
Defense-PointNet: Protecting PointNet Against
Adversarial Attacks

Yu Zhang1*, Gongbo Liang1, Tawfiq Salem2, Nathan Jacobs1

1 Department of Computer Science, University of Kentucky, Lexington, KY, USA
2 Department of Computer Science and Software Engineering, Miami University, Oxford, Ohio, USA

Email: y.zhang@uky.edu*

Abstract—Despite remarkable performance across a broad
range of tasks, neural networks have been shown to be vulnerable
to adversarial attacks. Many works focus on adversarial attacks
and defenses on 2D images, but few focus on 3D point clouds.
In this paper, our goal is to enhance the adversarial robustness
of PointNet, which is one of the most widely used models for
3D point clouds. We apply the fast gradient sign attack method
(FGSM) on 3D point clouds and find that FGSM can be used to
generate not only adversarial images but also adversarial point
clouds. To minimize the vulnerability of PointNet to adversarial
attacks, we propose Defense-PointNet. We compare our model
with two baseline approaches and show that Defense-PointNet
significantly improves the robustness of the network against
adversarial samples.

Index Terms—point cloud, adversarial attack, pointnet, defen-
sive network

I. INTRODUCTION

Convolutional neural networks (CNNs) achieve remark-
able performance across a broad range of image-related
tasks [1] [2] [3], but CNNs have been shown to be vulnerable
to adversarial attacks [4] [5] [6] [7]. Goodfellow et al. [8]
propose the fast gradient sign attack method (FGSM) for
generating adversarial samples and claim that CNNs can be
easily misled with high confidence by adding imperceptible
perturbations to real input images. Recently, researchers pro-
pose multiple ways to generate adversarial samples for 2D
images and explain this phenomenon theoretically [9] [10].
Besides generating adversarial samples, some recent works
focus on how to protect CNNs against adversarial attacks.
ShieldNets [11] proposes a probabilistic method to defend
against adversarial attacks on 2D images. Defense-GAN [12]
models the distribution of unperturbed images, and Erraqabi
et al. [13] propose an adversarially augmented adversarial
training (A3T) approach to improve the adversarial robustness
of CNNs by using a discriminator to filter the adversarial noise
and achieve good performance on MNIST [14].

Many works focus on adversarial attacks and defenses on
2D images, so one question naturally arises: How can we
transfer these attacking and defending approaches from 2D
images to 3D real world data? There are many ways to
represent 3D objects in the real world. In this work, we focus
on 3D point clouds, which can be obtained from LiDARs
and depth cameras. Some recent works [15] [16] [17] use
neural networks to process point cloud data and achieve great

Fig. 1. The upper sample is a clean airplane point cloud and the lower sample
is its adversarial counterpart generated by FGSM. Both samples are fed into
three models. For the real sample, all three approaches classify correctly but
for the adversarial sample, it fools the simple training model.

success. Among these works, PointNet [15] is the earliest
and also the most commonly used architecture for 3D point
cloud data, and we show that it can be attacked by adversarial
samples. Figure 1 illustrates that when the PointNet is mislead
by the adversarial sample, our model can still make the correct
prediction.

Previous works [15] [18] show that PointNet is more
difficult to attack than ordinary CNNs. It has been proven
that PointNet is robust against multiple kinds of perturbations.
We validate this by showing that PointNet can achieve high
accuracy as 86.57% when attacked by FGSM with ε = 0.1
and 64.78% with ε = 0.2. One major difficulty for generating
adversarial point clouds is that we cannot simply use most of
the attacking approaches designed for 2D images because it
is impossible for us to modify pixel values for point clouds
unless we have point-level features. Xiang et al. [18] propose
multiple approaches to generate adversarial point clouds by
shifting points or adding extra points to the original point
cloud. In this work, we focus more on how to improve
the adversarial robustness than how to generate adversarial
samples.

To protect PointNet against adversarial attacks, we propose
Defense-PointNet which uses a discriminator to learn to filter
the adversarial noise in the latent representation space. We

ar
X

iv
:2

00
2.

11
88

1v
1 

 [
cs

.C
V

] 
 2

7 
Fe

b 
20

20



split the PointNet into two parts, the feature extractor and the
classifier. We attach the discriminator to the last layer of the
feature extractor and train these three modules jointly. Our
discriminator is trained to distinguish latent representations of
real point clouds from the ones of adversarial point clouds.
The feature extractor is trained not only to extract features for
the classifier to correctly classify the training samples but also
to fool the discriminator.

We evaluate our Defense-PointNet on ShapeNet [19], a
well-known 3D point cloud dataset, and find that it outper-
forms two baseline approaches and improves the adversarial
robustness of PointNet. We also find that Defense-PointNet
can give higher probability on correctly classified samples
comparing with the traditional adversarial training approach,
which means Defense-PointNet can predict not only more
accurately but also more confidently. We apply t-Distributed
Stochastic Neighbor Embedding (t-SNE) [20] for dimension-
ality reduction and use it to visualize the latent vectors.
Our experiments show that Defense-PointNet can enhance the
intra-class compactness of feature clusters, thereby reducing
the overlap of different classes, leading to the improvement
of robustness against bounded input perturbations. The key
contributions of this work are:

• Adversarial Point Clouds Generation: We apply fast gra-
dient sign attack method to point clouds and find that
even slightly shifting the points can mislead PointNet to
give incorrect predictions with high confidence.

• Adversarial Training: By feeding real batches and adver-
sarial batches alternatively in the network during training,
the adversarial robustness of PointNet is improved signif-
icantly. We use this adversarial training approach as one
baseline for evaluation.

• Defense-PointNet: We propose the Defense-PointNet
which can protect PointNet against adversarial attacks.
By adding a discriminator, we enforce resistance to
adversarial attack of latent representations and improve
the adversarial robustness of PointNet.

• Visualization: We provide t-SNE plots to explain how our
approach affects the feature space representations.

II. RELATED WORK

A. Fast Gradient Sign Attack Method

Fast gradient sign attack method (FGSM) [8] is the earliest
and most fundamental technique for generating adversarial
samples. Many following attacking methods, for instance, Ba-
sic Iterative Method (BIM) [21], Momentum Iterative Method
(MIM) [22], Carlini & Wagner Attack (C&W) [6], and Pro-
jected Gradient Descent (PGD) [23] are all based on FGSM
or using FGSM as one of their steps. In FGSM, we calculate
the gradient of the cost with respect to the input pixels
and generate a perturbation matrix with same dimension of
the input images. By adding the perturbation matrix to the
input images, we can generate adversarial images with limited
perturbations. The adversarial samples it generates can mislead
the CNNs to predict incorrect labels with high confidence.

Our main focus is to provide a defending strategy against the
fundamental but powerful FGSM. In our paper, we directly
apply FGSM on 3D point clouds, which means we shift points
instead of modifying pixel values.

B. Defense-GAN

Defense-GAN [12] is a new framework leveraging the
expressive capability of generative models to defend deep
neural networks against adversarial attacks. Defense-GAN is
trained to model the distribution of unperturbed images. At
inference time, it finds a close output to a given image which
does not contain the adversarial changes, then feed this image
to the classifier. It has been proven that Defense-GAN is
effective against different attack approaches and improves on
existing defending strategies.

C. A3T

The original idea of augmenting a network with a dis-
criminator to make hidden representation filter the noise
is the essence of the work Ganin et al. [24] on domain
adaptation, where the network learns features that adapt to
different domains for the same task. That idea is exploited
by Adversarially Augmented Adversarial Training (A3T) [13],
which divides a CNN into an encoder and a residual classifier.
A discriminator is used to enforce resistance to adversarial
attack of latent representations. The A3T approach has been
evaluated on MNIST and achieved higher accuracy than using
the adversarial training approach. The success of these two
works [13], [24] on 2D images inspire us to augment deep
neural networks (DNNs) for 3D point cloud data and design
the Defense-PointNet.

D. PointNet

Unordered point sets in 3D are usually considered to be
difficult to model by using DNNs. PointNet [15] is the first
paper using DNNs to model 3D point cloud data. PointNet
uses max pooling [25] to reduce the unordered and varying
length input to a fixed-length global feature vector make it
possible for end-to-end training. In our paper, we show that
PointNet can still be attacked using adversarial samples gen-
erated by the fundamental approach FGSM, and we propose
the Defense-PointNet to protect PointNet against adversarial
attacks.

E. t-SNE

The t-Distributed Stochastic Neighbor Embedding (t-
SNE) [20] that we used is a technique for dimensionality
reduction that is particularly well suited for the visualization of
high-dimensional datasets. The technique can be implemented
via Barnes-Hut approximations, allowing it to be applied on
large real-world datasets. t-SNE has been approved to be
able to apply on data sets with up to 30 million exam-
ples [26] [27] [28]. In this work, we use t-SNE to map our
high dimensional latent vectors to 2D space for visualization.
That helps us explain how our model affects the feature space
representations.



Fig. 2. The Architecture of Defense-PointNet

III. APPROACH

We first use FGSM to attack the PointNet. Then we propose
the architecture of our Defense-PointNet. We optimize the
parameters of our model by minimizing three loss functions:
the classifier loss, the discriminator loss, and the feature
extractor loss simultaneously.

A. Adversarial Point Clouds Generation

We generate adversarial point clouds by shifting points
using FGSM.

Our PointNet takes as input a mini-batch of real point clouds
x and its associated targets y. We then calculate the gradients
of that batch of point clouds and add the gradients to x to get
perturbed point clouds as adversarial samples xp as following:

xp = x+ ε∇x(θ, x, y).

By adding a small perturbation to the input point clouds x,
we get a new mini-batch of point clouds xp, which is shifted
slightly from x and we use xp as our adversarial point clouds.

B. Adversarial Training

In this part, we train our model on a mixture of clean and
adversarial samples. Specifically, for each iteration, we first
feed a mini-batch of real point clouds to the network, then
generate and feed the corresponding mini-batch of adversarial
point clouds alternatively.

C. Denfense-PointNet

We extend the adversarial training procedure by proposing
the Defense-PointNet. We split the PointNet into two parts.
The first part is the feature extractor and the second part is
the classifier. A discriminator is attached to the last layer of

the feature extractor. Figure 2 illustrates the architecture of the
Defense-PointNet.

The classifier is trained to classify each input correctly and
the feature extractor is trained to not only extract features for
the classifier but also fool the discriminator. The output of the
feature extractor is a 1024D latent vector. That latent vector is
the input of the discriminator, which is a two-layer network to
enforce an invariance across real samples and their adversarial
counterparts at the level of the latent representations. If a latent
vector is extracted from a real point cloud, it is labeled as
t = 0, and if it is extracted from an adversarial sample, then
it is labeled as t = 1. The discriminator is trained as a binary
classifier and it learns to output the probability of the input
latent vector’s tag is t = 0 .

We then use the response of the discriminator to train the
feature extractor. The feature extractor is trained to fool the
discriminator and try to mislead the discriminator to label
every real/adversarial vector as real (t = 0).

D. Loss Function

To optimize the parameters of Defense-PointNet, we design
three different loss functions respectively for the classifier,
the discriminator, and the feature extractor. We optimize these
three loss functions simultaneously during training.

Classifier Loss: Our first loss, Lcls, is the loss of the classifier.
The purpose of the classifier is for multi-class classification.
We use negative log likelihood as our loss function here as
the following equation:

Lcls(xpred, y) = − logP (y|xpred).



The inputs are the prediction vector xpred and the target y.
Notice that Lcls is used to update parameters in the entire
PointNet, including both the classifier and the feature extractor.

Discriminator Loss: Our second loss, Ldis, is the loss of
the discriminator. For every latent vector z, the discriminator
predicts the probability D(z) = P (t = 0|z) that z is from real
(t = 0). We use binary cross entropy for the discriminator loss
as following:

Ldis(D(z), t) =− 1

n

n∑
i=1

[ti log(D(z)i)+

(1− ti) log(1−D(z)i)].

For the real mini-batch, we use t = 0; for the adversarial
mini-batch, we use t = 1.

Feature Extractor Loss: The goal of our feature extractor is
not only to extract features for the classifier but also to fool
the discriminator. We use the response from the discriminator
to train the feature extractor. We use binary cross entropy loss
here for the feature extractor as same as what we use for Ldis,
the only difference is for Lfeat, we always use t = 0 for both
real and adversarial mini-batches. The loss function is shown
in the following equation:

Lfeat(D(z), t = 0) =− 1

n

n∑
i=1

[ti log(D(z)i)+

(1− ti) log(1−D(z)i)].

Lfeat is only used to update parameters in the feature extrac-
tor.

IV. EVALUATION

We evaluate our proposed approach quantitatively and qual-
itatively. We begin by introducing the dataset we use, then we
show the implementation details. Finally we show the results
of our model and compare our results with different baseline
approaches.

A. Dataset

To evaluate our approaches, we use ShapeNet dataset [19],
which is one of the most widely used benchmark datasets of
3D point clouds. It is a richly-annotated, large-scale repository
of shapes represented by 3D CAD models of objects. In our
evaluation, we use a subset, which contains 15,011 3D point
clouds belongings to 16 categories. We split the dataset to
80% training and 20% testing. This results in 12,137 samples
for training and 2,874 samples for evaluating. The training set
distribution is showed in Figure 3.

B. Implementation Details

Our approach was implemented in Pytorch [29] and trained
and tested on a Linux computer server with two Nvidia GTX
1080 GPUs. For the FGSM, we use ε = 0.1. We split the
PointNet into a feature extractor and a classifier. The classifier
is a combination of the last three fully connected layers of the

Fig. 3. Training Set Distribution

PointNet and we set the output dimension of FC3 to 16, which
is the number of the classes. Anything before the classifier in
the PointNet architecture is considered as the feature extractor.
The output of the feature extractor is a 1024D latent vector.
The discriminator is a combination of 2 linear layers which is
attached to the end of the feature extractor. The dimension of
the discriminator’s input is 1024 and the output dimension
is 2. We use softmax as the activation function to predict
the probability of the latent vector is real (t = 0). We use
Adam [30] as our optimizer and decay the learning rate of
each parameter group by γ = 0.5 every 20 epochs.

C. Classification Accuracy

We use simple training and adversarial training approaches
as our two baselines. Simple training means we train the
PointNet model only on real data (the original ShapeNet
data). For the adversarial training, we train the model on
the mixture of the original ShapeNet data and the adversarial
data generated by us used FGSM. We compare the evaluation
results of our approach with these two baselines, and our
experiments show the proposed Defense-PointNet outperforms
both of these two baselines on testing accuracy.

Table I shows the quantitative testing results on the three
compared models. The table reveals when evaluating these
approaches on the real samples, all of them achieve reason-
ably good performance (the accuracy between 93.04% and
96.62%). However, when testing on the adversarial samples,
the accuracy of the simple training approach decreases sig-
nificantly (from 96.96% to 86.57%). The adversarial training

TABLE I
ACCURACY ON TEST SET

Methods Acc. on real Acc. on adversarial
Simple Training 96.62% 86.57%

Adversarial Training 93.04% 94.92%
Defense-PointNet 94.08% 96.35%



Fig. 4. Top-K accuracy: In each subfigure, the horizontal axis stands for top-K (K in the range [1, 5]) and the vertical axis stands for top-K accuracy, which
means that the correct prediction gets to be in the top-K probabilities for it to count as correct. (left) Shows all three approaches have similar performance
when testing on real samples. (right) Shows our approach outperforms the other two baseline approaches when testing on adversarial samples.

Fig. 5. Two box plots, which show the prediction confidence of the proposed approach and the two baseline approach on the real (left) and adversarial (right)
samples.

slightly increases its accuracy to 94.92%, and the performance
of our approach is significantly improved to 96.35%. Figure 4
shows the top-1 to top-5 accuracy for all the three approaches
on both real and adversarial testing samples. The figure also
indicates our approach outperforms the other two baseline
approach when testing on adversarial samples.

Figure 4 (left) shows that our approach does not outperform
the simple training approach, but this results are based only
on real samples, not on adversarial samples. We expect our
model to achieve similar performance as the simple training
approach when evaluating on real samples only.

D. Prediction Confidence
One important thing we noticed that the proposed ap-

proach is not only able to maintain the accuracy level during

an adversarial attack but also able to keep the prediction
confident. Figure 5 shows the prediction confidence of the
proposed approach and the two baseline approaches on the
real and adversarial samples. The figure reveals that on the
real samples, the simple training approach generates the most
confident prediction results with the predicted probability be-
tween 0.99 to 1.0. The proposed approach produces the second
most confident prediction results (the predicted probability
between 0.97 to 1.0). The adversarial training approach has
the worst prediction confidence, which ranges between 0.9
to 1.0. However, when testing on the adversarial samples,
the prediction confidence of the simple training decreased
dramatically. The lowest prediction confidence dropped to
0.62, which original was 0.99 with the real samples. Similarly,



Fig. 6. Classification result of real car sample (left-top) and adversarial car
sample (left-bottom) of different methods.

Fig. 7. Classification result of real table sample (left-top) and adversarial
table sample (left-bottom) of different methods.

the prediction confidence of the adversarial training is also de-
creased significantly. Unlike the baseline models, the proposed
approach is able to maintain the prediction confidence at the
similar level.

We give two examples to show the prediction confidence.
Figure 6 reveals that when testing with the real car sample,
all the three models perform an almost perfect prediction.
However, when testing on the adversarial car sample, only
the proposed approach is able to maintain the prediction
confidence. Figure 7 indicates a similar result of the real table
sample and the adversarial sample.

E. Feature Space Visualizations

We visualize the 2-D t-SNE plots of 1024D latent vectors
extracted by simple training model in Figure 8 and Defense-
PointNet model in Figure 9. We can see that, for simple
training model, feature clusters of adversarial samples (Fig-
ure 8 right) are less separate and the overlap of different
classes causes the success of adversarial attack. Defense-
PointNet enhances intra-class compactness (Figure 9 right),
thereby reducing the feature cluster overlap, leading to a lower
adversary success for a bounded perturbation ε ≤ 0.1.

V. CONCLUSION

We introduced a novel approach for protecting PointNet
against adversarial attacks. In several critical experiments, we
demonstrated our proposed approach can significantly improve
the robustness against adversarial samples of PointNet, as well
as maintain the high prediction confidence. We also provided
a interpretation of how our model affects the feature space
representations by visualizing latent vectors. We hope this
work can be able to provide a baseline as well as a guideline
for future 3D adversarial attacks, defending strategies and
interpretability research.

ACKNOWLEDGEMENTS

We gratefully acknowledge the support of NSF CAREER
(IIS-1553116).

REFERENCES

[1] M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for con-
volutional neural networks,” in Proceedings of the 36th International
Conference on Machine Learning, 2019, pp. 6105–6114.

[2] H. Law and J. Deng, “Cornernet: Detecting objects as paired key-
points,” in Proceedings of the European Conference on Computer Vision
(ECCV), 2018, pp. 734–750.

[3] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234–241.

[4] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep
neural networks,” IEEE Transactions on Evolutionary Computation,
2019.

[5] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016,
pp. 2574–2582.

[6] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, 2017, pp. 39–57.

[7] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
in 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 2016,
pp. 582–597.

[8] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in International Conference on Learning Repre-
sentations, 2015.

[9] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,” in
International Conference on Learning Representations, 2014.

[10] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,” in
2016 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2016, pp. 372–387.

[11] R. Theagarajan, M. Chen, B. Bhanu, and J. Zhang, “Shieldnets: De-
fending against adversarial attacks using probabilistic adversarial ro-
bustness,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 6988–6996.

[12] P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-gan: Protect-
ing classifiers against adversarial attacks using generative models,” in
International Conference on Learning Representations, 2018.

[13] A. Erraqabi, A. Baratin, Y. Bengio, and S. Lacoste-Julien, “A3t: Adver-
sarially augmented adversarial training,” NeurIPS Machine Deception
Workshop, 2017.

[14] L. Deng, “The mnist database of handwritten digit images for machine
learning research [best of the web],” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 141–142, 2012.

[15] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 652–660.



Fig. 8. Two t-SNE plots, which visualize the feature cluster compactness of the simple training baseline approach. The real sample features (left) are more
separate while the adversarial samples (right) have more inter-class overlap.

Fig. 9. Two t-SNE plots, which visualize the feature cluster compactness of the Defense-PointNet approach. Our approach enhances intra-class compactness
which makes adversarial sample features (right) as separate as real sample features (left).

[16] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” in Advances in Neural
Information Processing Systems, 2017, pp. 5099–5108.

[17] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph cnn for learning on point clouds,” ACM
Transactions on Graphics (TOG), vol. 38, no. 5, p. 146, 2019.

[18] C. Xiang, C. R. Qi, and B. Li, “Generating 3d adversarial point clouds,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 9136–9144.

[19] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su et al., “Shapenet: An information-
rich 3d model repository,” arXiv preprint arXiv:1512.03012, 2015.

[20] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[21] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” ICLR Workshop, 2017.

[22] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting
adversarial attacks with momentum,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2018, pp. 9185–9193.

[23] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” International
Conference on Learning Representations, 2018.

[24] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavio-
lette, M. Marchand, and V. Lempitsky, “Domain-adversarial training of

neural networks,” The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 2096–2030, 2016.

[25] D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 3642–
3649.

[26] L. Van Der Maaten, “Accelerating t-sne using tree-based algorithms,”
The Journal of Machine Learning Research, vol. 15, no. 1, pp. 3221–
3245, 2014.

[27] L. Van der Maaten and G. Hinton, “Visualizing non-metric similarities
in multiple maps,” Machine learning, vol. 87, no. 1, pp. 33–55, 2012.

[28] L. Van Der Maaten, “Learning a parametric embedding by preserving
local structure,” in Artificial Intelligence and Statistics, 2009, pp. 384–
391.

[29] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference on Learning Representations, 2015.


	I Introduction
	II Related Work
	II-A Fast Gradient Sign Attack Method
	II-B Defense-GAN
	II-C A3T
	II-D PointNet
	II-E t-SNE

	III Approach
	III-A Adversarial Point Clouds Generation
	III-B Adversarial Training
	III-C Denfense-PointNet
	III-D Loss Function

	IV Evaluation
	IV-A Dataset
	IV-B Implementation Details
	IV-C Classification Accuracy
	IV-D Prediction Confidence
	IV-E Feature Space Visualizations

	V Conclusion
	References

