 0.43 0.53 0.6253 1.000 5.555 0.063

C
IF

A
R

-1
0

L∞

FGSM UA 0.1 0.86 0.86 0.9694 0.016 0.864 0.998
BIM 0.4 0.92 0.92 0.9872 0.008 0.367 0.994

CW∞
ML 186.0 1.00 1.00 0.9890 0.009 0.341 0.960
LL 197.6 1.00 1.00 0.9751 0.014 0.522 0.994

L2

DF UA 0.5 1.00 1.00 0.8382 0.028 0.028 0.993

CW2
ML 6.1 1.00 1.00 0.9866 0.024 0.204 0.641
LL 7.0 1.00 1.00 0.9730 0.041 0.353 0.847

L0

CW0
ML 459.4 1.00 1.00 0.9898 0.581 1.547 0.010
LL 461.2 1.00 1.00 0.9764 0.694 2.517 0.024

JSMA ML 7.5 1.00 1.00 0.5326 0.843 3.681 0.046
LL 12.0 0.98 1.00 0.3984 0.904 5.563 0.098

training and the remaining 10, 000 images for testing. CIFAR-
10 consists of 60, 000 colorful images of ten classes, each is
32×32×3 in size. Similarly, for CIFAR-10, 50, 000 images are
used for training with the remaining 10, 000 images for testing.
For MNIST, the target model is a seven-layer CNN [10] with
an accuracy of 0.9943. For CIFAR-10, the target model is a
DenseNet [16] with an accuracy of 0.9484. The first 100 test-
ing examples (10 per class) that are correctly classified by the
target model are selected to generate adversarial examples. We
exclude DeepFool (DF) from MNIST because the generated
images are unrecognizable to humans.

Attack success rate (ASR) measures the percentage of
successful adversarial examples over all attacked inputs while
misclassification rate (MR) is defined as the percentage of
misclassified adversarial examples over all attacked inputs.
For untargeted attacks (UA), MR is the same as ASR, but
for targeted attacks, MR may be higher than ASR because an
adversarial example may fail the targeted attack but still cause
misclassification, resulting in a wrong prediction output other
than the true class. Most adversarial attacks evaluated produce
a high ASR and MR with high prediction confidence, mean-
ing that the target model being attacked predicts adversarial
examples to be a wrong class with a high probability.

We utilize the following metrics to evaluate defensibility:
Prevention Success Rate (PSR) measures the percentage of the
adversarial examples that are repaired and correctly classified
by the target model under defense. With the benign testing
set, PSR denotes the benign accuracy. Detection Success
Rate (TSR) computes the percentage of adversarial examples
that could not be repaired but are correctly flagged as the
attack example by the defense. For the benign testing set,
TSR is the benign false positive rate, i.e., the percentage
of the benign examples being flagged as adversarial over
the total number of benign examples. Defense Success Rate
(DSR) is the percentage of adversarial examples that are either
repaired or detected (DSR = PSR + TSR). False Positive
Rate (FP) measures the percentage of the adversarial examples
that can be correctly classified (repaired) but are flagged as
adversarial when all inputs are adversarial examples. For the

Original
Example

Corrupted
Example

Reconstructed
Example

Noise Injection...

3072

4096 …

512

128

3072

4096…

512

Encoder

Decoder

Reconstruction Error…..…………….

f✓(x̃)
<latexit sha1_base64="slzMEmebUONOteClXW4KuG2k1f4=">AAACC3icbVC7TgJBFJ3FF+ILtbTZACbYkF0spCSxscREHglLyOzsXZgw+8jMXSPZ0Nv4KzYWGmPrD9j5N84ChYInmczJOffm3nvcWHCFlvVt5DY2t7Z38ruFvf2Dw6Pi8UlHRYlk0GaRiGTPpQoED6GNHAX0Ygk0cAV03cl15nfvQSoehXc4jWEQ0FHIfc4oamlYLFX8oYNjQFp1kAsPUseNhKemgf7Sh9nsojIslq2aNYe5TuwlKZMlWsPil+NFLAkgRCaoUn3binGQUomcCZgVnERBTNmEjqCvaUgDUIN0fsvMPNeKZ/qR1C9Ec67+7khpoLLtdGVAcaxWvUz8z+sn6DcGKQ/jBCFki0F+IkyMzCwY0+MSGIqpJpRJrnc12ZhKylDHV9Ah2Ksnr5NOvWZf1uq39XKzsYwjT85IiVSJTa5Ik9yQFmkTRh7JM3klb8aT8WK8Gx+L0pyx7Dklf2B8/gBQBpsw</latexit>

f✓(x̃)
<latexit sha1_base64="slzMEmebUONOteClXW4KuG2k1f4=">AAACC3icbVC7TgJBFJ3FF+ILtbTZACbYkF0spCSxscREHglLyOzsXZgw+8jMXSPZ0Nv4KzYWGmPrD9j5N84ChYInmczJOffm3nvcWHCFlvVt5DY2t7Z38ruFvf2Dw6Pi8UlHRYlk0GaRiGTPpQoED6GNHAX0Ygk0cAV03cl15nfvQSoehXc4jWEQ0FHIfc4oamlYLFX8oYNjQFp1kAsPUseNhKemgf7Sh9nsojIslq2aNYe5TuwlKZMlWsPil+NFLAkgRCaoUn3binGQUomcCZgVnERBTNmEjqCvaUgDUIN0fsvMPNeKZ/qR1C9Ec67+7khpoLLtdGVAcaxWvUz8z+sn6DcGKQ/jBCFki0F+IkyMzCwY0+MSGIqpJpRJrnc12ZhKylDHV9Ah2Ksnr5NOvWZf1uq39XKzsYwjT85IiVSJTa5Ik9yQFmkTRh7JM3klb8aT8WK8Gx+L0pyx7Dklf2B8/gBQBpsw</latexit>

x
<latexit sha1_base64="gX2alUvxJXv1+X2RZIb5q4Xvl8c=">AAAB+XicbVC7TsMwFL0pr1JeAUYWixaJqUrKQMdKLIxFog+pjSrHcVqrjhPZTkUV9U9YGECIlT9h429w2gzQciTLR+fcKx8fP+FMacf5tkpb2zu7e+X9ysHh0fGJfXrWVXEqCe2QmMey72NFORO0o5nmtJ9IiiOf054/vcv93oxKxWLxqOcJ9SI8FixkBGsjjWy7NvRjHqh5ZK7saVEb2VWn7iyBNolbkCoUaI/sr2EQkzSiQhOOlRq4TqK9DEvNCKeLyjBVNMFkisd0YKjAEVVetky+QFdGCVAYS3OERkv190aGI5VnM5MR1hO17uXif94g1WHTy5hIUk0FWT0UphzpGOU1oIBJSjSfG4KJZCYrIhMsMdGmrIopwV3/8ibpNuruTb3x0Ki2mkUdZbiAS7gGF26hBffQhg4QmMEzvMKblVkv1rv1sRotWcXOOfyB9fkDiBiTjg==</latexit>

x
<latexit sha1_base64="gX2alUvxJXv1+X2RZIb5q4Xvl8c=">AAAB+XicbVC7TsMwFL0pr1JeAUYWixaJqUrKQMdKLIxFog+pjSrHcVqrjhPZTkUV9U9YGECIlT9h429w2gzQciTLR+fcKx8fP+FMacf5tkpb2zu7e+X9ysHh0fGJfXrWVXEqCe2QmMey72NFORO0o5nmtJ9IiiOf054/vcv93oxKxWLxqOcJ9SI8FixkBGsjjWy7NvRjHqh5ZK7saVEb2VWn7iyBNolbkCoUaI/sr2EQkzSiQhOOlRq4TqK9DEvNCKeLyjBVNMFkisd0YKjAEVVetky+QFdGCVAYS3OERkv190aGI5VnM5MR1hO17uXif94g1WHTy5hIUk0FWT0UphzpGOU1oIBJSjSfG4KJZCYrIhMsMdGmrIopwV3/8ibpNuruTb3x0Ki2mkUdZbiAS7gGF26hBffQhg4QmMEzvMKblVkv1rv1sRotWcXOOfyB9fkDiBiTjg==</latexit>

x̃ ⇠ q(x̃|x)
<latexit sha1_base64="TiThCTedzc+dhVmopVW9+x5YjAg=">AAACMnicdVDLTgIxFO34RHyNunTTCCa4ITO4kCWJG91hIo+EIaTTKdDQedjeMZLJfJMbv8TEhS40xq0fYQdYCOhJmp6cc29773EjwRVY1quxsrq2vrGZ28pv7+zu7ZsHh00VxpKyBg1FKNsuUUzwgDWAg2DtSDLiu4K13NFl5rfumVQ8DG5hHLGuTwYB73NKQEs987roABceSxw3FJ4a+/pKHtLUUdzHd6V/TP0izGtnxZ5ZsMrWBHiZ2DNSQDPUe+az44U09lkAVBClOrYVQTchEjgVLM07sWIRoSMyYB1NA+Iz1U0mK6f4VCse7odSnwDwRP3dkRBfZcPpSp/AUC16mfiX14mhX+0mPIhiYAGdftSPBYYQZ/lhj0tGQYw1IVRyPSumQyIJBZ1yXodgL668TJqVsn1ertxUCrXqLI4cOkYnqIRsdIFq6ArVUQNR9Ihe0Dv6MJ6MN+PT+JqWrhizniM0B+P7B2gFrT4=</latexit>

x̃ ⇠ q(x̃|x)
<latexit sha1_base64="TiThCTedzc+dhVmopVW9+x5YjAg=">AAACMnicdVDLTgIxFO34RHyNunTTCCa4ITO4kCWJG91hIo+EIaTTKdDQedjeMZLJfJMbv8TEhS40xq0fYQdYCOhJmp6cc29773EjwRVY1quxsrq2vrGZ28pv7+zu7ZsHh00VxpKyBg1FKNsuUUzwgDWAg2DtSDLiu4K13NFl5rfumVQ8DG5hHLGuTwYB73NKQEs987roABceSxw3FJ4a+/pKHtLUUdzHd6V/TP0izGtnxZ5ZsMrWBHiZ2DNSQDPUe+az44U09lkAVBClOrYVQTchEjgVLM07sWIRoSMyYB1NA+Iz1U0mK6f4VCse7odSnwDwRP3dkRBfZcPpSp/AUC16mfiX14mhX+0mPIhiYAGdftSPBYYQZ/lhj0tGQYw1IVRyPSumQyIJBZ1yXodgL668TJqVsn1ertxUCrXqLI4cOkYnqIRsdIFq6ArVUQNR9Ihe0Dv6MJ6MN+PT+JqWrhizniM0B+P7B2gFrT4=</latexit>

q
<latexit sha1_base64="4+th2wxWbVxubZ8O3um83zy6MGE=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsspCSxscQoHwlcyN4ywIa9vXN3z4Rc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMviAXXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ShRDJssEpHqBFSj4BKbhhuBnVghDQOB7WByM/fbT6g0j+SDmcboh3Qk+ZAzaqx0X34s94slt+IuQNaJl5ESZGj0i1+9QcSSEKVhgmrd9dzY+ClVhjOBs0Iv0RhTNqEj7FoqaYjaTxenzsiFVQZkGClb0pCF+nsipaHW0zCwnSE1Y73qzcX/vG5ihjU/5TJODEq2XDRMBDERmf9NBlwhM2JqCWWK21sJG1NFmbHpFGwI3urL66RVrXhXlepdtVSvZXHk4QzO4RI8uIY63EIDmsBgBM/wCm+OcF6cd+dj2ZpzsplT+APn8weQ+41J</latexit>

q
<latexit sha1_base64="4+th2wxWbVxubZ8O3um83zy6MGE=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsspCSxscQoHwlcyN4ywIa9vXN3z4Rc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMviAXXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ShRDJssEpHqBFSj4BKbhhuBnVghDQOB7WByM/fbT6g0j+SDmcboh3Qk+ZAzaqx0X34s94slt+IuQNaJl5ESZGj0i1+9QcSSEKVhgmrd9dzY+ClVhjOBs0Iv0RhTNqEj7FoqaYjaTxenzsiFVQZkGClb0pCF+nsipaHW0zCwnSE1Y73qzcX/vG5ihjU/5TJODEq2XDRMBDERmf9NBlwhM2JqCWWK21sJG1NFmbHpFGwI3urL66RVrXhXlepdtVSvZXHk4QzO4RI8uIY63EIDmsBgBM/wCm+OcF6cd+dj2ZpzsplT+APn8weQ+41J</latexit>

f✓
<latexit sha1_base64="jBHQdaa8FNcyBMOlWlmV8+HFw3c=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsspCSxscREwAgXsrfswYa9vcvunAm58C9sLDTG1n9j579xgSsUfMkkL+/NZGZekEhh0HW/ncLG5tb2TnG3tLd/cHhUPj7pmDjVjLdZLGP9EFDDpVC8jQIlf0g0p1EgeTeY3Mz97hPXRsTqHqcJ9yM6UiIUjKKVHqvhoI9jjrQ6KFfcmrsAWSdeTiqQozUof/WHMUsjrpBJakzPcxP0M6pRMMlnpX5qeELZhI54z1JFI278bHHxjFxYZUjCWNtSSBbq74mMRsZMo8B2RhTHZtWbi/95vRTDhp8JlaTIFVsuClNJMCbz98lQaM5QTi2hTAt7K2FjqilDG1LJhuCtvrxOOvWad1Wr39UrzUYeRxHO4BwuwYNraMIttKANDBQ8wyu8OcZ5cd6dj2VrwclnTuEPnM8f1riQVQ==</latexit>

f✓
<latexit sha1_base64="jBHQdaa8FNcyBMOlWlmV8+HFw3c=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsspCSxscREwAgXsrfswYa9vcvunAm58C9sLDTG1n9j579xgSsUfMkkL+/NZGZekEhh0HW/ncLG5tb2TnG3tLd/cHhUPj7pmDjVjLdZLGP9EFDDpVC8jQIlf0g0p1EgeTeY3Mz97hPXRsTqHqcJ9yM6UiIUjKKVHqvhoI9jjrQ6KFfcmrsAWSdeTiqQozUof/WHMUsjrpBJakzPcxP0M6pRMMlnpX5qeELZhI54z1JFI278bHHxjFxYZUjCWNtSSBbq74mMRsZMo8B2RhTHZtWbi/95vRTDhp8JlaTIFVsuClNJMCbz98lQaM5QTi2hTAt7K2FjqilDG1LJhuCtvrxOOvWad1Wr39UrzUYeRxHO4BwuwYNraMIttKANDBQ8wyu8OcZ5cd6dj2VrwclnTuEPnM8f1riQVQ==</latexit>

g✓0
<latexit sha1_base64="RwpNtpfkJvodktjyXa2gf+BPVTg=">AAACAXicbVA9SwNBEJ3zM8avqJXYLCaCVbiLhSkDNpYRzAckR9jbTJIle3vH7p4Qjtj4V2wsFLH1X9j5b9wkV2jigxke782wOy+IBdfGdb+dtfWNza3t3E5+d2//4LBwdNzUUaIYNlgkItUOqEbBJTYMNwLbsUIaBgJbwfhm5rceUGkeyXszidEP6VDyAWfUWCmEEgyhByl0wcAI0HZKTmEKpV6h6JbdOcgq8TJShAz1XuGr249YEqI0TFCtO54bGz+lynAmcJrvJhpjysZ0iB1LJQ1R++n8gim5sEqfDCJlSxoyV39vpDTUehIGdjKkZqSXvZn4n9dJzKDqp1zGiUHJFg8NEkFMRGZxkD5XyIyYWEKZ4vavhI2ooszY0PI2BG/55FXSrJS9q3LlrlKsVbM4cnAG53AJHlxDDW6hDg1g8AjP8ApvzpPz4rw7H4vRNSfbOYE/cD5/ACV+kio=</latexit>

g✓0
<latexit sha1_base64="RwpNtpfkJvodktjyXa2gf+BPVTg=">AAACAXicbVA9SwNBEJ3zM8avqJXYLCaCVbiLhSkDNpYRzAckR9jbTJIle3vH7p4Qjtj4V2wsFLH1X9j5b9wkV2jigxke782wOy+IBdfGdb+dtfWNza3t3E5+d2//4LBwdNzUUaIYNlgkItUOqEbBJTYMNwLbsUIaBgJbwfhm5rceUGkeyXszidEP6VDyAWfUWCmEEgyhByl0wcAI0HZKTmEKpV6h6JbdOcgq8TJShAz1XuGr249YEqI0TFCtO54bGz+lynAmcJrvJhpjysZ0iB1LJQ1R++n8gim5sEqfDCJlSxoyV39vpDTUehIGdjKkZqSXvZn4n9dJzKDqp1zGiUHJFg8NEkFMRGZxkD5XyIyYWEKZ4vavhI2ooszY0PI2BG/55FXSrJS9q3LlrlKsVbM4cnAG53AJHlxDDW6hDg1g8AjP8ApvzpPz4rw7H4vRNSfbOYE/cD5/ACV+kio=</latexit>

d(x, g✓0(f✓(x̃)))
<latexit sha1_base64="Ez8Ds/k7QQV7m5DDI/JuErHpppk=">AAACbXicdVFNTxsxEJ3dUghpoUtRD0BVWQ0IKqFoNz2QI6IXjiARQEqiyOvMJhbe9cqeRY1W+ZPc+Atc+At1lj1QPsay9fzezNh+jnMlLYXhved/WPq4vNJYbX76vLb+Jdj4eml1YQT2hFbaXMfcopIZ9kiSwuvcIE9jhVfxzZ+FfnWLxkqdXdAsx2HKJ5lMpODkKB2cwC6M4QAGEIMG5bCFGaT1roS/MIdDYDCBkdsNgGAK6FbOtpxyAInjn7FVJwJZdcKq4v2+c/hVjd1R0ArbYRXsNYhq0II6zkbB3WCsRZFiRkJxa/tRmNOw5IakUDhvDgqLORc3fIJ9BzOeoh2WlVtztueYMUu0cTMjVrHPK0qeWjtLY5eZcpral9qCfEvrF5R0h6XM8oIwE08HJYVipNnCejaWBgWpmQNcGOnuysSUGy7IfVDTmRC9fPJrcNlpR7/bnfNO67hb29GAHfjpjI/gCI7hFM6gBwIevMDb8ra9R/+b/93/8ZTqe3XNJvwX/v4/vA2jlw==</latexit>

d(x, g✓0(f✓(x̃)))
<latexit sha1_base64="Ez8Ds/k7QQV7m5DDI/JuErHpppk=">AAACbXicdVFNTxsxEJ3dUghpoUtRD0BVWQ0IKqFoNz2QI6IXjiARQEqiyOvMJhbe9cqeRY1W+ZPc+Atc+At1lj1QPsay9fzezNh+jnMlLYXhved/WPq4vNJYbX76vLb+Jdj4eml1YQT2hFbaXMfcopIZ9kiSwuvcIE9jhVfxzZ+FfnWLxkqdXdAsx2HKJ5lMpODkKB2cwC6M4QAGEIMG5bCFGaT1roS/MIdDYDCBkdsNgGAK6FbOtpxyAInjn7FVJwJZdcKq4v2+c/hVjd1R0ArbYRXsNYhq0II6zkbB3WCsRZFiRkJxa/tRmNOw5IakUDhvDgqLORc3fIJ9BzOeoh2WlVtztueYMUu0cTMjVrHPK0qeWjtLY5eZcpral9qCfEvrF5R0h6XM8oIwE08HJYVipNnCejaWBgWpmQNcGOnuysSUGy7IfVDTmRC9fPJrcNlpR7/bnfNO67hb29GAHfjpjI/gCI7hFM6gBwIevMDb8ra9R/+b/93/8ZTqe3XNJvwX/v4/vA2jlw==</latexit>

g✓0(f✓(x̃))
<latexit sha1_base64="uxeGJe8ZNlOzkPmGXooJK02Bf3M=">AAACR3icbZA9T8MwEIYv5auUrwATYrFokWApSRnoWImFsUj0Q2qrynGd1qoTR7aDqKL+OxZWNv4CCwMIMeK0GUrLWbbee+5Otl8v4kxpx3mzcmvrG5tb+e3Czu7e/oF9eNRUIpaENojgQrY9rChnIW1opjltR5LiwOO05Y1v03rrkUrFRPigJxHtBXgYMp8RrA0S9hWUYAh9SKALGkZAzYnRCUzhAnzDF6ghacaAw8CQdMIDMcsUTCDIsgSezPQULs0q9e2iU3ZmgVaFm4kiZFHv26/dgSBxQENNOFaq4zqR7iVYakY4nRa6saIRJmM8pB0jQxxQ1UtmPkzRuSED5AtpdqjRjC5OJDhQahJ4pjPAeqSWayn8r9aJtV/tJSyMYk1DMr/IjznSAqWmogGTlGg+MQITycxbERlhiYk21heMCe7yl1dFs1J2r8uV+0qxVs3syMMpnBnbXbiBGtxBHRpA4Bne4RO+rBfrw/q2fuatOSubOYY/kbN+AWproSQ=</latexit>

g✓0(f✓(x̃))
<latexit sha1_base64="uxeGJe8ZNlOzkPmGXooJK02Bf3M=">AAACR3icbZA9T8MwEIYv5auUrwATYrFokWApSRnoWImFsUj0Q2qrynGd1qoTR7aDqKL+OxZWNv4CCwMIMeK0GUrLWbbee+5Otl8v4kxpx3mzcmvrG5tb+e3Czu7e/oF9eNRUIpaENojgQrY9rChnIW1opjltR5LiwOO05Y1v03rrkUrFRPigJxHtBXgYMp8RrA0S9hWUYAh9SKALGkZAzYnRCUzhAnzDF6ghacaAw8CQdMIDMcsUTCDIsgSezPQULs0q9e2iU3ZmgVaFm4kiZFHv26/dgSBxQENNOFaq4zqR7iVYakY4nRa6saIRJmM8pB0jQxxQ1UtmPkzRuSED5AtpdqjRjC5OJDhQahJ4pjPAeqSWayn8r9aJtV/tJSyMYk1DMr/IjznSAqWmogGTlGg+MQITycxbERlhiYk21heMCe7yl1dFs1J2r8uV+0qxVs3syMMpnBnbXbiBGtxBHRpA4Bne4RO+rBfrw/q2fuatOSubOYY/kbN+AWproSQ=</latexit>

Fig. 1: The training process of a denoising autoencoder with an example from CIFAR-10.

benign testing set, it represents the percentage of the correctly
classified benign examples being flagged as adversarial. All
evaluations on benign examples are based on the entire testing
set with 10, 000 images.

III. MODEL DENOISING ENSEMBLE DEFENSE

We design the model denoising ensemble defense as the first
perimeter of defense to prevent adversarial misclassification.
The defense structure consists of multiple DNN denoisers,
each performs noise reduction via unsupervised learning using
one specific denoising autoencoder, aiming to remove adver-
sarial perturbations as much as possible by joint force.

A. Denoising Autoencoders

Denoising autoencoders are initially proposed as a way to
extract and compose robust features which can be utilized to
replace and optimize the random initialization and bootstrap
the efficiency of training deep neural networks [17]. From a
manifold learning perspective [11], natural high-dimensional
data concentrate close to a nonlinear low-dimensional man-
ifold. Adversarial attacks can be considered as a malicious
process to drag benign examples away from the manifold
where they concentrate. DNN denoising training is to learn a
function to map a corrupted example, likely to be outside and
farther from the manifold, back to its uncorrupted form. Thus,
we can utilize denoising autoencoders, trained with uniformly
corrupted examples, to reverse the adversarial perturbation
process such that the adverse effect can be removed. Several
efforts [18], [19] have been proposed to perform image denois-
ing tasks with different DNN models and different design of
autoencoder structures and hyperparameters. For image data, a
denoising autoencoder takes an input image, transforms it into
a noisy version, and feeds the noisy image to the autoencoder
to perform latent space projection and then reconstructs the
image with the goal of generating a clean version of the
original image as the output. Figure 1 illustrates, by example,
the key components of training a denoising autoencoder.

Let x be an example from the training set and x̃ be
the version corrupted by a stochastic noise mapping q such
that x̃ ∼ q(x̃|x) [20]. The encoder is an Lf -layer neural
network, which projects the corrupted example x̃ from a
high-dimensional image space to a low-dimensional latent
feature space, producing its latent representation fθ(x̃) =
fLf (· · · (f2(f1(x̃; θ1); θ2)); θLf

) where f i is the operation at
the i-th encoding layer (e.g., convolution) with weights θi, fθ
and θ = (θ1, ..., θLf

) can be viewed as the composite function

of the encoder and the weights respectively. The decoder, an
Lg-layer neural network, then restores the spatial structure
of fθ(x̃) by mapping its latent representation back to the
original image feature space and produces the reconstructed
example gθ′(fθ(x̃)) = gLg (· · · (g2(g1(fθ(x̃); θ′1); θ′2)); θ′Lg

)

where gi is the operation at the i-th decoding layer (e.g.,
deconvolution) with weights θ′i, gθ′ and θ′ = (θ′1, ..., θ

′
Lg

)
can be viewed as the composite function of the decoder and
the weights respectively. The multilayer encoder and decoder
constitute a deep denoising autoencoder. Given N training
examples {x1, ...,xN}, the denoising autoencoder is trained
by backpropagation to minimize the reconstruction loss:

L(θ, θ′; {xi}Ni=1, d, q, {f i}
Lf

i=1, {g
i}Lg

i=1, λ)

=
1

N

N∑
i=1

d(xi, gθ′(fθ(x̃i))) +
λ

2
(||θ||2F + ||θ′||2F),

(2)

where d is a distance function and λ is a regularization hyper-
parameter penalizing the Frobenius norm of θ and θ′. Given
a query example x at runtime, the denoising autoencoder
produces a denoised version D(x) = gθ′(fθ(x)) with fixed
weights (θ, θ′).
B. Strategic Teaming of Multiple DNN Denoisers

Recall in Figure 1 that the noise injection function q
of a denoising autoencoder transforms the original input x
to a noisy version of x, denoted by x̃. Clearly, different
data corruption methods produce different versions of input
x and result in denoisers that exhibit different denoising
effects. Figure 2 visualizes two testing examples from MNIST
and CIFAR-10 and the corresponding adversarial examples
generated by six attack methods (the 1st row), their denoised
versions produced by two denoisers trained with Gaussian
noise (the 2nd row) and salt-and-pepper noise (the 3rd row)
respectively. The predicted class label and confidence by
the target model are presented for each case. On the first
row, it shows that adversarial attacks successfully fool the
target model under all six attacks for the examples from both
datasets. On the second row, Gaussian denoiser successfully
remove malicious perturbations from four out of six attacks
for MNIST example and three out of six attacks for CIFAR-
10 example, showing the robustness improvement of the target
model even with single DNN denoiser. On the third row, the
salt-and-pepper denoiser successfully repaired five out of six
attacks for CIFAR-10 example and three out of six attacks
for MNIST example. These examples deliver two important
messages: First, exploiting denoising autoencoders trained

Salt-and-Pepper
Denoising
Repaired

Gaussian
Denoising
Repaired

Original

Benign FGSM BIM CW1
<latexit sha1_base64="2GYcmyU6adWEGD4YSrzaIlXqNkk=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LLaCp5LUgz0WvHisYD8gDWWz3bRLN7thdyKE0J/hxYMiXv013vw3btsctPXBwOO9GWbmhYngBlz32yltbe/s7pX3KweHR8cn1dOznlGppqxLlVB6EBLDBJesCxwEGySakTgUrB/O7hZ+/4lpw5V8hCxhQUwmkkecErCSXx/lQy4jyOb1UbXmNtwl8CbxClJDBTqj6tdwrGgaMwlUEGN8z00gyIkGTgWbV4apYQmhMzJhvqWSxMwE+fLkOb6yyhhHStuSgJfq74mcxMZkcWg7YwJTs+4txP88P4WoFeRcJikwSVeLolRgUHjxPx5zzSiIzBJCNbe3YjolmlCwKVVsCN76y5uk12x4N43mQ7PWbhVxlNEFukTXyEO3qI3uUQd1EUUKPaNX9OaA8+K8Ox+r1pJTzJyjP3A+fwD73pEF</latexit>

1
<latexit sha1_base64="2GYcmyU6adWEGD4YSrzaIlXqNkk=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LLaCp5LUgz0WvHisYD8gDWWz3bRLN7thdyKE0J/hxYMiXv013vw3btsctPXBwOO9GWbmhYngBlz32yltbe/s7pX3KweHR8cn1dOznlGppqxLlVB6EBLDBJesCxwEGySakTgUrB/O7hZ+/4lpw5V8hCxhQUwmkkecErCSXx/lQy4jyOb1UbXmNtwl8CbxClJDBTqj6tdwrGgaMwlUEGN8z00gyIkGTgWbV4apYQmhMzJhvqWSxMwE+fLkOb6yyhhHStuSgJfq74mcxMZkcWg7YwJTs+4txP88P4WoFeRcJikwSVeLolRgUHjxPx5zzSiIzBJCNbe3YjolmlCwKVVsCN76y5uk12x4N43mQ7PWbhVxlNEFukTXyEO3qI3uUQd1EUUKPaNX9OaA8+K8Ox+r1pJTzJyjP3A+fwD73pEF</latexit> CW2<latexit sha1_base64="80p2x+iBLXqJcs9hb4QkRv5MOHo=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LLaCp5LEgz0WvHisYD+gDWWz3bRLdzdhdyOU0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2rjut1Pa2t7Z3SvvVw4Oj45PqqdnXR2nitAOiXms+iHWlDNJO4YZTvuJoliEnPbC2V3u956o0iyWj2ae0EDgiWQRI9jkUn3k10fVmttwl0CbxCtIDQq0R9Wv4TgmqaDSEI61HnhuYoIMK8MIp4vKMNU0wWSGJ3RgqcSC6iBb3rpAV1YZoyhWtqRBS/X3RIaF1nMR2k6BzVSve7n4nzdITdQMMiaT1FBJVouilCMTo/xxNGaKEsPnlmCimL0VkSlWmBgbT8WG4K2/vEm6fsO7afgPfq3VLOIowwVcwjV4cAstuIc2dIDAFJ7hFd4c4bw4787HqrXkFDPn8AfO5w/nBo1z</latexit>2<latexit sha1_base64="80p2x+iBLXqJcs9hb4QkRv5MOHo=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LLaCp5LEgz0WvHisYD+gDWWz3bRLdzdhdyOU0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2rjut1Pa2t7Z3SvvVw4Oj45PqqdnXR2nitAOiXms+iHWlDNJO4YZTvuJoliEnPbC2V3u956o0iyWj2ae0EDgiWQRI9jkUn3k10fVmttwl0CbxCtIDQq0R9Wv4TgmqaDSEI61HnhuYoIMK8MIp4vKMNU0wWSGJ3RgqcSC6iBb3rpAV1YZoyhWtqRBS/X3RIaF1nMR2k6BzVSve7n4nzdITdQMMiaT1FBJVouilCMTo/xxNGaKEsPnlmCimL0VkSlWmBgbT8WG4K2/vEm6fsO7afgPfq3VLOIowwVcwjV4cAstuIc2dIDAFJ7hFd4c4bw4787HqrXkFDPn8AfO5w/nBo1z</latexit> CW0<latexit sha1_base64="LQtxttikY/0BEOdBdW8TVfs8Im4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LLaCp5LUgz0WvHisYD+gDWWz3bRLdzdhdyOU0L/gxYMiXv1D3vw3btIctPXBwOO9GWbmBTFn2rjut1Pa2t7Z3SvvVw4Oj45PqqdnPR0litAuiXikBgHWlDNJu4YZTgexolgEnPaD+V3m95+o0iySj2YRU1/gqWQhI9hkUn3s1sfVmttwc6BN4hWkBgU64+rXaBKRRFBpCMdaDz03Nn6KlWGE02VllGgaYzLHUzq0VGJBtZ/mty7RlVUmKIyULWlQrv6eSLHQeiEC2ymwmel1LxP/84aJCVt+ymScGCrJalGYcGQilD2OJkxRYvjCEkwUs7ciMsMKE2PjqdgQvPWXN0mv2fBuGs2HZq3dKuIowwVcwjV4cAttuIcOdIHADJ7hFd4c4bw4787HqrXkFDPn8AfO5w/j/I1x</latexit>0<latexit sha1_base64="LQtxttikY/0BEOdBdW8TVfs8Im4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LLaCp5LUgz0WvHisYD+gDWWz3bRLdzdhdyOU0L/gxYMiXv1D3vw3btIctPXBwOO9GWbmBTFn2rjut1Pa2t7Z3SvvVw4Oj45PqqdnPR0litAuiXikBgHWlDNJu4YZTgexolgEnPaD+V3m95+o0iySj2YRU1/gqWQhI9hkUn3s1sfVmttwc6BN4hWkBgU64+rXaBKRRFBpCMdaDz03Nn6KlWGE02VllGgaYzLHUzq0VGJBtZ/mty7RlVUmKIyULWlQrv6eSLHQeiEC2ymwmel1LxP/84aJCVt+ymScGCrJalGYcGQilD2OJkxRYvjCEkwUs7ciMsMKE2PjqdgQvPWXN0mv2fBuGs2HZq3dKuIowwVcwjV4cAttuIcOdIHADJ7hFd4c4bw4787HqrXkFDPn8AfO5w/j/I1x</latexit> JSMA Benign FGSM BIM CW1

<latexit sha1_base64="2GYcmyU6adWEGD4YSrzaIlXqNkk=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LLaCp5LUgz0WvHisYD8gDWWz3bRLN7thdyKE0J/hxYMiXv013vw3btsctPXBwOO9GWbmhYngBlz32yltbe/s7pX3KweHR8cn1dOznlGppqxLlVB6EBLDBJesCxwEGySakTgUrB/O7hZ+/4lpw5V8hCxhQUwmkkecErCSXx/lQy4jyOb1UbXmNtwl8CbxClJDBTqj6tdwrGgaMwlUEGN8z00gyIkGTgWbV4apYQmhMzJhvqWSxMwE+fLkOb6yyhhHStuSgJfq74mcxMZkcWg7YwJTs+4txP88P4WoFeRcJikwSVeLolRgUHjxPx5zzSiIzBJCNbe3YjolmlCwKVVsCN76y5uk12x4N43mQ7PWbhVxlNEFukTXyEO3qI3uUQd1EUUKPaNX9OaA8+K8Ox+r1pJTzJyjP3A+fwD73pEF</latexit>

1
<latexit sha1_base64="2GYcmyU6adWEGD4YSrzaIlXqNkk=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LLaCp5LUgz0WvHisYD8gDWWz3bRLN7thdyKE0J/hxYMiXv013vw3btsctPXBwOO9GWbmhYngBlz32yltbe/s7pX3KweHR8cn1dOznlGppqxLlVB6EBLDBJesCxwEGySakTgUrB/O7hZ+/4lpw5V8hCxhQUwmkkecErCSXx/lQy4jyOb1UbXmNtwl8CbxClJDBTqj6tdwrGgaMwlUEGN8z00gyIkGTgWbV4apYQmhMzJhvqWSxMwE+fLkOb6yyhhHStuSgJfq74mcxMZkcWg7YwJTs+4txP88P4WoFeRcJikwSVeLolRgUHjxPx5zzSiIzBJCNbe3YjolmlCwKVVsCN76y5uk12x4N43mQ7PWbhVxlNEFukTXyEO3qI3uUQd1EUUKPaNX9OaA8+K8Ox+r1pJTzJyjP3A+fwD73pEF</latexit> CW2<latexit sha1_base64="80p2x+iBLXqJcs9hb4QkRv5MOHo=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LLaCp5LEgz0WvHisYD+gDWWz3bRLdzdhdyOU0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2rjut1Pa2t7Z3SvvVw4Oj45PqqdnXR2nitAOiXms+iHWlDNJO4YZTvuJoliEnPbC2V3u956o0iyWj2ae0EDgiWQRI9jkUn3k10fVmttwl0CbxCtIDQq0R9Wv4TgmqaDSEI61HnhuYoIMK8MIp4vKMNU0wWSGJ3RgqcSC6iBb3rpAV1YZoyhWtqRBS/X3RIaF1nMR2k6BzVSve7n4nzdITdQMMiaT1FBJVouilCMTo/xxNGaKEsPnlmCimL0VkSlWmBgbT8WG4K2/vEm6fsO7afgPfq3VLOIowwVcwjV4cAstuIc2dIDAFJ7hFd4c4bw4787HqrXkFDPn8AfO5w/nBo1z</latexit>2<latexit sha1_base64="80p2x+iBLXqJcs9hb4QkRv5MOHo=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LLaCp5LEgz0WvHisYD+gDWWz3bRLdzdhdyOU0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2rjut1Pa2t7Z3SvvVw4Oj45PqqdnXR2nitAOiXms+iHWlDNJO4YZTvuJoliEnPbC2V3u956o0iyWj2ae0EDgiWQRI9jkUn3k10fVmttwl0CbxCtIDQq0R9Wv4TgmqaDSEI61HnhuYoIMK8MIp4vKMNU0wWSGJ3RgqcSC6iBb3rpAV1YZoyhWtqRBS/X3RIaF1nMR2k6BzVSve7n4nzdITdQMMiaT1FBJVouilCMTo/xxNGaKEsPnlmCimL0VkSlWmBgbT8WG4K2/vEm6fsO7afgPfq3VLOIowwVcwjV4cAstuIc2dIDAFJ7hFd4c4bw4787HqrXkFDPn8AfO5w/nBo1z</latexit> CW0<latexit sha1_base64="LQtxttikY/0BEOdBdW8TVfs8Im4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LLaCp5LUgz0WvHisYD+gDWWz3bRLdzdhdyOU0L/gxYMiXv1D3vw3btIctPXBwOO9GWbmBTFn2rjut1Pa2t7Z3SvvVw4Oj45PqqdnPR0litAuiXikBgHWlDNJu4YZTgexolgEnPaD+V3m95+o0iySj2YRU1/gqWQhI9hkUn3s1sfVmttwc6BN4hWkBgU64+rXaBKRRFBpCMdaDz03Nn6KlWGE02VllGgaYzLHUzq0VGJBtZ/mty7RlVUmKIyULWlQrv6eSLHQeiEC2ymwmel1LxP/84aJCVt+ymScGCrJalGYcGQilD2OJkxRYvjCEkwUs7ciMsMKE2PjqdgQvPWXN0mv2fBuGs2HZq3dKuIowwVcwjV4cAttuIcOdIHADJ7hFd4c4bw4787HqrXkFDPn8AfO5w/j/I1x</latexit>0<latexit sha1_base64="LQtxttikY/0BEOdBdW8TVfs8Im4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LLaCp5LUgz0WvHisYD+gDWWz3bRLdzdhdyOU0L/gxYMiXv1D3vw3btIctPXBwOO9GWbmBTFn2rjut1Pa2t7Z3SvvVw4Oj45PqqdnPR0litAuiXikBgHWlDNJu4YZTgexolgEnPaD+V3m95+o0iySj2YRU1/gqWQhI9hkUn3s1sfVmttwc6BN4hWkBgU64+rXaBKRRFBpCMdaDz03Nn6KlWGE02VllGgaYzLHUzq0VGJBtZ/mty7RlVUmKIyULWlQrv6eSLHQeiEC2ymwmel1LxP/84aJCVt+ymScGCrJalGYcGQilD2OJkxRYvjCEkwUs7ciMsMKE2PjqdgQvPWXN0mv2fBuGs2HZq3dKuIowwVcwjV4cAttuIcOdIHADJ7hFd4c4bw4787HqrXkFDPn8AfO5w/j/I1x</latexit> JSMA

4
[1.0000]

9
[1.0000]

9
[1.0000]

3
[0.9998]

3
[0.9998]

3
[0.9999]

3
[0.5537]

4
[1.0000]

4
[0.8477]

9
[0.9695]

4
[1.0000]

4
[1.0000]

4
[0.9976]

9
[0.9244]

4
[1.0000]

9
[1.0000]

9
[1.0000]

3
[0.9826]

4
[0.6098]

4
[1.0000]

4
[0.7830]

dog
[0.9949]

horse
[0.9978]

horse
[1.0000]

airplaine
[0.9724]

airplane
[0.9758]

airplane
[0.9754]

airplane
[0.4943]

dog
[0.9761]

horse
[0.9963]

horse
[0.9981]

dog
[0.7943]

dog
[0.7121]

dog
[0.5444]

cat
[0.2948]

dog
[0.9954]

horse
[0.9141]

dog
[0.6443]

dog
[0.9856]

dog
[0.9797]

dog
[0.9778]

dog
[0.5944]

Fig. 2: The visualization of denoising effects by two denoising autoencoders on MNIST (left) and CIFAR-10 (right).

with uniformly corrupted examples can remove meticulously
crafted adversarial perturbations and restore the classification
capability of the target model. Second, no single denoiser
is effective across all attacks and each of them is good
at removing some types of noise but not the others. This
motivates us to employ a team of diverse denoisers, instead of
relying on a single denoiser, such that an adversarial example
can be denoised from different perspectives.

In our model denoising ensemble defense, we first con-
struct a set of base DNN denoisers by exploiting different
approaches to generate denoisers. For example, we could
use different input transformation techniques to perform the
input corruption process q (e.g., Gaussian noise, salt-and-
pepper noise, and masking noise) such that the optimization
in Equation 2 attempts to learn different functions to reverse
the corruption [18]. Alternatively, we can also create different
denoisers by altering the model structure (i.e., {f i}Lf

i=1 and
{gi}Lg

i=1), or the hyperparameter settings (e.g., λ, training
epochs, and random seed for weight initialization), because
different ways of generating denoisers can have different
effects with respect to the manifold and the convergence of
the DNN learning [21]–[23]. The third approach to generate
different denoisers is to use different optimization objectives,
such as changing the distance function d from a simple per-
pixel loss to a perceptual loss [24], or using an advanced
regularization such as a sparsity constraint [25].

Upon obtaining a set of base denoisers, we next define
ensemble diversity metric to identify and select diverse ensem-
bles such that each of the ensemble members has high benign
accuracy and the ensemble teaming has high diversity in terms
of failure-independence and low negative example correlation.
In our first prototype of MODEF, we use the kappa coefficient
(κ) [26] as a pairwise metric to quantify the diversity of an
ensemble by measuring each pair of its member denoisers from
a statistical perspective. The top-ranked ensemble teams by
kappa diversity from the set of base denoisers will be chosen
as the pool of our candidate ensembles.

Kappa Diversity Metric. Let N− denote the number of
testing examples that the denoised versions are labeled as
different classes by the target model, N−ij denote the number
of instances in the testing set that the target model labels one
denoised version as class i and the other as class j. The kappa

metric can be computed by

κ =
1
N−

∑K
i=1N

−
ii −

∑K
i=1 (

N−i∗
N− −

N−∗i
N−)

1−
∑K
i=1(

N−i∗
N− −

N−∗i
N−)

. (3)

Based on the kappa value of each pair of base denoisers, we
enumerate and rank all possible ensemble teaming combina-
tions according to their average kappa values and maintain a
“κ-ranked list” of denoising ensembles with the low average
kappa values below a system-supplied threshold to ensure the
ensemble used by MODEF has high denoising diversity.

Denoising Ensemble Selection and Output Decision. We
select one denoising ensemble team from the κ-ranked list
of denoising ensembles at runtime. For the chosen denoising
ensemble of size ZD, we send the query (test) example x to
each ensemble member and obtain ZD denoised versions of
x. There are several ways to produce the ensemble output
accordingly. In the first prototype of MODEF, we use a
majority voting method. When the target model makes a
consistent prediction on a majority of the denoised versions,
we randomly choose one of the majority members and uses
its denoised version as the ensemble output. Otherwise, the
query example is flagged as adversarial.

Figure 2 provides an illustrative example. First, the benign
case refers to the target model without attacks (the 1st column
for MNIST and the 8th column for CIRAR-10). The 2nd to the
7th columns correspond to six attacks for MNIST and the 9th
to the 14th correspond to six attacks for CIFAR-10. The first
row shows that the attacks to the two original test examples
(digit 4 in MNIST and dog in CIFAR-10) are successful
with high confidence. However, when we employ the two
denoisers (see the 2nd row and the 3rd row), the six adversarial
attacks may fail for both test examples with either Gaussian
denoiser or salt-and-pepper denoiser. For MNIST digit 4, the
denoising ensemble will survive under CW0 and CW2. For
CIFAR-10 dog example, the denoising ensemble will survive
under all three CW attacks. This example also illustrates that
some attack algorithms, such as FGSM, BIM and JSMA, can
escape from the denoising ensemble defense. One may argue
that the reconstruction vectors from a well-trained denoising
autoencoder form a vector field which points in the direction
of the data manifold. Yet, this may not hold for the examples
distant from the manifold as they are rarely sampled during
training [27]. Thus, a more comprehensive solution approach
should be developed. This motivates us to propose the output

model verification ensemble (Section IV-A) and to integrate
the input denoising and output verification to formulate a
cross-layer model ensemble defense (Section IV-B).

IV. DENOISING AND VERIFICATION CO-DEFENSE

In this section, we first describe the model verification
ensemble as an alternative defense method and then present
our denoising-verification cross-layer ensemble defense frame-
work, which takes the model denoising ensemble as the front-
end defense and then combines it with the model verification
ensemble as the back-end defense.
A. Model Verification Ensemble Defense

One of the intriguing properties of adversarial examples is
the attack transferability [28]. The main idea of model verifi-
cation ensemble is to break adversarial attacks by exploiting
the weak spots of adversarial transferability. It is known that
two diverse models trained on the same dataset for the same
learning task, their decision boundaries can be quite different
even if they obtain a similar training accuracy. Hence, an
adversarial example generated by one attack algorithm through
one way of perturbing a benign input may successfully fool
the target model but may not succeed in fooling other models
trained on the same dataset, especially when such models are
diverse with respect to negative examples and thus are failure-
independent. By creating model ensembles with high diversity
as output verifiers for the target model, we argue that (1) the
model verification ensembles can improve the robustness of
the target model against adversarial examples, and (2) the
model verification ensembles are complementary and alterna-
tive to denoising ensembles, and thus a cross-layer diversity
ensemble defense that integrates input denoising ensemble
with output verification ensemble provides greater potential
for higher robustness, because the adversarial examples are
unlikely to be transferable to all of the member models of the
cross-layer ensemble.

Similar to the creation of denoising ensembles, we perform
two steps to create verification ensembles. First, we construct a
set of base models as the verifiers for examining and repairing
the target model prediction output, each is trained on the
same dataset for the same task as the target model. Several
techniques can be used to produce the base candidate mod-
els, such as varying neural network structures [23], training
hyperparameters, or performing data augmentation [29]. One
can also conduct snapshot learning [22] to obtain a set of
model verifiers efficiently in a single run of model training.
We employ two pruning criteria to generate model diversity
ensembles. The first filter is to use the test accuracy to select
only those base candidate models with the test accuracy similar
to that of the target model. For MNIST and CIFAR-10, we
collect numerous pre-trained DNN models from the public
domain, with high training and test accuracy under no attack
scenarios. The second filter is to select those model ensemble
teams that have high model diversity with respect to high
failure-independence and low negative/error correlation. In the
first prototype of MODEF, we utilize the kappa coefficient
metric to quantify the disagreement between each pair of base

TABLE II: The ten model verifiers for each dataset with their
prediction accuracy on benign examples.

Model MNIST CIFAR-10
Name Benign Accuracy Name Benign Accuracy

V1 CNN-5 0.9919 CNN-10 0.9062
V2 CNN-4 0.9861 ResNet20 0.9205
V3 CNN-6 0.9917 ResNet32 0.9313
V4 LeNet 0.9880 ResNet50 0.9312
V5 MLP 0.9761 ResNet56 0.9419
V6 MobileNet 0.9934 ResNet110 0.9419
V7 MobileNet-v2 0.9939 ResNet152 0.9392
V8 PNASNet 0.9950 ResNext29 0.9725
V9 SVM 0.9832 VGG 0.9359
V10 VGG 0.9946 WideResNet28 0.9712

candidate models. Let N− be the number of testing examples
the base candidate models produce inconsistent predictions
and N−ij be the number of instances in the testing set, which
are labeled as class i by one model and class j by the other in
Equation 3. We then enumerate and rank all possible ensemble
teaming combinations with a minimum team size of 3 and
we compute the average kappa value for each ensemble team
examined and select a κ-ranked list of model verification
ensembles with low average kappa values using the system-
defined kappa-diversity threshold. Any model ensemble from
this chosen κ-ranked list will have its average kappa value
below the given threshold and thus high model diversity.

Table II gives the set of ten base models for MNIST and
CIFAR-10 respectively, and all ten models have similar benign
accuracy under no attack scenarios. Table III illustrates the
model verification ensemble method using the same two query
examples: digit 4 from MNIST and a color image of dog from
CIFAR-10. The 2nd row shows how the TM (target model)
responds to the query example under benign (no attack) and
under the six different attacks for MNIST (columns 2-8) and
for CIFAR-10 (columns 9-14). When no defense protection
to the target model, all adversarial examples successfully
fool the target model for both digit 4 of MNIST and dog
image of CIFAR-10. Interestingly, even with the adversarial
example transferability, some of these adversarial examples
are correctly classified by some of the ten base model verifiers
(denoted by V1, ...,V10).

Given a query example x, a model verification ensemble
of size ZV is selected randomly at runtime from the κ-ranked
list of ensembles as the team of verifiers for the target model,
each member, denoted by Vi, takes the query example as
the input and produces a prediction probability distribution,
Vi(x) : RD → RK , over the output space. Then, the MODEF-
approved prediction output ŷ will be produced based on a soft-
voting scheme. In addition to the unweighted majority voting
(recall the denoising ensemble in Section III), another example
of such voting scheme could be weighted averaging based on
the confidence of the prediction made by each verifier in the
chosen verification ensemble:

ŷ = argmax 1≤j≤K
1

ZV

ZV∑
i=1

Vi,j(x), (4)

where Vi,j(x) denotes the confidence of x being from class
j predicted by verifier Vi. The 2nd row from the bottom of
Table III shows the results of using model verification en-

TABLE III: Predicted class label and confidence of each verifier on benign or adversarial examples. The last two rows show the predictions
by model verification ensemble (Section IV-A) and denoising-verification cross-layer ensemble (Section IV-B).

MNIST CIFAR-10
Benign FGSM BIM CW∞ CW2 CW0 JSMA Benign FGSM BIM CW∞ CW2 CW0 JSMA

TM 4
[1.0000]

9
[1.0000]

9
[1.0000]

3
[0.9998]

3
[0.9998]

3
[0.9999]

3
[0.5537]

dog
[0.9949]

horse
[0.9978]

horse
[1.0000]

airplane
[0.9724]

airplane
[0.9758]

airplane
[0.9754]

airplane
[0.4943]

V1
4

[0.9029]
9

[0.3287]
9

[0.6249]
9

[0.2235]
4

[0.6314]
4

[0.7399]
9

[0.5120]
dog

[0.9530]
dog

[0.4945]
dog

[0.7772]
dog

[0.8809]
dog

[0.7491]
dog

[0.9023]
truck

[0.8392]

V2
4

[1.0000]
9

[1.0000]
9

[1.0000]
4

[0.9925]
4

[1.0000]
4

[0.9997]
4

[0.9934]
dog

[1.0000]
dog

[1.0000]
dog

[1.0000]
dog

[1.0000]
dog

[1.0000]
dog

[1.0000]
dog

[0.5663]

V3
4

[1.0000]
9

[0.9994]
9

[1.0000]
4

[0.9999]
4

[1.0000]
4

[1.0000]
9

[0.9525]
dog

[0.9999]
horse

[0.8076]
horse

[0.5280]
dog

[0.9934]
dog

[0.9996]
dog

[0.9996]
cat

[1.0000]

V4
4

[1.0000]
4

[0.9686]
9

[0.8475]
4

[0.8105]
4

[0.9985]
4

[0.9886]
4

[0.9640]
dog

[1.0000]
dog

[0.7023]
dog

[0.8187]
dog

[0.9998]
dog

[1.0000]
dog

[1.0000]
cat

[0.9584]

V5
4

[1.0000]
9

[0.8796]
9

[1.0000]
9

[0.5978]
4

[0.9974]
4

[0.9939]
9

[0.9130]
dog

[0.9956]
dog

[0.9484]
dog

[0.9881]
dog

[0.9961]
dog

[0.9959]
dog

[0.7752]
cat

[0.7850]

V6
4

[0.9999]
4

[0.8277]
8

[0.9915]
4

[0.9949]
4

[0.9995]
4

[0.9939]
4

[0.9994]
dog

[1.0000]
dog

[1.0000]
dog

[1.0000]
dog

[1.0000]
dog

[1.0000]
dog

[1.0000]
dog

[0.9233]

V7
4

[1.0000]
9

[0.6400]
9

[0.7800]
4

[0.5576]
3

[0.9908]
4

[0.4516]
4

[0.9903]
dog

[1.0000]
horse

[0.9994]
dog

[0.8934]
dog

[0.9958]
dog

[0.9998]
horse

[0.8080]
frog

[0.9975]

V8
4

[0.9997]
9

[0.4434]
9

[0.5201]
8

[0.8267]
4

[0.8710]
3

[0.7317]
4

[0.9998]
dog

[0.8284]
dog

[0.6055]
dog

[0.7699]
dog

[0.8572]
dog

[0.8565]
dog

[0.6601]
dog

[0.5119]

V9
4

[0.9948]
9

[0.5192]
9

[0.6377]
4

[0.8961]
4

[0.9885]
4

[0.9612]
4

[0.3684]
dog

[0.9996]
dog

[0.9987]
dog

[0.9995]
dog

[0.9996]
dog

[0.9994]
dog

[0.9975]
cat

[0.9879]

V10
4

[0.9997]
9

[0.9166]
9

[0.9994]
4

[0.3515]
4

[0.5573]
2

[0.4868]
9

[0.6144]
dog

[0.9990]
dog

[0.9985]
dog

[0.9990]
dog

[0.9989]
dog

[0.9988]
dog

[0.9989]
dog

[0.9869]
Model Verification

Ensemble
4

[0.9982]
9

[0.4663]
9

[0.5459]
4

[0.6303]
4

[0.9952]
4

[0.9830]
4

[0.4559]
dog

[0.9775]
dog

[0.6748]
dog

[0.8246]
dog

[0.9722]
dog

[0.9599]
dog

[0.8334]
cat

[0.3731]
Denoising-Verification

Cross-Layer Ensemble
4

[1.0000]
4

[0.9825]
4

[0.8452]
4

[0.9994]
4

[0.9996]
4

[0.9996]
4

[0.9586]
dog

[0.9844]
dog

[0.9576]
dog

[0.9775]
dog

[0.9809]
dog

[0.9798]
dog

[0.9742]
dog

[0.9306]

semble defense with the 3-model team V5,V6,V9 for MNIST
and the 10-model team V1, ...,V10 for CIFAR-10. Without
using the model denoising ensemble, we observe that for these
two query inputs (digit 4 and dog), most of the adversarial
examples can be correctly classified, including JSMA and
CW∞ attacks on the MNIST example, the FGSM and BIM
attacks on the CIFAR-10 example, which failed by both the
denoising ensemble and any of the two denoisers in Figure 2.
However, the verification ensemble selected from the ten base
models still fails to repair the adversarial examples generated
by FGSM and BIM for digit 4 of MNIST and adversarial
example generated by JSMA for the dog example of CIFAR-
10. We are motivated to combine denoising ensemble with
verification ensemble, which has a high probability to outper-
form denoising ensemble or verification ensemble alone.

B. Denoising-Verification Cross-Layer Ensemble

There are a number of ways that we can create cross-layer
ensembles. Due to the space constraint, we below describe
two approaches representing two ends of the spectrum. The
first approach sends an ensemble voted denoising output to
the model verification ensemble. The second approach sends
to the model verification ensemble all denoised versions of
the query input produced by every member of the denoising
ensemble. Let the back-end defense to conduct the cross-layer
ensemble. This approach ensures that no errors from the front-
end defense will be propagated to the back-end defense phase,
at the cost of sending every denoised version. Other solutions
could be in between of these two spectrums, such as sending
only those voted denoising outputs that are ranked higher than
the system-defined consensus threshold.

One-to-Many Denoising-Verification Cross-Layer En-
semble. In the front-end defense phase, MODEF will em-
ploy denoising ensemble to produce one transformed input
example by removing adversarial noises through unsupervised
denoising and multiple model denoising consensus, such as
unweighted majority voting, simple averaging or weighted
averaging. In the back-end defense phase, it takes the voted
denoised version of the query example, performs the target
model prediction first and then performs the model verification
ensemble over the target prediction outcome. This process
serves two purposes: (1) It aims to ensure the correctness of the
target model prediction outcome by repairing the prediction
error through the cross-layer ensemble. (2) It also provides
the detection capability to flag those adversarial examples that
escape from or cannot be repaired by the cross-layer model
ensemble defense framework.

Many-to-Many Denoising-Verification Cross-Layer En-
semble. When the denoising ensemble as the front-end defense
chooses not to filter out any denoised versions of the query
input. The back-end defense phase will need to consider each
denoised version. In this case, we may choose to produce
one cross-layer verified prediction outcome for each denoised
version and then use an ensemble ranking algorithm, such as
unweighted majority voting, simple averaging or weighted av-
eraging, to determine the MODEF defense verified prediction
outcome for the target model. Alternatively, we could also pool
all the cross-layer verification results for all denoised versions
together and run the ensemble consensus algorithm to rank
and select the top-1 or top-k prediction outcomes.

Concretely, given a query example x at runtime, we first
exercise the front-end defense by employing a model denoising

ensemble of size ZD to produce ZD denoised versions of
x, denoted by D1(x), ...DZD

(x). Then, we select a model
verification ensemble team of size ZV from the κ-ranked
list of model verification ensembles. For each of the de-
noised versions, we will produce ZD probability distributions
P1(x), ..., PZD (x) where Pk(x) = 1

ZV

∑ZV
i=1 Vi(Dk(x)). We

select the one, denoted as the c-th denoiser, producing the most
confident prediction and take the corresponding predicted class
label as the final defense-approved prediction. Similar to the
one-to-many approach, detection capability can be offered to
flag irreparable adversarial examples.

Table III shows the result of the cross-layer ensemble
approach in the last row using the above many-to-many cross-
layer ensemble defense. Compared with model verification
ensemble only defense (the 2nd row from the bottom), clearly,
the denoising-verification cross-layer ensemble can success-
fully verify and repair all the adversarial examples. In this
experiment, the cross-layer ensemble defense method uses the
two denoisers in Figure 2.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

We evaluate MODEF on two popular benchmark datasets:
MNIST and CIFAR-10. Each of them is associated with one
denoiser trained with Gaussian noise and another trained with
salt-and-pepper noise. Their neural architectures are reported
in Table IV where we use [kernel width]×[output channel] to
denote parameters of convolution layers and [kernel width] to
denote parameters of average pooling and upsampling layers.
The volume of Gaussian noise is set to be 0.3 for MNIST
and 0.01 for CIFAR-10 while the ratio of pixels randomly
modified by the salt-and-pepper corruption process is set to
be 0.1 for both datasets. All denoisers are trained with Adam
optimizer with a learning rate of 0.001 and a batch size of
256. Euclidean distance is employed to measure the difference
between two examples (i.e., the function d in Equation 2)
while the regularization hyperparameter λ is set to be 10−9.
The number of training epochs for MNIST is 100 and that

TABLE IV: The neural network structures of DNN denoisers adopted
in MNIST and CIFAR-10 experiments.

MNIST CIFAR-10
Layer Settings Layer Settings

Convolution + Sigmoid 3× 3× 3 Convolution + Sigmoid 3× 3× 3
Average Pooling 2× 2 Convolution + Sigmoid 3× 3× 3
Convolution + Sigmoid 3× 3× 3 Convolution + Sigmoid 3× 3× 1
Convolution + Sigmoid 3× 3× 3
Upsampling 2× 2
Convolution + Sigmoid 3× 3× 3
Convolution + Sigmoid 3× 3× 1

for CIFAR-10 is 400. For each dataset, a set of ten model
verifiers is collected from the public domain. As reported in
Table II, each of them provides a competitive accuracy on
benign examples as the target model. In our experimental
studies, we consider a fixed team of DNN denoisers and
demonstrate different teaming options through model verifiers.
All experiments were run on Google Colab operated under
Ubuntu 18.04.2 LTS with an Intel Xeon CPU (two cores @2.3
GHz), an NVIDIA Tesla K80 (12 GB) GPU, and 13 GB RAM.
B. Comparing MODEF with Existing Representative Defenses

This set of experiments compares the MODEF cross-layer
ensemble defense with three representative defense methods:
adversarial training [30], defensive distillation [8], and en-
semble transformation of input examples [31]. We select the
ensemble team to be V5,V6,V9 for MNIST and V1, ...,V10

for CIFAR-10 from the κ-ranked list based on their model
diversity. They are exploited by default in the following
studies unless further specified. Table V reports the results
in benign accuracy under no attack and DSR under ten
attacks for MNIST and CIFAR-10 introduced in Section II.
Clearly, MODEF outperforms existing schemes for all attacks
on CIFAR-10 and nine out of ten attacks on MNIST. The
one exception on MNIST is the FGSM attack, under which
MODEF has a DSR of 0.89, slightly lower than the DSR
of 0.91 by adversarial training. However, adversarial training
is attack-dependent and does not generalize over attack al-
gorithms. Indeed, existing defense methods tend to perform
inconsistently across different attacks. For instance, defensive
distillation reaches a high DSR of 0.90 under the CW2 LL
attack on CIFAR-10 but achieves only a low DSR of 0.47
under JSMA LL. This can also be observed in their high
standard deviation of DSRs over attacks. In contrast, MODEF
achieves a competitive benign accuracy with a high and stable
DSR, showing that it can generalize well across all attacks.
C. Comparison of Three MODEF Ensemble Defenses

Given that MODEF outperforms existing defenses, the next
set of experiments was conducted to compare the performance
of three MODEF ensemble approaches and understand how
denoising ensemble and verification ensemble complement one
another in delivering higher robustness for the target model in
the cross-layer defense. Table VI reports the results with upper
wide table for MNIST and lower wide table for CIFAR-10.

Denoising Ensemble Defense. We have shown in Section II
that most of the attacks successfully fool the target model
by 100% attack success rate or by reducing its test accu-
racy significantly to zero. Table VI shows three important

TABLE V: Comparing the MODEF cross-layer ensemble defense with three representative defenses on benign accuracy and DSR.
Defense Benign

Accuracy
FGSM BIM CW∞ CW2 CW0 JSMA Average StdUA ML LL ML LL ML LL ML LL

M
N

IS
T MODEF 0.9855 0.89 0.86 0.99 0.97 0.98 0.95 0.94 0.92 0.98 0.90 0.94 0.04

Adversarial Training 0.9884 0.91 0.81 0.97 0.88 0.92 0.84 0.67 0.64 0.73 0.69 0.81 0.12
Defensive Distillation 0.9784 0.68 0.57 0.91 0.85 0.91 0.84 0.78 0.72 0.85 0.75 0.79 0.11
Ensemble Transformation 0.9820 0.60 0.22 0.64 0.51 0.37 0.33 0.21 0.21 0.57 0.64 0.43 0.18

C
IF

A
R

-1
0 MODEF 0.9631 0.91 0.96 0.98 0.98 0.98 0.98 0.94 0.93 0.92 0.80 0.94 0.06

Adversarial Training 0.8790 0.64 0.58 0.68 0.77 0.75 0.79 0.44 0.48 0.50 0.45 0.61 0.14
Defensive Distillation 0.9118 0.60 0.65 0.79 0.88 0.86 0.90 0.60 0.69 0.70 0.47 0.71 0.14
Ensemble Transformation 0.8014 0.23 0.40 0.56 0.61 0.57 0.61 0.19 0.34 0.45 0.41 0.44 0.15

TABLE VI: Comparing defensibility of the three MODEF on MNIST and CIFAR-10.
Denoiser

(Gaussian Noise)
Denoiser

(Salt-and-Pepper Noise)
Model Denoising

Ensemble Defense
Model Verification
Ensemble Defense

Denoising-Verification Cross-Layer
Ensemble Defense

MNIST PSR TSR DSR FP PSR TSR DSR FP PSR TSR DSR FP PSR TSR DSR FP PSR TSR DSR FP
Benign 0.9943 0.00 0.9943 0.00 0.9943 0.00 0.9943 0.00 0.9911 0.0038 0.9949 0.0024 0.9888 0.00 0.9888 0.00 0.9855 0.0035 0.9890 0.0030

FGSM UA 0.82 0.00 0.82 0.00 0.40 0.00 0.40 0.00 0.40 0.43 0.83 0.28 0.71 0.00 0.71 0.00 0.87 0.02 0.89 0.00
BIM 0.71 0.00 0.71 0.00 0.06 0.00 0.06 0.00 0.06 0.65 0.71 0.17 0.78 0.00 0.78 0.00 0.84 0.02 0.86 0.00

CW∞
ML 0.94 0.00 0.94 0.00 0.03 0.00 0.03 0.00 0.02 0.93 0.95 0.55 0.93 0.00 0.93 0.00 0.99 0.00 0.99 0.00
LL 0.99 0.00 0.99 0.00 0.02 0.00 0.02 0.00 0.02 0.97 0.99 0.62 0.85 0.00 0.85 0.00 0.97 0.00 0.97 0.00

CW2
ML 0.89 0.00 0.89 0.00 0.14 0.00 0.14 0.00 0.10 0.83 0.93 0.44 0.96 0.00 0.96 0.00 0.98 0.00 0.98 0.00
LL 0.83 0.00 0.83 0.00 0.12 0.00 0.12 0.00 0.12 0.83 0.95 0.50 0.94 0.00 0.94 0.00 0.95 0.00 0.95 0.00

CW0
ML 0.28 0.00 0.28 0.00 0.63 0.00 0.63 0.00 0.26 0.40 0.66 0.18 0.94 0.00 0.94 0.00 0.94 0.00 0.94 0.00
LL 0.41 0.00 0.41 0.00 0.68 0.00 0.68 0.00 0.41 0.41 0.82 0.15 0.89 0.00 0.89 0.00 0.92 0.00 0.92 0.00

JSMA ML 0.82 0.00 0.82 0.00 0.94 0.00 0.94 0.00 0.80 0.16 0.96 0.12 0.98 0.00 0.98 0.00 0.98 0.00 0.98 0.00
LL 0.65 0.00 0.65 0.00 0.81 0.00 0.81 0.00 0.64 0.22 0.86 0.14 0.88 0.00 0.88 0.00 0.90 0.00 0.90 0.00

Average 0.73 0.00 0.73 0.00 0.38 0.00 0.38 0.00 0.28 0.58 0.86 0.32 0.89 0.00 0.89 0.00 0.93 0.00 0.94 0.00
Std 0.23 0.00 0.23 0.00 0.35 0.00 0.35 0.00 0.26 0.28 0.11 0.18 0.09 0.00 0.09 0.00 0.05 0.01 0.04 0.00

CIFAR-10 PSR TSR DSR FP PSR TSR DSR FP PSR TSR DSR FP PSR TSR DSR FP PSR TSR DSR FP
Benign 0.9304 0.00 0.9304 0.00 0.8835 0.00 0.8835 0.00 0.8772 0.0656 0.9428 0.0369 0.9608 0.00 0.9608 0.00 0.9631 0.0002 0.9633 0.0002

FGSM UA 0.19 0.00 0.19 0.00 0.34 0.00 0.34 0.00 0.17 0.24 0.41 0.12 0.85 0.00 0.85 0.00 0.83 0.08 0.91 0.00
BIM 0.22 0.00 0.22 0.00 0.50 0.00 0.50 0.00 0.21 0.33 0.54 0.13 0.92 0.00 0.92 0.00 0.95 0.01 0.96 0.00

CW∞
ML 0.21 0.00 0.21 0.00 0.67 0.00 0.67 0.00 0.21 0.47 0.68 0.22 0.95 0.00 0.95 0.00 0.98 0.00 0.98 0.00
LL 0.83 0.00 0.83 0.00 0.85 0.00 0.85 0.00 0.77 0.17 0.94 0.11 0.98 0.00 0.98 0.00 0.98 0.00 0.98 0.00

DF UA 0.64 0.00 0.64 0.00 0.78 0.00 0.78 0.00 0.59 0.25 0.84 0.15 0.97 0.00 0.97 0.00 0.98 0.00 0.98 0.00

CW2
ML 0.42 0.00 0.42 0.00 0.75 0.00 0.75 0.00 0.42 0.34 0.76 0.22 0.95 0.00 0.95 0.00 0.98 0.00 0.98 0.00
LL 0.87 0.00 0.87 0.00 0.90 0.00 0.90 0.00 0.82 0.14 0.96 0.09 0.97 0.00 0.97 0.00 0.98 0.00 0.98 0.00

CW0
ML 0.03 0.00 0.03 0.00 0.33 0.00 0.33 0.00 0.03 0.33 0.36 0.10 0.88 0.00 0.88 0.00 0.86 0.08 0.94 0.00
LL 0.21 0.00 0.21 0.00 0.70 0.00 0.70 0.00 0.18 0.76 0.94 0.34 0.91 0.00 0.91 0.00 0.93 0.00 0.93 0.00

JSMA ML 0.40 0.00 0.40 0.00 0.77 0.00 0.77 0.00 0.39 0.45 0.84 0.31 0.83 0.00 0.83 0.00 0.92 0.00 0.92 0.00
LL 0.32 0.00 0.32 0.00 0.71 0.00 0.71 0.00 0.31 0.58 0.89 0.38 0.54 0.00 0.54 0.00 0.79 0.01 0.80 0.00

Average 0.39 0.00 0.39 0.00 0.66 0.00 0.66 0.00 0.37 0.37 0.74 0.20 0.89 0.00 0.89 0.00 0.93 0.02 0.94 0.00
Std 0.27 0.00 0.27 0.00 0.19 0.00 0.19 0.00 0.25 0.18 0.21 0.10 0.12 0.00 0.12 0.00 0.07 0.03 0.05 0.00

results: First, by employing a DNN denoiser, either trained
with Gaussian or salt-and-pepper noise, one can improve the
robustness of the target model, as shown in the columns under
“Denoiser (Gaussian Noise)” and “Denoiser (Salt-and-Pepper
Noise)”. Second, even though some attacks are mitigated with
a high DSR, the effectiveness of one denoiser varies wildly
across different attacks and datasets. For instance, the Gaussian
denoiser on MNIST achieves a high DSR of 0.99 in defending
the CW∞ LL attack but only gets a low DSR of 0.28 under
the CW0 ML attack. In fact, we have performed experiments
on multiple denoisers, and we found consistently that no DNN
denoiser can remove adversarial perturbations from all eleven
attacks examined and each denoiser fails to generalize well
over all attacks. Third, the DSR of model denoising ensemble
is consistently better than using one denoiser as shown in the
columns under “Model Denoising Ensemble Defense”. This
validates our argument that a robust defense method should
not rely on a single defense strategy, such as one denoiser
as adopted in prior works [12], [13] but employ a denois-
ing ensemble. Also, a simple denoising ensemble as those
advocated in [5] may not outperform a diversity optimized
denoising ensemble, as an ensemble team of diverse denoisers
offers different denoising effects and hence generalizes better
over different adversarial attacks.

Verification Ensemble and Cross-Layer Ensemble De-
fense. Table VI reports the defensibility of model verification
ensemble under the column “Model Verification Ensemble
Defense”. Compared with denoising ensemble, although ver-
ification ensemble achieves a higher average DSR over all
eleven attacks in both datasets (i.e., 0.89 v.s. 0.86 for MNIST
and 0.89 v.s. 0.74 for CIFAR-10 shown on their respective
“Average” row in Table VI), it performs much worse than

denoising ensemble under the JSMA LL attack (0.54 v.s.
0.89) for CIFAR-10 and CW∞ LL attack (0.85 v.s. 0.99)
for MNIST. The model verification ensemble is hence a com-
petitive alternative to the denoising ensemble, since neither
of them is the winner over all attacks on both datasets, and
yet each of them is the winner for some attacks. Compared
with denoising or verification ensemble only defense, the
cross-layer ensemble defense consistently outperforms across
almost all attacks with a remarkably small standard deviation
of DSRs (see the columns of “Denoising-Verification Cross-
Layer Ensemble Defense” in Table VI). In other words, the
cross-layer ensemble can generalize well over the eleven
attacks examined.

We make another interesting observation that although the
model verification ensemble and the cross-layer ensemble may
have slightly lower benign accuracy (0.9888 and 0.9855) than
the target model on MNIST (0.9943) under no attack, their
benign accuracy on CIFAR-10 are 0.9608 and 0.9631, which
are higher than the target model accuracy of 0.9484. This is
consistent with the theoretical proof in [32] that ensemble can
reduce uncorrelated errors. For example, if we have 5 com-
pletely independent classifiers and we use unweighted majority
voting as a consensus algorithm, by the probability formula,
with accuracy of 70% for each classifier, we have 83.7% en-
semble accuracy with majority voting and if we have 101 such
classifiers, we reach 99.9% ensemble accuracy by majority
voting. Equivalently, let δ be the classification accuracy of
each member in the ensemble E of size Z, the accuracy can
be boosted to P (E ≥ dZ/2e) =∑Z

i=dZ/2e
(
Z
i

)
δi(1− δ)Z−i.

In MODEF, we consider three options to create an ensemble
team of base models: (1) randomly selecting a team from the
entire pool of ensemble combinations (Rand); (2) randomly

TABLE VII: The pairwise kappa value of model verifiers for MNIST.
TM V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

TM 0.79 0.65 0.78 0.66 0.37 0.79 0.78 0.81 0.58 0.78
V1 0.67 0.81 0.65 0.47 0.77 0.77 0.76 0.69 0.75
V2 0.67 0.50 0.39 0.62 0.62 0.62 0.56 0.60
V3 0.64 0.48 0.76 0.77 0.75 0.66 0.74
V4 0.25 0.69 0.71 0.67 0.47 0.71
V5 0.35 0.36 0.36 0.43 0.31
V6 0.84 0.83 0.56 0.82
V7 0.86 0.58 0.84
V8 0.54 0.82
V9 0.54
V10

selecting an ensemble team from the κ-ranked list (Randκ),
which filters out those ensemble team combos that have high
kappa values above the system-defined threshold (due to the
space, the factors impact on the decision for the threshold
setting is omitted here); and (3) selecting the ensemble team
from the κ-ranked list with the highest prediction accuracy
(Bestκ). The κ-ranked list is built on the kappa value of
each pair of model verifiers. Different levels of disagreement
occur between a pair of model verifiers. Table VII gives an
example of the pairwise kappa values of the model verifiers
on MNIST where the pair of V4 and V5 has a low kappa value
of 0.25, showing their high prediction disagreement diversity
(high failure-independence and low error correlation).

To understand the effectiveness of three different ensemble
teaming options, we report in Table VIII the defensibility
of the ensembles randomly sampled according to the above
definitions. We make three observations. First, the target model
suffers different levels of failure under various attacks. In
comparison, each of the model verifiers consistently provides
better robustness against most of the attacks than that of the

target model. For instance, each verifier has higher DSRs
under CW attacks, JSMA attacks, and BIM attacks and
comparable performance under FGSM. Second, verification
ensemble defense has better robustness compared to each
of the individual verifiers. For each verification ensemble,
its average DSR is higher than that of individual ensemble
member. Third, using an ensemble team from the κ-ranked
list performs better in many cases than random ensemble
selection because the ensembles in the κ-ranked list have
low kappa value and thus high model diversity with respect
to failure-independence or error correlation. In addition to
the above observations, the cross-layer ensembles significantly
outperform their corresponding verification ensembles with the
same team and performs much better than individual ensemble
member. One example is the Randκ team with V3,V4,V10

having an average DSR over all attacks of 0.72, 0.62, and 0.48
respectively while the cross-layer ensemble method makes a
significant improvement to 0.89, demonstrating the comple-
mentary property of denoising and verification ensembles.

The above shows that all three MODEF ensembles improve
the test accuracy of the target model under eleven attacks on
the two benchmark datasets. This indicates that ensembles with
good diversity hold great potential for improving robustness of
DNN models in the presence of adversarial inputs. We notice
that verification ensemble offers a stronger ability to repair
adversarial examples with correct predictions while denoising
ensemble tends to be more robust by flagging and rejecting
adversarial examples. The cross-layer ensemble advocates high
robustness with a high DSR by achieving a high PSR, which

TABLE VIII: Prediction accuracy of the target model on MNIST, ten base model verifiers, three different teamings for model verification
ensemble and denoising-verification cross-layer ensemble.

Model Benign
Accuracy

FGSM BIM CW∞ CW2 CW0 JSMA Average StdUA ML LL ML LL ML LL ML LL
TM: Target Model 0.9943 0.54 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.47 0.12 0.21
V1: CNN-5 0.9919 0.58 0.27 0.59 0.43 0.74 0.78 0.72 0.72 0.90 0.81 0.65 0.19
V2: CNN-4 0.9861 0.65 0.44 0.85 0.68 0.85 0.74 0.60 0.57 0.76 0.63 0.68 0.13
V3: CNN-6 0.9917 0.65 0.37 0.81 0.71 0.82 0.89 0.73 0.65 0.86 0.73 0.72 0.15
V4: LeNet 0.9880 0.49 0.44 0.72 0.31 0.72 0.63 0.70 0.57 0.86 0.74 0.62 0.17
V5: MLP 0.9761 0.51 0.44 0.74 0.61 0.88 0.87 0.83 0.81 0.85 0.74 0.73 0.16
V6: MobileNet 0.9934 0.19 0.18 0.28 0.16 0.49 0.36 0.76 0.55 0.95 0.87 0.48 0.30
V7: MobileNet-v2 0.9939 0.22 0.23 0.36 0.11 0.34 0.14 0.70 0.44 0.96 0.86 0.44 0.30
V8: PNASNet 0.9950 0.15 0.15 0.19 0.08 0.20 0.10 0.68 0.43 0.94 0.80 0.37 0.32
V9: SVM 0.9832 0.67 0.72 0.98 0.92 0.98 0.97 0.93 0.86 0.96 0.80 0.88 0.11
V10: VGG 0.9946 0.40 0.32 0.59 0.03 0.49 0.35 0.62 0.32 0.89 0.80 0.48 0.25

Model Verification
Ensemble

Rand = V1,V2,V4,V7,V10 0.9951 0.61 0.39 0.78 0.51 0.76 0.69 0.79 0.68 0.94 0.80 0.70 0.16
Randκ = V3,V4,V10 0.9919 0.63 0.42 0.84 0.65 0.88 0.88 0.80 0.77 0.92 0.80 0.76 0.15
Bestκ = V5,V6,V9 0.9888 0.71 0.78 0.93 0.85 0.96 0.94 0.94 0.89 0.98 0.88 0.89 0.09

Denosing-Verification
Cross-Layer Ensemble

Rand = V1,V2,V4,V7,V10 0.9912 0.90 0.76 0.95 0.98 0.86 0.81 0.83 0.84 0.95 0.85 0.87 0.07
Randκ = V3,V4,V10 0.9873 0.84 0.71 0.98 0.94 0.96 0.92 0.88 0.88 0.95 0.88 0.89 0.08
Bestκ = V5,V6,V9 0.9855 0.89 0.86 0.99 0.97 0.98 0.95 0.94 0.92 0.98 0.90 0.94 0.04

TABLE IX: Transferability of adversarial examples generated over the target model.
TM V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Model Verification
Ensemble

Denoising-Verification
Cross-Layer Ensemble

FGSM UA 1.00 0.72 0.63 0.74 0.74 0.67 0.76 0.76 0.83 0.57 0.70 0.63 0.24
BIM 1.00 0.79 0.61 0.68 0.61 0.61 0.83 0.78 0.86 0.30 0.71 0.24 0.15

CW∞
ML 1.00 0.34 0.13 0.19 0.21 0.14 0.21 0.35 0.36 0.02 0.23 0.06 0.01
LL 1.00 0.28 0.06 0.10 0.15 0.07 0.04 0.30 0.16 0.00 0.15 0.03 0.00

CW2
ML 1.00 0.24 0.10 0.18 0.22 0.08 0.35 0.55 0.61 0.02 0.39 0.04 0.01
LL 1.00 0.03 0.04 0.01 0.06 0.02 0.07 0.45 0.45 0.00 0.21 0.02 0.00

CW0
ML 1.00 0.25 0.22 0.24 0.27 0.11 0.20 0.20 0.25 0.03 0.34 0.05 0.03
LL 1.00 0.06 0.12 0.14 0.06 0.02 0.11 0.16 0.19 0.01 0.16 0.00 0.00

JSMA ML 1.00 0.06 0.13 0.13 0.10 0.08 0.05 0.02 0.02 0.01 0.08 0.01 0.01
LL 1.00 0.07 0.19 0.16 0.05 0.09 0.00 0.00 0.00 0.02 0.00 0.02 0.00

Average 1.00 0.28 0.22 0.26 0.25 0.19 0.26 0.36 0.37 0.10 0.30 0.10 0.05
Std 0.00 0.27 0.22 0.25 0.24 0.24 0.30 0.28 0.31 0.19 0.24 0.20 0.08

is in stark contrast to existing detection-only methods [6].
To gain a better understanding of how the transferability

of adversarial examples behaves under MODEF, we measure
the attack transferability in ASR and report the results in
Table IX. Due to the space constraint, only the results on
MNIST are presented. Given that the adversarial examples are
generated over the target model (TM), the TM column shows
the transferability to be 1.00. Those adversarial examples may
not be consistently transferable to other independently trained
models. For instance, the adversarial examples generated by
the CW2 ML attack can be effectively transferred to V7 and V8

with a transferability of 0.55 and 0.61 respectively but achieve
only a low transferability of 0.10 for V2, 0.08 for V5, and 0.02
for V9. Such divergence in transferability of adversarial exam-
ples is the main motivation of MODEF to exploit the weak
spots of attack transferability using the denoising ensemble,
the verification ensemble and the denoising-verification cross-
layer ensemble as effective defense methods. As shown in
the last two columns in Table IX, the verification ensemble
for MNIST has a very low transferability under all attacks.
With the cross-layer ensemble that combines the denoising
ensemble and verification ensemble, its attack transferability
becomes further reduced.

VI. CONCLUSION

We have presented MODEF, a diversity ensemble defense
framework against adversarial deception in deep learning.
Driven by quantifying ensemble diversity based on classi-
fication failure-independence, MODEF provides three diver-
sity ensemble methods: (1) the model denoising ensemble,
leveraging multiple diverse denoising autoencoders to remove
adversarial perturbations, (2) the model verification ensem-
ble that exploits the weak spots of attack transferability to
verify and repair prediction output of the target model, and
(3) the denoising-verification cross-layer ensemble, which
can guard input and output of the target model through
intelligently combining input denoising ensemble and output
verification ensemble. Furthermore, MODEF is by design
attack-independent and can generalize over different attacks.
Due to the space constraint, we could not include additional
experimental results on the effectiveness of MODEF under
new attack algorithms, including PGD [2].

ACKNOWLEDGEMENT

This work was a part of XDefense umbrella project for
robust diversity ensemble against deception. This research
is partially sponsored by NSF CISE SaTC (1564097) and
SAVI/RCN (1402266, 1550379). Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the National Science Foundation or other funding agencies
and companies mentioned above.

REFERENCES

[1] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in ICLR, 2015.

[2] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in ICLR, 2018.

[3] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” arXiv preprint arXiv:1607.02533, 2016.

[4] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and
P. McDaniel, “Ensemble adversarial training: Attacks and defenses,” in
ICLR, 2018.

[5] D. Meng and H. Chen, “Magnet: a two-pronged defense against adver-
sarial examples,” in CCS, 2017.

[6] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial
examples in deep neural networks,” in NDSS, 2018.

[7] P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-gan: Protecting
classifiers against adversarial attacks using generative models,” in ICLR,
2018.

[8] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
in S&P, 2016.

[9] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
ASIACCS, 2017.

[10] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in S&P, 2017.

[11] O. Chapelle, B. Scholkopf, and A. Zien, “Semi-supervised learning
(chapelle, o. et al., eds.; 2006)[book reviews],” IEEE Trans. Neural
Netw., vol. 20, no. 3, 2009.

[12] R. Sahay, R. Mahfuz, and A. El Gamal, “Combatting adversarial
attacks through denoising and dimensionality reduction: A cascaded
autoencoder approach,” in CISS, 2019.

[13] F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, and J. Zhu, “Defense against
adversarial attacks using high-level representation guided denoiser,” in
CVPR, 2018.

[14] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in CVPR, 2016.

[15] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in EuroS&P, 2016.

[16] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in CVPR, 2017.

[17] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in ICML,
2008.

[18] J. Xie, L. Xu, and E. Chen, “Image denoising and inpainting with deep
neural networks,” in NIPS, 2012.

[19] F. Agostinelli, M. R. Anderson, and H. Lee, “Adaptive multi-column
deep neural networks with application to robust image denoising,” in
NIPS, 2013.

[20] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” JMLR, vol. 11, no. Dec,
pp. 3371–3408, 2010.

[21] W. Wei, L. Liu, S. Truex, L. Yu, and M. E. Gursoy, “Adversarial
examples in deep learning: Characterization and divergence,” arXiv
preprint arXiv:1807.00051, 2018.

[22] G. Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft, and K. Q. Weinberger,
“Snapshot ensembles: Train 1, get m for free,” in ICLR, 2017.

[23] Y. Wu, L. Liu, C. Pu, W. Cao, S. Sahin, W. Wei, and Q. Zhang,
“A comparative measurement study of deep learning as a service
framework,” arXiv preprint arXiv:1810.12210, 2018.

[24] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time
style transfer and super-resolution,” in ECCV, 2016.

[25] K. Cho, “Simple sparsification improves sparse denoising autoencoders
in denoising highly corrupted images,” in ICML, 2013.

[26] M. L. McHugh, “Interrater reliability: the kappa statistic,” Biochemia
medica: Biochemia medica, vol. 22, no. 3, 2012.

[27] G. Alain and Y. Bengio, “What regularized auto-encoders learn from
the data-generating distribution,” JMLR, vol. 15, no. 1, 2014.

[28] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in ma-
chine learning: from phenomena to black-box attacks using adversarial
samples,” arXiv preprint arXiv:1605.07277, 2016.

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.

[30] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” in ICLR, 2014.

[31] C. Guo, M. Rana, M. Cisse, and L. van der Maaten, “Countering
adversarial images using input transformations,” in ICLR, 2018.

[32] T. Holloway, “Introduction to ensemble learning,” 2007.

	I Introduction
	II Adversarial Examples
	III Model Denoising Ensemble Defense
	III-A Denoising Autoencoders
	III-B Strategic Teaming of Multiple DNN Denoisers

	IV Denoising and Verification Co-Defense
	IV-A Model Verification Ensemble Defense
	IV-B Denoising-Verification Cross-Layer Ensemble

	V Experimental Evaluation
	V-A Experimental Setup
	V-B Comparing MODEF with Existing Representative Defenses
	V-C Comparison of Three MODEF Ensemble Defenses

	VI Conclusion
	References

