
ar
X

iv
:1

91
0.

08
57

9v
1

 [
cs

.S
I]

 1
8

O
ct

 2
01

9

Towards Interpretable Graph Modeling

with Vertex Replacement Grammars

Justus Hibshman Satyaki Sikdar Tim Weninger

Department of Computer Science & Engineering

University of Notre Dame

Notre Dame, IN, USA

{jhibshma,ssikdar,tweninge}@nd.edu

Abstract—An enormous amount of real-world data exists in
the form of graphs. Oftentimes, interesting patterns that describe
the complex dynamics of these graphs are captured in the form
of frequently reoccurring substructures. Recent work at the
intersection of formal language theory and graph theory has
explored the use of graph grammars for graph modeling and
pattern mining. However, existing formulations do not extract
meaningful and easily interpretable patterns from the data. The
present work addresses this limitation by extracting a special type
of vertex replacement grammar, which we call a KT grammar,
according to the Minimum Description Length (MDL) heuristic.
In experiments on synthetic and real-world datasets, we show
that KT-grammars can be efficiently extracted from a graph and
that these grammars encode meaningful patterns that represent
the dynamics of the real-world system.

Index Terms—Graph mining, graph model, vertex replacement
grammar

I. INTRODUCTION

A common task in big data is to seek and find patterns

hidden in enormous amounts of data. When the data takes the

form of the graph, this goal is expressed as finding meaningful

graphical substructures and other patterns that are hidden in

the graph. Because of the prevalence of graph data and the

importance of this task, dozens of graph models have been

developed towards this goal [1]–[4]. Typically, these graph

models make some assumptions about the shape or structure

of the graph and encode the graph in interesting ways.

Some of the most widely used graph modeling techniques

search for occurrences of specific structures, such as edges, tri-

angles, various 4-node graphlets, and so on. Other techniques

measure specific graph properties such as node centrality,

degree, or measures of network robustness. What almost all of

these methods have in common is the fact that they typically

learn structures that are specified in advance [5].

We currently lack modeling tools that allow the graph

itself to dictate which graph patterns are essential and then

report these newfound properties in a meaningful and human-

readable format.

A few approaches are closer to this ideal than most. Notable

works such as gSpan [6], CloseGraph [7], and SUBDUE [8]

search for arbitrary substructures in a graph that can be used

to create a lossy compression of the graph. However, these

existing tools do little to show how those structures connect to

each other and the rest of the graph, and some of them have

→

LHS RHS

(A) Grammar Rule

=⇒

(B) Example of Rule Application

Current Graph H′ New Graph H∗

boundarynewreplaced

Fig. 1. (A) Example KT-grammar production rule with a left-hand side
(LHS) and a right-hand side (RHS). The LHS is a single node with zero
or more incoming and outgoing boundary edges (drawn in red). The RHS
is a subgraph fragment, where each vertex has zero or more incoming and
outgoing boundary edges. (B) During generation, a vertex from the graph is
replaced by the RHS; incoming and outgoing boundary edges from the LHS
are rewired to all of the incoming and outgoing boundary edges of the RHS
respectively.

trouble scaling to large or even mid-sized graphs. Progress

in graph entropy uses an information-theoretic approach to

identify graph structures and is a promising direction but does

not produce an interpretable model [9].

Renewed interest in graph grammars provides a promising

route towards the goal of building a non-parametric, inter-

pretable graph model. Previous work has investigated the

relationship between graph mining and formal language theory

by extracting Vertex Replacement Grammars (VRGs) [10]

and (Hyper)edge Replacement Grammars (HRGs) [3], [11].

Unfortunately, the composition of grammar rules in HRGs,

and some VRGs are known to produce clunky patterns that

are difficult to interpret.

The present work uses the graph grammar introduced by

Kemp and Tennenbaum (KT), which originally included a

Bayesian graph model that could learn natural relationships

between items in tiny datasets [12]. Generally speaking, KT-

grammars, as we call them, are based on prior work in ver-

tex replacement grammars, which contain graphical rewriting

rules that can match and replace graph fragments similar

to how a context-free string grammar rewrites characters in

a string [13]. These graph fragments represent a succinct

description of the building blocks of the network, and the

http://arxiv.org/abs/1910.08579v1

rewiring rules of the grammar describe the instructions about

how the graph is pieced together.

KT-grammars, which are a specific type of VRGs, are used

to model graph structures and can even generate new graphs.

A KT-grammar rule replaces a single vertex with a subgraph

fragment as shown in Fig 1. KT-grammars are easy to use

and easy to interpret, but their current use requires human

modelers to craft these grammars by hand, which is time

consuming and introduces human biases into the model. The

rule inference system developed by Kemp and Tennenbaum

has shown some promise in determining which rules best

match data, but this system is limited to datasets of only a

few dozen items [12]. We desire an automatic, scalable, and

interpretable rule extraction algorithm that compactly models

the structures found in the graph.

To that end, the present work describes BUGGE: a Bottom-

up Graph Grammar Extractor (pronounced: “buggie”), which

extracts interpretable KT-grammars from large real-world

graphs. We show that the KT-grammar and the BUGGE

extractor can correctly capture the known generative process of

synthetic graphs. Based on their success in synthetic graphs,

we employ BUGGE to find hidden structures in real-world

graphs and report the findings.

II. PRELIMINARIES

Before we describe BUGGE in detail, we first give some im-

portant background information. The BUGGE algorithm can

take, as input, any graph H = (V, E), which can be labeled,

weighted, multi-edged, or directed. However, for simplicity,

our implementation and the examples presented in this paper

focus on simple, directed graphs with no edge weights or

labels. Note that we use “vertex” and “node” interchangeably.

A. Vertex Replacement Grammars

A vertex replacement grammar is a context-free graph

grammar consisting of a set of “production rules.” These

production rules (or simply “rules”) prescribe a way to replace

a single vertex in the graph with a subgraph fragment. When

a vertex replacement occurs, the orphaned edges adjacent to

the deleted vertex needs to be rewired to the new subgraph

fragment in some way. Various edge rewiring schemes have

been developed, each with their advantages and disadvantages.

The KT-grammar. The vertex replacement grammar intro-

duced by Kemp and Tennenbaum is a natural formalism for our

purposes [12]. This formalism, which we call a KT-grammar,

is succinct and easy to interpret, but it is also rigid and

sometimes requires algorithmic tradeoffs.

Formally, a KT-Grammar G is defined as a set of rules

R ∈ G. Let R = (F, i, o, f) such that F = (VR, ER) is a

directed graph fragment with vertices v ∈ V and edges e ∈ E,

i : VR 7→ {0, 1} and o : VR 7→ {0, 1} are indicator functions

that state whether a vertex has incoming (i) or outgoing (o)

boundary edges. f ∈ Z
+ is the rule’s “frequency,” a count of

how many times that rule occurs.

Let H = (V, E) be a directed graph upon which G is

applied. Vertex replacement is defined as a transformation of

Current Graph H′ New Graph H∗

=⇒

=⇒

→
Grammar Rule

boundarynewreplaced

Fig. 2. A grammar rule repeatedly applied to grow a graph. At the top is the
grammar rule; boundary edges, illustrated in red, indicate how the new RHS
is rewired to the overall graph H. A red edge in a rule stands for connections
to all a vertex’s neighbors (0 or more). The next two rows show this rule
applied to grey vertices in a H′. The expanded graph H∗ is illustrated on the
right where the rule’s RHS is highlighted in blue.

H from a previous state H′ to a new state H∗ via R ∈ G.

Let v ∈ V be the vertex in H replaced by grammar rule

R = (F = (VR, ER), i, o, f). Then H∗ = (V∗, E∗), where the

new vertices are:

V∗ = (V′ \ {v})
⋃

VR (1)

and the new edges are:

E∗ = {(s, t) | s, t 6= v ∧ ((s, t) ∈ E′) ∨

(t ∈ VR ∧ i(t) ∧ (s, v) ∈ E′) ∨

(s ∈ VR ∧ o(s) ∧ (v, t) ∈ E′)} (2)

Simply put, whenever a rule replaces a node x, every node in

R either gets all of x’s boundary edges or none of them.

The example in Fig. 2 shows two additional applications

of the rule from Fig. 1A. This single KT-grammar rule can

be represented formally as (F = ({x, y}, {(x, y)}), i, o, f)
where i(x) = 1, o(x) = 0, i(y) = 1, o(y) = 1, and f is

some positive integer.

Note that if a grammar rule has i(v) = 0 for all v ∈ V,

then it cannot be used to replace a node with incoming edges.

Likewise for outgoing boundary edges. Thus, the grammar

rule’s i and o functions implicitly define the left-hand side

(LHS) of the rule. KT Grammar rules can have any number

of nodes on the right-hand side (RHS).

B. Minimum Description Length Principle

The Minimum Description Length (MDL) principle asserts

that the best representation of some data is the representation

that uses the fewest bits. While this may be a questionable

assertion philosophically, practically it is often a useful prin-

ciple for big data mining and modeling. For example, gap-

encodings can represent sparse matrices much more efficiently

than a direct “matrix” encoding because gap encodings better

“match” the data [14].

The MDL principle may also be used in the following way:

Given some data D, a set of models M, and a particular

encoding scheme, the best model to encode D is the model

M ∈ M that minimizes the combined cost of encoding D
given M and the cost of encoding M (E(D|M) + E(M)).

In the present work, our data will be a graph, and our set

of models will be a set of different grammar rules which

our algorithm discovers. We will repeatedly, greedily select

a grammar rule to compress the graph according to the MDL

principle.

III. EXTRACTING KT-GRAMMARS

In this section, we describe BUGGE, and show that it

can extract a succinct, meaningful KT-grammar that faithfully

represents the graphical structures and properties of large

graph data. We introduce BUGGE formally and then describe

how it works using a running example.

A. BUGGE: the Bottom-Up Graph Grammar Extractor

Let H = (V, E) be a directed graph with V′ ⊆ V, and

let H(V′) denote the subgraph in H induced by V′. We also

introduce two size parameters kmin and kmax that bound the

size of rule fragments. Let our grammar G start as an empty

set.

At a high-level BUGGE extracts a vertex replacement

grammar in the following way:

Step 1 Find all connected sets of nodes meeting the size

constraints kmin ≤ size ≤ kmax.

Step 2 For each connected set of nodes V′, find the rules G′

that could be used in reverse to contract V′ into a

single node. If no rules match exactly, find the rules

which most closely match.

Step 3 Pick the single grammar rule R which is predicted to

compress H the most.

Step 4 Extract an occurrence of R ∈ G′ from H by applying

it in reverse. If R does not exactly match the nodes it

collapses together, adjust the graph to make it fit (i.e.,

add or delete edges). If R is not in our grammar G,

add it to G. Increment the frequency of R in G.

Step 5 Update the sets of connected nodes and the associa-

tions of vertex sets to rules according to the new graph.

Repeat Step 3 and Step 4 if there are still rules which

can be extracted.

This principled approach extracts a vertex replacement gram-

mar and can be applied to any kind of graph or grammar

formalism. However, our goal of extracting a small, easily

interpretable model is best satisfied by the KT-grammar for-

malism given earlier. So in the remainder of this section,

we provide further details on how to extract a KT-grammar

specifically.

Step 1: Enumerating Occurrences of Rules. When BUGGE

first starts, it must enumerate rule occurrences for any con-

nected set meeting the size constraints. Later, BUGGE only

needs to perform updates to sets which might have been

affected by the latest rule extraction (i.e., sets connected to

nodes used in the latest extraction).

a b c d

e

f

Fig. 3. Example directed graph. This graph will be used as a running example
to show how BUGGE extracts KT-grammar rules.

Enumerating all connected sets of nodes up to a fixed size

(kmax in our case) corresponds exactly to enumerating all

connected, induced subgraphs up to some fixed size, which

is solved using a technique called Reverse Search [15].

To show this process we introduce a running example using

the graph shown in Fig. 3. With kmin = kmax = 2, there

exists one connected subgraph per edge, 6 in total: {a,b},

{b,c}, {b,d}, {c,d}, {d,f}, and {e,d}. With kmax = 3, we

find 8 additional subgraphs: {a,b,c}, {a,b,d}, {b,c,d}, {b,d,e},

{b,d,f}, {c,d,e}, {c,d,f}, and {e,d,f}. The total number of sets

for a graph tends to be exponential in kmax.

Fortunately, the KT-grammar permits heuristics that allow

the connected subgraph enumeration to be stopped early in

many cases. If the enumerator just evaluated some set of nodes

X of size |X| < kmax and we can infer that it is unlikely for

any KT-Grammar rule including the nodes in X to be a “good”

rule (more on this in Step 3), then the search can ignore more

massive sets of nodes containing X. We use this “Enumeration

Heuristic” in our experiments to speed up computation while

retaining results of similar quality.

Step 2: Enumerating Rules that Apply to Subgraphs. Given

the collection of connected sets, BUGGE finds the grammar

rule(s) which best match each connected set.

For any given connected set, we consider every possible

arrangement of boundary edges. In other words, for a given

connected set V′, we consider R = (F, i, o, f) for every

possible i and o, where F is the induced subgraph H(V′). For

each rule (each possible i, o pair), we consider the minimum

number of edge additions or deletions to H necessary to

make V′ correspond to an occurrence of R. This number of

modifications is the “cost” of a rule occurrence. For a given

V′, we only store the rules with the lowest cost. Note that

there are 2|V
′| possible i functions (and the same for o). Thus,

this process is exponential in kmax.

Figure 4 contains an example of finding matching rules for

a connected subgraph induced by c and d. It illustrates two

different rules that the subgraph could be edited to. Figure 4A

shows that the boundary edge (b→c) does not match Rule 1,

resulting in a cost of 1 for Rule 1. Figure 4B shows that the

boundary edge (e→d) does not match Rule 2 resulting in a

cost of 1 for Rule 2.

To make a decision in Step 3, BUGGE needs to aggregate

information on all the occurrences of an individual rule. To do

this, it assigns an id number to every rule. We begin with an

empty sequence of discovered rules, a “rule library”, L = 〈〉.
Every time an occurrence of a rule R is found in H, we check

to see if R is isomorphic to a rule already in L. If not, we

a b c d

e

f −→

Rule 2

{b} {f}

→

{b} {b}{f}

a b c d

e

f −→

Rule 1

{b,e} {f}

→

{b,e} {f}
A

B

Fig. 4. Two options for extracting a KT-grammar rule from vertices {c, d}
highlighted in orange. Red dotted edges indicate edge deletions necessary to
make the graph match the rule on the right; edges deleted (or added) incur a
cost to the model. Solid red edges are the preserved boundary edges. Labeled
edges in the rules are for illustrative purposes only.

append it to L and give R a new id number. Otherwise, we

give R the id of its match in L. To make this process more

efficient, we maintain a count of how many times each rule

has been discovered and adjust the order of rules in L to be in

the order of discovery count, thereby increasing the likelihood

that a newly discovered rule will match one of the first few

rules in L.

Step 3: Finding the Rule with the Best Compression. At

this point, each connected subgraph is matched with one or

more possible rules, and each matching may have a non-

zero cost associated. The next step is to decide which rule

should be extracted from the graph. For this, we revisit the

MDL principle introduced in the previous section. Simply

put, we select the rule that we predict will minimize the

overall description length of the graph given the grammar. See

Appendix A for details on how we encode graphs via grammar

rules and measure them in bits.

We predict the number of bits it will cost to use a rule n
number of times as follows. Let R be a rule with multiple

occurrences in graph H at various costs (number of edges

to be added or deleted) c1, c2, . . . , cm, and let xi denote the

number of time rules R occurs in H at cost ci.

We extract the cheapest occurrences of the rule first (i.e.,

occurrences at cost c1, followed by those at c2, and so on.).

Let j(n) denote the highest cost index we would reach while

extracting n rule occurrences and Xj(n) = n − ∑
j−1
i=0 xi be the

number of rules at cost cj that we would select.

Let CR denote the cost to encode the rule itself and give it

an identification number. CR will be zero if R has already been

extracted and encoded. Let CID denote the cost to reference

R’s ID number. Due to our encoding scheme, we only need to

reference this id once to perform a series of extractions using

the rule. Let Cnode be the cost to identify a single node in H
(the node that the rule would be applied to). Lastly, let Cedit

be the cost in bits to denote adding or deleting a node in H.

The predicted cost to encode n occurrences of R then

becomes:

COST(n) = CR + CID + nCnode + Xj(n)cj(n)Cedit

+
j(n)−1

∑
i=1

xiciCedit (3)

Recall that our MDL-based heuristic for selecting the most

representative rule is to select the rule that lets us describe as

much as possible with the fewest bits. Thus, what we really

want to consider is not just the cost to encode some number n
of grammar rule extractions but rather the cost in bits per the

number of nodes extracted. We try to maximize the number of

nodes per bit, which we refer to as the “Predicted Cost Ratio”

(PCR). PCR for a rule is defined relative to the number of

extractions that would yield the greatest ratio of nodes to bits.

Let ni represent the number of nodes in H that would be

extracted by a rule at a cost ci. Thus, for a given n extractions

with a rule, the predicted number of nodes to be extracted

would be:

NODES(n) =
Xj(n)

xj(n)
nj(n) +

j(n)−1

∑
i=1

ni (4)

The ideal predicted cost ratio (PCR) of nodes to bits for a

rule R then becomes:

PCRR = max
n

NODES(n)

COST(n)
(5)

If BUGGE were to compute this directly, it would require

checking every possible n for each rule. Fortunately, it turns

out that due to the “overhead” of the cost to encode and iden-

tify a rule, PCR will be maximized when all the occurrences

at a given cost are extracted. Thus, the calculation of PCR can

be simplified to:

PCRR = max
j

∑
j
i=1 ni

CR + CID + ∑
j
i=1 xi(Cnode + ciCedit)

(6)

We choose the rule with the highest PCR as the best rule to

extract. Although we compute the best number of occurrences

to extract when determining the PCR of a rule, this value may

change as soon as a single extraction is performed because

the changes in the graph may remove other occurrences of R,

causing R to have a worse PCR, or it causes some other rule

R′ to become cheaper or both. Hence, it should be stressed

that this is a Predicted Cost Ratio.

Also, note that BUGGE assumes that the sets of nodes

covered by a rule at different cost levels are disjoint. This is an

idealized assumption and could lead to inaccuracies, although

the PCR ratio appears to performs well in practice.

Returning to our running example, we find that the rule with

the best PCR is Rule 1 from Fig. 4(A). Although it has an

occurrence at cost 1 in Fig. 4(A), this rule occurs three other

times: twice with a cost of 0 and once more with a cost of 2.

The extra occurrences at cost 0 are what give Rule 1 the best

PCR. Thus BUGGE selects one of the cheapest occurrences

of Rule 1 to extract (either {a,b} or {e,d}).

Step 4: Extracting a Rule Occurrence. The rule extraction

process “collapses” the induced subgraph by applying the rule

in reverse. That is, instead of growing the graph by replacing

a single vertex with a graph fragment as in Fig. 1 and 2, we

reverse this process and extract a rule.

This processes is fairly straightforward. All the necessary

edge additions or deletions were found when the rule oc-

currence was enumerated. Thus, BUGGE simply replaces the

occurrence with a single node and rewires it according to the

selected rule.

Returning to the running example, Fig. 5 illustrates an

extraction of Rule 1 where it is calculated to have the lowest

cost.

Step 5: Update and Repeat. An extraction changes the graph.

So before we can iterate it is important that we update our

record of rule occurrences.

To do this, we first determine which nodes have rule

associations that may have changed due to the extraction in

the previous step. Next, we delete registered rule occurrences

involving any of the affected nodes. After the enumerations

are updated, we repeat this process from Step 3.

The set of nodes which might be affected is upper-bounded

by the set of nodes connected to the subgraph that was

extracted. More specifically, it is the union of the following

sets:

• The set containing the new “collapsed” node itself.

• Nodes in H for which an edge was deleted or added in

the process matching the rule.

• Nodes in H which were connected by multiple in-edges

or multiple out-edges to the collapsed subgraph, i.e.,

boundary edges.

Again we return to the running example in Fig 5. After Rule

1 is extracted from the pair {e, d}, updates to rule occurrence

enumeration occur for any set involving the newly created

node g. Of particular interest, after extracting Rule 1, {c, g}
(formerly {c, d}) ceases to have Rule 1 as one of its cheapest

rules, but {b, g} then has an occurrence of Rule 1 at cost 1, and

it is eventually selected. During its run on the example graph,

BUGGE extracts the entire graph using Rule 1 multiple times,

albeit with a non-zero cost (Fig. 5 C). Recall that a boundary

edge in a KT grammar rule indicates that “all” (0 or more)

edges get wired to that node. Some of the extractions in our

running example have no (in or out) boundary edges.

Enumeration Heuristic. We found during testing that in

practice, the rules with the cheapest edit costs are usually

the rules with the best Predicted Compression Ratio (PCR).

Thus, during the process of enumerating rules, it would only

be important to enumerate the rules which have the lowest or

near-lowest edit costs.

Consider a connected set X of k < kmax nodes with an edit

cost of c. This means that there are c edges which must be

added and/or deleted in order to extract X into a rule. The only

way that adding another node to X could reduce the cost is if

that node is one of the nodes that are connected to X via one

of the edges which must be added or deleted. Furthermore,

a b c d f

e

a b c g f

h c g f

c i f

j f

k

A

B

C

D

E

F

Fig. 5. BUGGE will repeatedly extract Rule 1 from Fig 4(A) thereby collaps-
ing the entire example graph. Green areas highlight the nodes corresponding
to a rule occurrence. Red arrows are boundary edges. The dotted red arrow
in extraction (C) is an edge deletion. New vertices formed by the extraction
of a rule (and the collapse of the relevant subgraph) in the previous step are
labeled in bold. Note that the green highlighted nodes might lack in or out
boundary edges. For example in (B), Rule 1 is extracted without cost from
the subgraph a→b despite no incoming edges to b. This is compatible with
the grammar rule because KT-grammars require boundary edges that exist to
be rewired according to the rule.

this new node must not add any more edit cost. Thus, the

chances of the cost decreasing as nodes are added are usually

quite low.

BUGGE takes advantage of this observation. BUGGE stores

the cost of the cheapest rule occurrence cbest; then, during

rule occurrence enumeration, it updates this cost. If during

enumeration, it finds that a set of nodes X has a cost which

is “too far” from cbest then it doesn’t bother to enumerate

any connected sets of which X is a subset. We find that this

provides a dramatic speedup.

More formally, we define a “shortcut parameter” s which

tells BUGGE whether or not to enumerate larger sets. Specif-

ically, we continue enumerating supersets of a set X with edit

cost c (X = k < kmax) if the following inequality holds:

c ≤ cbest + min {1 + kmax − k, s + ⌈ln(kmax − k)⌉)} (7)

In practice, we find that setting the shortcut parameter s
to 1 tends to produce very similar results to running without

a shortcut at all yet with a drastically reduced runtime (par-

ticularly noticeable when kmax is large). Larger values may

increase runtime but produce better results. Sometimes we find

that s = 2 will find interesting results that s = 1 will not;

thus, s should be treated as a parameter that allows a potential

tradeoff between results quality and runtime. Even with larger

values of s however, the runtime is usually significantly

reduced.

0

0.5

1

C
o

m
p

re
s
s
io

n
R

a
te

1,000 2,000 3,000 4,000 5,000
100

102

104

106

|V|

R
u

n
ti
m

e
(l

o
g

s
)

2 3 4 5 6 7 8

Rule Max Size

0 0.01 0.1 1

Rewiring Probability (log)

Binary Tree Tree of Rings Ring Lattice

Fig. 6. BUGGE’s Compression and Runtime results for synthetic graphs. We see how BUGGE responds as we vary different parameters: the size of the
graph, the maximum allowed grammar rule size, and the amount of noise in the input (i.e. rewiring probability).

B. Related Work

MDL Approaches Of other well-known graph mining sys-

tems, our approach is most akin to SUBDUE [8], followed

by VoG (Vocabulary of Graphs) [5]. Like our system, both

SUBDUE and VoG use the MDL heuristic to select structures

to extract.

SUBDUE uses a beam search to find structures. VoG

searches for 6 preset structure types (cliques, stars, etc.) and

maybe extended if the user wishes to implement support for

other specific structures. Our system finds whatever structures

are present in the graph up to a user-specified number of

nodes. Thus, our approach lets the data “speak for itself” up

to whatever computational costs the user is willing to allow.

Graph Grammar Approaches Other approaches extract

a vertex replacement grammar using either a hierarchical

clustering [10] or a tree decomposition of a graph [4] to

select which nodes to collapse into a grammar rule. These

approaches effectively try to form grammar rules from nodes

that “go together.” The Clustering-based Node Replacement

Grammar (CNRG) provides a computational advantage over

our approach. However, the choice of clustering algorithm

adds a layer of indirection between the graph and the grammar

which detracts from compressibility and interpretability.

The original work of Kemp and Tennenbaum did not extract

grammars from a graph but instead tested if a dataset matched

a particular grammar rule. This was particularly insightful

because KT-grammars have two particular advantages.

First KT-grammars tend to be naturally interpretable when

the intelligible structure can be found. Of particular notewor-

thiness, these rules can easily capture many of the structures

which are most intuitive to the human mind: trees, rings,

hierarchies, etc. For example, Table 7 shows some graphs

along with grammar rules which generate them.

Second, KT-grammars are robust to error. For a given

subgraph, there might not exist a rule that can create that

particular subgraph. Usually, this happens when two nodes

with external outgoing (or incoming) edges do not all point

to the same nodes. At first glance, this might seem to be

a weakness, but it enables an intuitive notion of the “cost”

of applying a rule to a subgraph. This cost, defined as the

number of edges in the graph that need to be added and/or

deleted before the rule could apply, allows our algorithm to

focus on the parts of the graph that most clearly correspond to

interpretable structure, compressing those parts of the graph

first.

Other Approaches Exponential Random Graph Models

(ERGMs) are another type of graph model that learns a

robust graph model from user-defined features of a graph [16].

Unfortunately, this model does not scale well and is prone to

model degeneracy. Neural network graph models are of recent

interest, but as is common with neural networks, these models

do not provide the interpretability we desire. Additionally,

some, such as GraphVAE [17] and GraphRNN [18] have

limited scalability while others such as NetGAN [19] produce

models many times larger than the original graph. Node em-

bedding models like LINE [20], node2vec [21], VGAE [22],

and others [23] represent individual nodes in the context of

their local substructures for classification or prediction tasks

and are also poorly suited to our objective.

IV. METHODOLOGY

In this section we present results of extensive experiments

on real and synthetic datasets that compare compression,

runtime, and model interpretability. We compare our results

to several state of the art graph summarization and grammar

extraction methods including VoG [5], SUBDUE [8], and

CNRG [10]. The source code for BUGGE, including experi-

mental data and evaluation scripts, is available on GitHub1.

Datasets. It is important that we consider both synthetic and

real-world graphs in our evaluation. Synthetic graphs enable us

to determine whether or not the grammar rules that we extract

are interpretable, i.e., since we know how we generate some

synthetic graph, it’s relatively easy to determine the goodness

of the found graph substructures.

1https://github.com/SteveWillowby/ThreePartsTree

https://github.com/SteveWillowby/ThreePartsTree

· · · · · · · · · · · · · ·· · · · · · · · · · · ·
· ·
· ·

· · · · · · · · · · · ·

C15

C15 C15 C15

C15 C15 C15 C15 C15 C15 C15 C15 C15

· ·
· ·
· ·

C15 C15 C15 C15C15C15· ·

A

B

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

A B A

B

C

A

B

C

· · ·· · ·

· · ·

A

B

· · ·· · ·

· · ·

A

B

C

· · ·· · ·

· · ·

A

1 →

1 B

2 →

2
A

B

3 →
1 1 1

2 →
1 1

A

B

6 →
2

1 1

2

6 →
2

1

3
6

Synthetic
Graphs

BUGGE
Rules

SUBDUE
Substructures

VoG
Structures

CNRG
Rules

I: Balanced Binary Tree II: Tree of Directed C15 Rings III: Regular Ring Lattice

Fig. 7. Rules or substructures extracted by graph mining for three types of synthetic graphs. The rules extracted by BUGGE capture the known dynamics of
the synthetic graph.

To that end, we generate three types of synthetic graphs:

(1) a Binary Tree, (2) a Tree of Rings, which is an N-ary tree

where each node is replaced with a ring of size k, and (3)

a Ring Lattice, based on the Watts-Strogatz model of social

networks. An ideal grammar extractor would describe these

simple structures clearly.

In addition, we consider three real-world directed graphs

from SNAP: Blogs (1,224 nodes, 19,025 edges), Protein-to-

protein interaction network (1,706 nodes, 6,207 edges), and

the DBLP citation graph (12,591 nodes, 49,743 edges).

Because runtime drastically increases with the maximum

rule size, we use the enumeration heuristic in all of our tests.

We find that it preserves the quality of results while improving

runtime dramatically.

Synthetic Graph Results

First we test the runtime and compression ratio of BUGGE

in various scenarios. Unless otherwise specified, graphs are

generated with 3000 nodes; the N-ary tree has n = 3 with

ring size k = 15; and the directed ring lattice graph has the

degree set to 4.

Graph Size. Holding the rule size steady and the rewiring

probability at 0%, we vary the number of nodes in the synthetic

graph from 1000 to 5000. The results shown in Fig. 6(left)

illustrates that runtime increases linearly in the number of

nodes. This is what we expect given that the larger synthetic

graphs just have more repetition of the same structure, so for

a fixed kmax BUGGE just enumerates the same grammar rules

more times.

The compression rate improves slightly on larger graphs.

This matches our expectation because the overhead of defining

more rules (bits increase) in larger graphs is dwarfed by the

number of extractions with that rule (bits savings).

Rule Size. Holding the graph size and rewiring probability

steady at 3000 and 0.0% respectively, we vary the maximum

rule size from 2 to 8. Size-2 rules correspond to edges;

size-3 rules can be one of the 5 directed 3-node graphlets.

There are 34 different size-4 directed graphlets, and this

number increases dramatically as the maximum allowed rule

size increases [24], [25]. This increase in expressibility is

certain to cause an increase in runtime. The results shown

in Fig. 6(center) illustrates that the compression rate increases

dramatically as the rule size increases (higher is better).

Model interpretability is explored in Fig. 7, which illus-

trates the most frequent rules extracted by BUGGE and the

comparison methods where parameters are set empirically

for each dataset. For example, in the synthetic binary tree

graph Fig. 7(left), BUGGE extracts only two grammar rules,

one of which is (re-)used in 499 of the 501 total iterations.

Thus, almost the entire graph can be represented with a single

rule, which corresponds to replacing a node with a subtree.

SUBDUE and CNRG extract reasonable rules from the binary

tree, but VoG surprisingly extracts a nearly bipartite core.

For the tree of rings Fig. 7(center) illustrates two rules

extracted by BUGGE that account for almost the entire graph

(599 of the 601 extractions). First, a rule for a chain is used

twice per ring to shrink the rings. Then a second rule takes

one of the shrunken child-rings and wraps it entirely into

its parent-ring. SUBDUE, VoG, and CNRG extract rules and

substructures which are difficult to interpret.

For the ring lattice graph in Fig. 7(right), BUGGE extracts

an intuitive rule that comprises 427 of the 430 total extractions.

SUBDUE and CNRG produce reasonable results; however

dozens of other CNRG rules are not illustrated here, and

SUBDUE’s best rule accounts for at most 68% of the graph.

Again VoG produces a bipartite core.

These examples demonstrate how BUGGE can discern the

nature of the original graph and common patterns within.

Random Rewriting Probability. To test the robustness of

BUGGE to noise, we define a rewiring probability r. Holding

the graph size at 3000, we vary r from 0 to 1. Before

extraction, every edge is randomly re-assigned to a new pair

of nodes with probability r. We design this process to ensure

that the number of edges is preserved. This means that when

r is 0 the synthetic graph remains the same and when r is 1

it becomes an Erdos Renyi graph.

Returning to Fig. 6(right), we observe that runtime increases

significantly as the level of noise increases and compressibility

drops. Interestingly, BUGGE manages to compress the graph

with increasing levels of noise, thereby showing robustness;

even when the rewiring probability is 1 (i.e., entirely noise)

BUGGE still manages to compress the two sparser random

graphs, indicating that BUGGE can compress sparse noise.

Real-World Graph Results

The synthetic graph results show that BUGGE does indeed

extract grammar rules that are meaningful. By inspecting the

rules, we can discern certain aspects about how the graph

is structured. Real-world graphs are less straightforward, but

the goal remains the same: to extract meaningful rules that

describe the underlying structure of the graph. Ideally, these

rules will hint at the dynamics of the graph and shed light on

the processes that govern these large, complex systems. We

extracted grammars from 3 real-world graphs and inspected

them to see what they tell us about the original graphs’s

structure.

Maayan Stelzl Protein-Protein Interaction (PPI) Graph.

For the PPI network, almost all of the rules BUGGE finds

have bidirected edges, suggesting that if protein A interacts

with protein B, then the reverse is true. This is indeed the case;

95% of the connections in the original graph are bidirected.

The most frequently extracted rules are visualized in

Fig. 8(top). By far the most frequent is a two-node rule

0

0.2

0.4

0.6

F
re

q
u

e
n

c
y

PPI

0

500

1,000

E
d

it
C

o
s
t
p

e
r

N
o

d
e

0

0.2

0.4

0.6

F
re

q
u

e
n

c
y

DBLP

0

2,000

4,000

6,000

E
d

it
C

o
s
t
p

e
r

N
o

d
e

0

0.2

0.4

0.6

F
re

q
u

e
n

c
y

PolBlogs

0

500

1,000

1,500

2,000

E
d

it
C

o
s
t
p

e
r

N
o

d
e

Rule

Frequency Edit Cost per Node

Fig. 8. Most frequently extracted rules from real-world graphs. The red line
indicates the total edit cost (number of edges added or deleted) per node over
the course of the extractions with that rule.

where one node has boundary edges, and the other does not.

However, we find that in the course of 866 total extractions,

2561 edges were deleted (denoted by the red line). Thus,

the node lacking edges in the rule typically had a few edges

which were not held in common with its neighbor in the real

graph. This suggests that the general structure of the graph is

to have proteins with very few interactions (spokes) connect to

proteins with very many (hubs). We especially see this “hub”

trait in some of the other top rules illustrated in Fig. 8.

DBLP Article Citation Network. For the DBLP citation

network, BUGGE extracts 9 rules which are used the most

frequently. They are illustrated in Fig. 8(middle); many of

which are similar to each other. As expected for a citation

network, which should be a DAG, the most popular rules do

not have bidirected edges.

We observed that in all of these rules, at most one node has

outgoing boundary edges and at most one node has incoming.

This means that for most pairs of connected nodes, it was

cheapest for BUGGE to delete all but one node’s in edges

and delete all but one node’s out edges. This, in turn, means

that for most pairs of connected nodes, they had more distinct

edges than edges in common. In terms of citations, this means

a pair of articles connected by a citation are more likely to cite

and be cited by different articles than by the same ones. This

0.23 0.49 2.13 3.62 0.07 0.69

0.06 0.45 0.29 0.29 0.05 0.37

0.04 0.29 0.19 0.20 0.03 0.33

1.

2.

3.

Blogs PPI DBLP

CL ERCL ERCL ER

Fig. 9. Comparison of top 3 most “interesting” results when compared to Chung-Lu (CL) and Erdos-Renyi (ER) null models. BUGGE extracts KT-grammars
that highlight certain dynamics of each dataset. Some patterns are well known, as in the bidirectional edges of PPI networks, others require careful inspection
and further study by domain experts.

level of expressibility is exactly what we seek; we, therefore,

encourage domain experts in library sciences (or proteomics

or the social Web) to investigate these findings further.

Moreno Blogs-Blogs Network. The Blogs network is another

form of a citation network, but because multiple articles on

the same blog count as the same node and two blogs can

frequently cite one another, the Blogs network will not be

nearly as DAG-like. Cycles and mutual citations should be

much more common. We expected the blogs-to-blogs graph

to have much less regular structure due to their complex

social dynamics. However, we did obtain some of the same

observations as in the DBLP citation network. In particular,

that the shared citations between two blogs are fewer than the

distinct citations.

Finding Interesting Rules

These rule probabilities give a good indication of the

structure of the graph. However, it could be that some rules

are just more likely than others, especially within graphs of

the same degree distribution. So, it is important that we find

the rules that are most interesting - not just most frequent.

Defining what is “interesting” can be difficult; fortunately, null

graph models are well suited for precisely this task.

For each real-world graph we create two null graph models:

(1) an Erdos Renyi Random graph (ER) containing the same

number of nodes and edges as the original graph, and (2) a ran-

dom graph that matches the original graph’s degree distribution

using a directed version of Chung-Lu’s Configuration model

(CL) [26], [27]. We use BUGGE to extract a KT-grammar

from the two null models for each real-world graph.

The extracted KT-grammars are a distribution of rules. So

we can compare the graph models using KL-Divergence to

determine how similar they are:

KL(p, q) = − ∑
R∈{G∪G∅}

p(R) log
q(R)

p(R)

where G is the KT-grammar extracted from the original graph,

and G∅ is the KT-grammar extracted from the null model,

either ER or CL; p(R) and q(R) are the probabilities that

R appears in the grammar extracted from the original graph

and the null model respectively. In some cases a rule may not

appear in both graphs, so we perform Laplacian smoothing on

these distributions to avoid errors caused by dividing by zero.

The KL divergence result itself is not particularly meaning-

ful, however, the contribution of each rule R to the overall

result represents the relative difference in their occurrence.

Therefore, we rank each rule’s contribution to the overall

KL divergence and illustrate the top 3 rules in Fig. 9 for

comparisons of real-world datasets against the null models.

Many aspects of our results could be commented on. We

will highlight a few: The frequency of rules with bidirected

edges in Figure 9 shows that neither the degree distribution

nor the ER model capture these relationships. In the Blogs

vs. CL comparison, we see that even though (as discussed

earlier) most of the extracted rules do not have multiple out

edges, they are more common in the original graph than the

degree distribution alone would dictate. In the DBLP citation

graph vs. ER, we see that BUGGE finds the original graph

has much more tree-like/DAG-like rules.

Performance Comparisons

Finally, a direct comparison of the compression rates of

BUGGE, SUBDUE, CNRG, and VoG is problematic. CNRG

and SUBDUE are lossy models, while BUGGE and VoG are

lossless models.

Likewise, direct runtime comparisons are also problematic.

For example, the default settings for SUBDUE search for

grammars of arbitrary size, which does not scale to even

medium-sized graphs; so we its max structure size to 8. Each

algorithm is written in different programming languages using

different graph libraries, etc. Runtimes in comparisons ranged

from less than a minute on the smallest graphs to around 18

hours for BUGGE on the largest real-world graph.

V. CONCLUSIONS

The present work describes BUGGE: the Bottom-Up Graph

Grammar Extractor, which extracts grammar rules that rep-

resent interpretable substructures from large graph data sets.

Using synthetic data sets we explored the expressivity of these

grammars and showed that they clearly articulated the specific

dynamics that generated the synthetic data. On real-world

data sets, we further explored the more frequent and most

interesting (from an information-theoretic point of view) rules

and found that they clearly represent meaningful substructures

that may be useful to domain experts. This level of expressivity

and interpretability is needed in many fields with large and

complex graph data. So, we repeat our call for domain experts

to investigate these findings further.

In future work, we intend to focus on extending these

formalisms to cover temporal/evolving graphs, like the work

done in synchronous HRGs [28] and temporal motifs [29]. It

is also likely that the KT-grammars extracted here can be used

to generate faithful null models of a graph.

Acknowledgements. This research is supported by a grant

from the US National Science Foundation (#1652492).

REFERENCES

[1] N. K. Ahmed, J. Neville, R. A. Rossi, and N. Duffield, “Efficient graphlet
counting for large networks,” in ICDM. IEEE, 2015, pp. 1–10.

[2] C. Seshadhri, T. G. Kolda, and A. Pinar, “Community structure and
scale-free collections of erdős-rényi graphs,” Physical Review E, vol. 85,
no. 5, p. 056109, 2012.

[3] S. Aguiñaga, R. Palacios, D. Chiang, and T. Weninger, “Growing graphs
from hyperedge replacement graph grammars,” in CIKM. ACM, 2016,
pp. 469–478.

[4] S. Aguinaga, D. Chiang, and T. Weninger, “Learning hyperedge replace-
ment grammars for graph generation,” IEEE Trans. on Pattern Analysis

and Machine Intelligence, vol. 41, pp. 625–638, 2019.
[5] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos, “Vog: Summarizing

and understanding large graphs,” in SDM. SIAM, 2014, pp. 91–99.
[6] X. Yan and J. Han, “gspan: Graph-based substructure pattern mining,”

in ICDM. IEEE, 2002, pp. 721–724.
[7] ——, “Closegraph: mining closed frequent graph patterns,” in Proceed-

ings of the ninth ACM SIGKDD international conference on Knowledge

Discovery and Data Mining. ACM, 2003, pp. 286–295.
[8] L. B. Holder, D. J. Cook, S. Djoko et al., “Substucture discovery in the

subdue system.” in SIGKDD, 1994, pp. 169–180.
[9] V. Gudkov, “Generalized entropies of complex and random networks,”

Mathematical Foundations and Applications of Graph Entropy, vol. 6,
pp. 41–61, 2016.

[10] S. Sikdar, J. Hibshman, and T. Weninger, “Modeling graphs with vertex
replacement grammars,” in ICDM. IEEE, 2019.

[11] R. Reddy, S. Chandar, and B. Ravindran, “Edge replacement grammars:
A formal language approach for generating graphs,” in SDM. SIAM,
2019, pp. 351–359.

[12] C. Kemp and J. B. Tenenbaum, “The discovery of structural form,”
PNAS, vol. 105, no. 31, pp. 10 687–10 692, 2008.

[13] H. Ehrig, G. Rozenberg, and H.-J. rg Kreowski, Handbook of graph

grammars and computing by graph transformation. World Scientific,
1999, vol. 3.

[14] P. Elias, “Universal codeword sets and representations of the integers,”
IEEE Trans. on Information Theory, vol. 21, no. 2, pp. 194–203, 1975.

[15] D. Avis and K. Fukuda, “Reverse search for enumeration,” Discrete

Applied Mathematics, vol. 65, no. 1-3, pp. 21–46, 1996.
[16] G. Robins, P. Pattison, Y. Kalish, and D. Lusher, “An introduction

to exponential random graph (p*) models for social networks,” Social

Networks, vol. 29, no. 2, pp. 173–191, 2007.
[17] M. Simonovsky and N. Komodakis, “Graphvae: Towards generation of

small graphs using variational autoencoders,” in International Confer-

ence on Artificial Neural Networks. Springer, 2018, pp. 412–422.

[18] J. You, R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec, “Graphrnn:
Generating realistic graphs with deep auto-regressive models,” arXiv

preprint arXiv:1802.08773, 2018.
[19] A. Bojchevski, O. Shchur, D. Zügner, and S. Günnemann, “Netgan:

Generating graphs via random walks,” arXiv preprint arXiv:1803.00816,
2018.

[20] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-
scale information network embedding,” in WWW, 2015, pp. 1067–1077.

[21] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in SIGKDD. ACM, 2016, pp. 855–864.

[22] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv

preprint arXiv:1611.07308, 2016.
[23] P. Goyal and E. Ferrara, “Graph embedding techniques, applications,

and performance: A survey,” Knowledge-Based Systems, vol. 151, pp.
78–94, 2018.

[24] A. Sarajlić, N. Malod-Dognin, Ö. N. Yaveroğlu, and N. Pržulj,
“Graphlet-based characterization of directed networks,” Scientific re-

ports, vol. 6, p. 35098, 2016.
[25] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and

U. Alon, “Network motifs: simple building blocks of complex networks,”
Science, vol. 298, no. 5594, pp. 824–827, 2002.

[26] W. Aiello, F. Chung, and L. Lu, “A random graph model for massive
graphs,” in STOC. Acm, 2000, pp. 171–180.

[27] M. E. Newman, S. H. Strogatz, and D. J. Watts, “Random graphs with
arbitrary degree distributions and their applications,” Physical review E,
vol. 64, no. 2, p. 026118, 2001.

[28] C. Pennycuff, S. Sikdar, C. Vajiac, D. Chiang, and T. Weninger,
“Synchronous hyperedge replacement graph grammars,” in International

Conference on Graph Transformation. Springer, 2018, pp. 20–36.
[29] A. Paranjape, A. R. Benson, and J. Leskovec, “Motifs in temporal

networks,” in WSDM. ACM, 2017, pp. 601–610.

APPENDIX

When compressing a graph, we use three encodings: A

graph encoding (stores a minimalist adjacency list), a gram-

mar rule encoding, and an application encoding (stores a

sequence of applications of the grammar rules to a graph).

Graph Encoding. Given a directed graph H = (V, E), the

number of bits BH it takes to encode G is:

BH = (2⌈log2 |V|⌉ − 1) + |V|+ |E|(⌈log2 |V|⌉+ 1)

Grammar Encoding. A grammar rule is basically a graph

with additional boundary information. The total number of

bits BRk
to encode a grammar rule with k nodes is:

BRk
= ⌈log2 |V|⌉+ k(⌈log2 k⌉+ 2) + k(k − 1) + 1

Application Encoding. An application encoding consists of

a sequence of instructions for applying grammar rules. These

instructions include an id number of the rule to apply, the id

of the node to apply the rule to, and information concerning

any edges which were added or deleted during the extraction

process. The bits BAkm
to record the application of a k-node

rule with m edge approximations takes:

BAkm
= 2 + ⌈log2 |V|⌉+ m(⌈log2 k⌉+ ⌈log2 |V|⌉+ 1)

+

{

⌈log2 |V|⌉ different rule used before

0 same rule used before

	I Introduction
	II Preliminaries
	II-A Vertex Replacement Grammars
	II-B Minimum Description Length Principle

	III Extracting KT-Grammars
	III-A BUGGE: the Bottom-Up Graph Grammar Extractor
	III-B Related Work

	IV Methodology
	V Conclusions
	References
	Appendix

