
b-Bit Sketch Trie: Scalable Similarity Search on
Integer Sketches

Shunsuke Kanda
RIKEN Center for Advanced Intelligence Project

Tokyo, Japan
shunsuke.kanda@riken.jp

Yasuo Tabei
RIKEN Center for Advanced Intelligence Project

Tokyo, Japan
yasuo.tabei@riken.jp

Abstract—Recently, randomly mapping vectorial data to
strings of discrete symbols (i.e., sketches) for fast and space-
efficient similarity searches has become popular. Such random
mapping is called similarity-preserving hashing and approximates
a similarity metric by using the Hamming distance. Although
many efficient similarity searches have been proposed, most of
them are designed for binary sketches. Similarity searches on
integer sketches are in their infancy. In this paper, we present
a novel space-efficient trie named b-bit sketch trie on integer
sketches for scalable similarity searches by leveraging the idea
behind succinct data structures (i.e., space-efficient data structures
while supporting various data operations in the compressed
format) and a favorable property of integer sketches as fixed-
length strings. Our experimental results obtained using real-
world datasets show that a trie-based index is built from integer
sketches and efficiently performs similarity searches on the index
by pruning useless portions of the search space, which greatly
improves the search time and space-efficiency of the similarity
search. The experimental results show that our similarity search
is at most one order of magnitude faster than state-of-the-art
similarity searches. Besides, our method needs only 10 GiB
of memory on a billion-scale database, while state-of-the-art
similarity searches need 29 GiB of memory.

Index Terms—Succinct Trie, Succinct Data Structures, Scalable
Similarity Search, Similarity-preserving Hashing

I. INTRODUCTION

The similarity search of vectorial data in databases has been
a fundamental task in recent data analysis, and it has various
applications such as near duplicate detection in a collection
of web pages [1], context-based retrieval in images [2], and
functional analysis of molecules [3]. Recently, databases in
these applications have become large, and vectorial data in
these databases also have been high dimensional, which makes
it difficult to apply existing similarity search methods to such
large databases. There is thus a strong need to develop much
more powerful methods of similarity search for efficiently
analyzing databases on a large-scale.

A powerful solution to address this need is similarity-
preserving hashing, which intends to approximate a similarity
measure by randomly mapping vectorial data in a metric space
to strings of discrete symbols (i.e., sketches) in the Hamming
space. Early methods include Sim-Hash for cosine similar-
ity [4], which intends to build binary sketches from vectorial
data for approximating cosine similarity. Quite a few similarity
searches for binary sketches have been proposed thus far [5]–
[11]. Recently, many types of similarity-preserving hashing

algorithms intending to build sketches of non-negative inte-
gers (i.e., b-bit sketches) have been proposed for efficiently
approximating various similarity measures. Examples are b-bit
minwise hashing (minhash) [12]–[14] for Jaccard similarity,
0-bit consistent weighted sampling (CWS) for min-max ker-
nel [15], and 0-bit CWS for generalized min-max kernel [16].
Thus, developing scalable similarity search methods for b-bit
sketches is a key issue in large-scale applications of similarity
search.

Similarity searches on binary sketches are classified into two
approaches: single- and multi-indexes. Single-index (e.g., [9],
[11]) is a simple approach for similarity searches and builds
an inverted index whose key is a sketch in a database and
value is the identifiers with the same sketch. The similarity
search for a query sketch is performed by generating all the
sketches similar to the query as candidate solutions and then
finding the solution set of sketches equal to a generated sketch
by retrieving the inverted index. Typically, the hash table
data structure is used for implementing the inverted index.
A crucial drawback of single-index is that the query time
becomes large for sketches with a large alphabet and a large
Hamming distance threshold because the number of generated
sketches is exponentially proportional to the alphabet size of
sketches and the Hamming distance threshold.

To overcome the drawback of the single-index approach,
the multi-index approach [17] has been proposed as a gener-
alization of single-index for faster similarity searches, and it
has been studied well for the past few decades [5]–[8], [10],
[18]. Multi-index divides input sketches into several blocks of
short sketches of possibly different lengths and builds inverted
indexes from the short sketches in each block, where the key
of an inverted index is a short sketch in each block, and its
value is the identifier of the sketch with the short sketch. As
in single-index, the inverted indexes are implemented using
a hash table data structure. The similarity search of a query
consists of two steps: filtering and verification. The filtering
step divides the query into several short sketches in the same
manner and finds short sketches similar to a short sketch of
the query in each block by retrieving the inverted index. After
that, the verification step removes false positives (i.e., a pair of
short sketches in a block is similar but the corresponding pair
of their original sketches is dissimilar) from those candidates
by computing the Hamming distance between the pair of

ar
X

iv
:1

91
0.

08
27

8v
1

 [
cs

.L
G

]
 1

8
O

ct
 2

01
9

every candidate and query in the verification step. Although
the candidate solutions for short sketches in each block are
generated in multi-index and are retrieved by the inverted
index as in single-index, the number of candidate solutions
generated in each block becomes smaller, resulting in faster
similarity searches especially when a large threshold is used.

Many methods using the multi-index approach have been
proposed for scalable similarity searches for binary sketches.
Although some recent methods [5], [10], [18] have suc-
cessfully improved the verification step in the multi-index
approach, they have a serious issue when applied to b-bit
sketches because the computation time of the filtering step
is exponentially proportional to the alphabet size (i.e., the
value of b) in b-bit sketches. Although Zhang et al. [19]
have tried to improve the filtering step for b-bit sketches,
their method has a scalability issue. Since many similarity
preserving hashing algorithms for b-bit sketches have been
proposed for approximating various similarity measures, an
important open challenge is to develop a scalable similarity
search for b-bit sketches.

Trie [20] is an ordered labeled tree data structure for a
set of strings and supports various string operations such
as string search and prefix search with a wide variety of
applications in string processing such as string dictionaries
[21], n-gram language models [22], and range query filtering
[23]. A typical pointer-based representation of trie consumes a
large amount of memory. Thus, recent researches have focused
on space-efficient representations [23]–[25]. To date, trie has
been applied only to the limited application domains listed
above. However, as we will see, there remains great potential
for a wide variety of applications.

Contribution: In this paper, we present a novel trie repre-
sentation for b-bit sketches, which we call b-bit Sketch Trie
(bST), to enhance the search performance of single-index
and multi-index. We design bST by leveraging a succinct
data structure [24] (i.e, a compressed data structure while
supporting fast data operations in the compressed format)
and a favorable property behind b-bit sketches as fixed-length
strings. Our similarity search method represents a database
of b-bit sketches in bST and solves the Hamming distance
problem for a given query by traversing the trie while pruning
unnecessary portions of the search space. We experimentally
test our similarity search using bST’s ability to retrieve massive
databases of b-bit sketches similar to a query and show
that our similarity search performs superiorly with respect to
scalability, search performance, and space-efficiency.

II. SIMILARITY SEARCH PROBLEM

We formulate the similarity search problem for b-bit
sketches. A b-bit sketch is an L-dimensional vector of integers,
each of which is within range [1, 2b], and it is also equivalent to
a string of length L over alphabet Σ = [1, 2b]. We also denote
elements in Σ (i.e., characters) by the small English letters
(e.g., a, b, and c) in the examples of this paper. A database of
b-bit sketches consists of n b-bit sketches s1, s2, . . . , sn, where
si ∈ ΣL. Given b-bit sketch q and threshold τ as a query, the

task of the similarity search is to report all the identifiers I
of b-bit sketches s1, s2, . . . , sn whose Hamming distance to
q is no more than τ , i.e., I = {i : ham(si, q) ≤ τ}, where
ham(·, ·) denotes the Hamming distance between two strings
(i.e., the number of positions at which the corresponding
characters between two strings are different).

III. RELATED WORKS

Many methods for similarity searches on binary sketches
have been proposed, and they are classified into two ap-
proaches: single- and multi-indexes. Theoretical aspects of
similarity search have also been argued [26]–[30]. The follow-
ing subsections review practical similarity search methods.

A. Single-Index Approach

Single-index (e.g., [9], [11]) is a simple approach for the
similarity search. This approach typically builds an inverted
index implemented using a hash table data structure. From a
database of sketches s1, s2, . . . , sn, it builds an inverted index
whose key is sketch si in the database and value is the set
of identifiers with the same sketch. The similarity search for
given query q and threshold τ is performed by generating the
set Q of all the sketches q′ similar to query q (i.e., Q = {q′ ∈
ΣL : ham(q, q′) ≤ τ}) and then finding the solution set I
of sketches equal to generated sketch q′ ∈ Q (i.e., I = {i :
∃q′ ∈ Q s.t. si = q′}) by retrieving the inverted index. Each
element in set Q is called signature, and single-index using the
hash table data structure is referred to as single-index hashing
(SIH).

The search time of SIH is evaluated by using the retrieval
time for the signatures in Q and access time for solution set
I (see Appendix A for detailed analysis), and it is linearly
proportional to L and exponentially proportional to τ and b.
Since the number of signatures can exceed that of sketches in
the database for large parameters b, L, and τ , a naive linear
search can be faster than SIH. In particular, for b > 1 (i.e., non-
binary sketches), the time performance is much more sensitive
to τ , resulting in difficulty in applying SIH to b-bit sketches
when a large τ is used.

B. Multi-Index Approach

The multi-index approach partitions sketch si for each
i = 1, 2, . . . , n in a database into m blocks (i.e., substrings)
s1i , s

2
i , . . . , s

m
i of lengths L1, L2, . . . , Lm, respectively. The m

blocks are disjoint. The approach builds inverted index Xj

using the j-th block sj1, s
j
2, . . . , s

j
n for each j = 1, 2, . . . ,m,

where the key of Xj is the j-th block sji for each i =
1, 2, . . . , n, and the value of Xj is the set of identifiers of
the original sketch with the same block sji .

A query is searched in two steps: filter and verification.
Given query sketch q and threshold τ , q is partitioned into m
blocks q1, q2, . . . , qm of lengths L1, L2, . . . , Lm, respectively.
Thresholds τ1, τ2, . . . , τm no more than τ are assigned to
m blocks. Note that τ j = bτ/mc for j = 1, 2, . . . ,m is
traditionally used to avoid false negatives on the pigeonhole
principle (e.g., [5], [19]). At the filter step, the set Cj

of candidate solutions for qj for each j = 1, 2, . . . ,m is
obtained by retrieving inverted index Xj . As in the single-
index approach, the set Qj of all the sketches similar to
qj (i.e. Qj = {q′ ∈ ΣL

j

: ham(qj , q′) ≤ τ j}) for each
j = 1, 2, . . . ,m is generated, and Cj is computed by retrieving
inverted index Xj for each q′ ∈ Qj . The verification step
removes false positives (i.e., {i : ham(si, q) ≥ τ, i ∈ Cj})
by computing the Hamming distance between the pair of
sketches si for each i ∈ Cj and query q. See Appendix A
for detailed analysis of the search performance of the multi-
index approach.

Quite a few similarity searches based on the multi-index
approach have been proposed. We briefly review some state-of-
the-art methods as follows. Gog and Venturini [5] proposed an
efficient multi-index implementation method, which exploits
succinct data structures [24] and triangle inequality. Qin et
al. [10] generalized the pigeonhole principle and proposed
a method that assigns variable thresholds τ j for each j =
1, 2, . . . ,m by considering the distribution of sketches. Qin
and Xiao [18] proposed the pigeonring principle to shorten the
verification time by exploiting the sum of thresholds assigned
to adjacent blocks and constraining the number of candidate
solutions (i.e., the size of Cj). The efficiency of the pigeonring
principle is verified for long sketches (e.g., L ≥ 256), enabling
the assignment of a sufficient number of blocks [18].

Multi-index hashing (MIH) [9] is a state-of-the-art multi-
index approach using the hash table data structure for imple-
menting an inverted index. MIH partitions sketches si into
m blocks of equal length (i.e., Lj = bL/mc) and assigns
threshold τ j = bτ/mc−1 to the first τ −mbτ/mc+1 blocks
and τ j = bτ/mc to the other blocks.

HmSearch [19] is a representative multi-index approach
originally designed for b-bit sketches. HmSearch partitions
sketches into blocks by using the pigeonhole principle where
the length of blocks is determined such that threshold τ j for
each block is zero or one. To avoid generating many signatures
at the filter step, HmSearch registers all the signatures gener-
ated from each sketch in a database to the inverted index,
resulting in a large memory consumption. Although many
similarity search methods applicable to b-bit sketches have
been proposed ([6], [7], [31]), Zhang et al. [19] show that
HmSearch performs best.

Despite the importance of similarity searches for b-bit
sketches, no previous work has been able to achieve both fast
similarity search and space-efficiency. The problem behind the
existing methods consists of (i) inefficient similarity searches
because of a large number of generated signatures, (ii) a large
verification cost in the multi-index approach, and (iii) a large
space consumption for storing multiple inverted indexes. We
solve this problem by presenting a trie-based similarity search
method and a space-efficient trie representation, named bST,
tailored for b-bit sketches. Our method with bST can be used
instead of the inverted index using the hash table data structure
in the single- and multi-index approaches. Since our method
solves the similarity search problem for b-bit sketches by
traversing the trie without signature generation, fast similarity

15 25 35 45 65 75 85 95

14 24 34 44 64 74 84

13 23 33 53 63 73

12 22 32

55

54

43

52 6242

2111 41

10

31

a b c d

a ab c da

a a a b c da

a

a

a b c

b

a

b a b

c

a c

c d

0

Given 𝑞 = aaaaa and 𝜏 = 1,
Ham = 0

0

0

0

0

1 1 1

1

1

1

2

1

1

1

1

2

3

4

5

2

3

1

1

2

2 3
c

2

d

3

4

5

3

4

5

2,6 9 3 1 10 4 5,7 8 11

Fig. 1. Illustration of a trie built from eleven 2-bit sketches of baabb,
aaaaa, baaaa, caaca, caacc, aaaaa, caacc, ddccc, abaab, bcbcb,
and ddddd. L = 5. Each leaf has the sketch ids associated with sketches. The
Hamming distance between query q = aaaaa and the prefix of each node
is represented by red/blue numbers. Solid circles (dashed circles) represent
traversed nodes (pruned nodes) for q and τ = 1.

searches can be performed even for a large threshold τ . Since
bST compactly stores a massive database of b-bit sketches,
bST enables scalable similarity searches. The details of the
proposed method are presented in the next sections.

IV. TRIE-BASED SIMILARITY SEARCH

A key idea behind our similarity search is to build bST
so that it supports data operations in the inverted index and
to solve the similarity search problem on b-bit sketches by
traversing bST for computing Hamming distances. bST can be
used instead of the inverted index in the single-index approach
and in the filtering step in the multi-index approach, which
result in a fast and space-efficient similarity search for b-bit
sketches. In this section, we first introduce a data structure of
trie and then present a similarity search on a trie using pointers
(PT).

A. Data Structure

Trie is an ordered labeled tree representing a set of sketches
(see Figure 1). Each node is associated with the common prefix
of a subset of input sketches, and the root node (i.e., the node
without a parent) is not associated with any prefix. Each leaf
(i.e., each node without any children) is associated with input
sketches of the same characters and contains their identifiers.
Each edge has a character of sketches as a label. All outgoing
edges of a node are labeled with distinct characters.

The set of prefixes at each level ` consists of substrings of
length ` and is assumed to be lexicographically sorted in as-
cending order. Each node (represented by solid/dashed circles
in Figure 1) is associated with the unique node identifier (id)
that is represented as notation u` by level ` and lexicographic
order u of the prefix from left to right at level `. Note that
level ` is in [0, L], i.e., the root id is 10. The u-th prefix at
level ` is denoted by str(u`).

Algorithm 1 Similarity search. q: query sketch, τ : Hamming
distance threshold, u`: u-th node at level ` in PT, dist: the
Hamming distance at u` for q, and I: solution set of ids.

1: Initialize I ← ∅
2: SIMSEARCH(10, 0)
3: procedure SIMSEARCH(u`, dist)
4: if dist > τ then . Hamming distance is more than τ
5: return
6: end if
7: if ` = L then . Reach leaf node
8: Add the ids associated with u` to I
9: return

10: end if
11: Compute the set K of pairs (v`+1, c) by children(u`)
12: for each pair (v`+1, c) in K do
13: if c 6= q[`+ 1] then
14: SIMSEARCH(v`+1, dist+ 1)
15: else
16: SIMSEARCH(v`+1, dist)
17: end if
18: end for
19: end procedure

For the trie in Figure 1, node 33 represents the lexicographic
order of str(33) = baa, which is the third node by following
str(13) = aaa and str(23) = aba.

B. Similarity Search

The similarity search for query sketch q and threshold τ
on a trie represented by PT is performed by traversing the
trie from root 10 to every leaf uL in a depth-first manner
while computing the Hamming distance between q and the
prefix at each node. Algorithm 1 shows the pseudo-code of
the similarity search on PT. First, we initialize solution set I
to an empty set. We start at root u` = 10 on PT and distance
count dist = 0. The similarity search is recursively performed
by the following three steps: (i) given node u`, we compute
children(u`) that is a function returning set K of all the pairs
(v`+1, c) of child v`+1 and edge label c connecting u` and
v`+1, (ii) we recursively go down to each child v`+1 in K if
ham(str(v`+1), q[1..(`+ 1)]) is no more than τ , where q[i..j]
denotes the substring q[i]q[i + 1] . . . q[j] for 1 ≤ i ≤ j ≤ L,
and (iii) if v`+1 is a leaf, we add the ids associated with v`+1

to solution set I . In step (ii), we stop going down to all the
descendants under node v`+1 if ham(str(v`+1), q[1..(`+ 1)])
is more than τ without missing all the solutions.

Let ttra be the number of traversed nodes. The time
complexity is O(ttra + |I|), where |I| denotes the cardinality
of set I . Let t be the number of nodes in a trie. ttra can
be much smaller than t when a small threshold τ is used.
However, the space complexity is O(t log t + t · b) bits, and
it is not feasible for PT to represent tries built from massive
databases.

A crucial observation of the similarity search in Algorithm 1
is that trie should support the children operation for the

implementation. Thus, we present bST supporting children
for the scalable similarity search in the next section.

C. Review on Succinct Tries
A solution for compactly representing tries is to leverage

succinct trie representations. We review two representative
succinct tries in this subsection.

Level-order unary degree sequence trie (LOUDS-trie) [24],
[25] is a succinct representation for tries and has a wide variety
of applications (e.g., [32], [33]). LOUDS-trie represents a trie
using (b + 2) · t + o(t) bits of space, which is much smaller
than O(t log t + t · b) bits of space for PT, while supporting
trie operations (e.g., computations of a child or the parent for
a node) in constant time. Fast succinct trie (FST) [23] is a
practical variant of LOUDS-trie. FST consists of two LOUDS
structures: one is fast and the other is space-efficient. FST
divides a trie into two layers at a certain level and builds the
fast structure at the top layer and the space-efficient structure
at the bottom layer. Although the space and time complexities
of FST are the same as those of LOUDS-trie, FST is smaller
and much faster in practice due to the layer-wise representation
of trie.

LOUDS-trie and FST are not effective to manage b-bit
sketches because they are designed for general strings and
do not consider the favorable properties of b-bit sketches
(e.g., strings of fixed-length L and the fixed-size 2b of each
character). In the next section, we present a novel trie rep-
resentation bST, which is designed for storing b-bit sketches
space-efficiently.

V. b-BIT SKETCH TRIE (bST)
In this section, we present bST, a space-efficient represen-

tation of trie for large sets of b-bit sketches, that supports the
children function for scalable similarity searches. The bST de-
sign leverages an idea behind data distribution of b-bit sketches
and succinct data structures [24], which are compressed data
structures while supporting various data operations in the
compressed format.
b-bit sketches are random strings such that the character at

each position is equally distributed. This is a major difference
from strings in the natural language where a character in each
position appears with a bias. Thus, a trie built from b-bit
sketches has the property that the higher the level the trie nodes
are at, the more children they have. We design a compact trie
representation as bST by leveraging this property.

The key ideas behind bST are (i) to divide a trie topology
into three layers including subtries from the top level to the
bottom level according to node density, where the node density
in a layer is defined as the proportion of the number of nodes
at the top level to the number of nodes at the bottom level,
and (ii) to apply an optimal encoding into each set of subtries
in each layer (see Figure 2).

Formally, `1 (`2) is the top level (the bottom level) in a
layer, and `1 < `2. The node density D(`1, `2) in the layer
from `1 to `2 is defined as

D(`1, `2) =
t`2
t`1
, (1)

ℓ" = 1

ℓ% = 3

15 25 35 45 65 75 85 95

14 24 34 44 64 74 84

13 23 33 53 63 73

12 22 32

55

54

43

52 6242

2111 41

10

31

a b c d

a ab c da

a a a b c da

a

a

a b c

b

a

b a b

c

a c

c d

c d

Middle
Layer

Sparse
Layer

Dense
Layer

𝐿 = 5

Fig. 2. Illustration of the division of a trie topology into three layers of dense,
middle, and sparse layers.

where t`1 (t`2) is the number of nodes in the top level `1 (the
number of nodes in the bottom level `2). The layers consist
of (i) dense layer, (ii) sparse layer, and (iii) middle layer
and are determined according to node densities as follows:
(i) the dense layer is a layer from the top level (i.e., level
` = 0) to the maximum level `m satisfying density condition
D(0, `m) = 2b`m for given b, (ii) the sparse layer is a layer
from the bottom level L (i.e., all the nodes are leaves at level
L) to the minimum level `s (≥ `m) satisfying density condition
D(`s, L) < λ for parameter λ ∈ (0, 1), and (iii) the middle
layer is the remaining layer except for the dense and sparse
layers (i.e., the layer between level `m to level `s).

We present novel compact representations for subtries in
dense, sparse, and middle layers in the following subsections.

Rank and Select Data Structures: bST leverages rank and
select data structures [24] that are succinct data structures on
a bit array and supports rank and selection operations on bit
array B of length N as follows:
• rank(B, i) returns the number of occurrences of bit 1 in
B[1..i].

• select(B, i) returns the position in B of the i-th occur-
rence of bit 1; however, if i exceeds the number of 1s in
B, it always returns N + 1.

Given a bit array B = [01101011], rank(B, 5) = 3 and
select(B, 4) = 7.

The operations can be performed in O(1) time by using
auxiliary data structures of only o(N) additional bits [24]. In
our experiments, we implemented rank and select using the
succinct data structure library [34].

A. Representation for Dense Layer

The dense layer between level 0 and level `m includes a
complete 2b-ary trie of height `m and with 2b`m leaves. A
characteristic property of the complete 2b-ary trie is that we
can compactly represent it by storing only level information
`m rather than complete information on the trie such as
topology and edge labels. Thus, the space usage for storing a
complete 2b-ary trie with height `m is O(log `m).

Given node u` such that ` < `m, children(u`) computes
2b pairs (v`+1, c) of children v`+1 and edge labels c. The

1 2 3 4

H2 1 1 0 0

5 6 7 8

1 0 1 0

9

1 0 0 0 0 0 0 1
a b c d a b c d a b c d a b c d

children(21) = {(32, a), (42, c)} is computed as follows:
i. Compute range [5, 8] as (2–1)⋅4+1 = 5 and 2⋅4 = 8

ii. Compute the number of 1s at position (5-1) as rank(H2, 5-1) = 2
iii. Compute the number of 1s at position 8 as rank(H2, 8) = 4
iv. Compute pair (32, a) as select(H2, 3) mod 4 = 5 mod 4 = a, and

pair (42, c) as select(H2, 4) mod 4 = 7 mod 4 = c

13 14 15 1610 11 12

(the range [5,8] corresponds to the children of node 21)

Fig. 3. Illustration of TABLE representation for nodes at level 2 of the trie
in Figure 2 and computation example of children(21).

operation returns {((v + 1)`+1, 1), ((v + 2)`+1, 2), . . . , ((v +
2b)`+1, 2

b)} where v = (u− 1) · 2b.
For the trie in Figure 2, children(10) returns {(11,a),

(21,b), (31,c), (41,d)}. This is because children(10) is
computed as {(11, 1), (21, 2), (31, 3), (41, 4)}, and 1, 2, 3,
and 4 correspond to a, b, c, and d, respectively.

B. Representation for Middle Layer

The middle layer includes dense and sparse nodes. We
present two representations of TABLE and LIST for the nodes
at the middle layer. Either TABLE or LIST is adaptively
selected according to the node density at each level and is
applied to the nodes.

TABLE Representation: We use bit array H` of length 2b ·
t`−1 for compactly representing the nodes at level ` ∈ [`m +
1, `s]. The ((u−1) ·2b+c)-th position on H` (i.e., H`[(u−1) ·
2b+ c]) is 1 if and only if each node u`−1 at level `−1 has a
child with edge label c. Thus, each position on H` represents
whether there exists edge label c connecting from node u`−1
at level `− 1 to a child at level `.

Array H2 in Figure 3 shows the TABLE representation of
nodes at level 2 of the trie in Figure 2. Node 21 in the trie has
edge labels of a and c connecting 21’s children of 32 and 42,
respectively. Thus, the first and second positions in H2 are 5
and 7, respectively.

Given node u`−1, children(u`−1)(= K) is computed as
follows: (i) compute range [i, j] on H` as i← (u− 1) · 2b + 1
and j ← u·2b, (ii) compute the number of 1s at position (i−1)
as x ← rank(H`, i − 1) if i > 1 or x ← 0 otherwise, (iii)
compute the number of 1s at position j as y ← rank(H`, j),
and (iv) compute the set K of pairs of child id v` and edge
label c as c← select(H`, v) mod 2b for all v ∈ [x+ 1, y].

The algorithm is made possible because range [i, j] cor-
responds to the children of u`−1, and there is a 1-to-1
correspondence between the 1s on H`[i..j] and the children
of u`−1.

The bottom of Figure 3 shows an example for computing
children(21). In this example, 2b = 4. Given node 21, range
[i, j] is computed as i← (2−1) ·4+1 = 5 and j ← 2 ·4 = 8.
The number of 1s at the fourth position is computed as
x ← rank(H2, 5 − 1) = 2. The number of 1s at the eighth
position is computed as y ← rank(H2, 8) = 4. Pair (32,a)
in K is computed as x + 1 = 3 and select(H2, 3) mod

1

C3 a

B3 1

2

a

1

3

a

1

4

b

1

6 7

c d

1 0

5

a

1

children(62) = {(63, c), (73, d)} is computed as follows:
i. Compute range [6, 7] as select(B3, 6) = 6 and select(B3, 6+1)–1 = 7
ii. Compute pairs (63, C3[6]) = (63, c) and (73, C3[7]) = (73, d)

Fig. 4. Illustration of LIST representation for nodes at level 3 of the trie in
Figure 2 and computation example of children(62).

4 = 5 mod 4 = a, and pair (42,c) in K is computed as
y = 4 and select(H2, 4) mod 4 = 7 mod 4 = c. Thus,
K = {(32,a), (42,c)}.

The space usage of TABLE for nodes at level ` is 2b ·t`−1+
o(2b · t`−1) bits.

LIST Representation: LIST represents nodes at level ` ∈
[`m + 1, `s] using array C` of length t` and bit array B` of
length t`. For each node u` at level `, C`[u] stores the edge
label between u` and its parent. B`[u] stores bit 1 (i.e., B`[u] =
1) if u` is the first of its siblings (i.e., u is the smallest id for
its siblings) or bit 0 otherwise. Arrays C3 and B3 in Figure 4
are the LIST representation at level 3 of the trie in Figure 2.

Given node u`−1, children(u`−1)(= K) is computed as
follows: (i) compute range [i, j] on C` and B` as i ←
select(B`, u) and j ← select(B`, u+ 1)−1 and (ii) compute
the set K of pairs of child id v` and edge label c as c← C`[v]
for all v ∈ [i, j].

The bottom of Figure 4 shows an example for comput-
ing children(62). K = {(63,c), (73,d)}. Given node 63,
range [i, j] is computed as i ← select(B3, 6) = 6 and
j ← select(B3, 7) − 1 = 7. Pairs (63,c) and (73,d) in K
are computed as C3[6] = c and C3[7] = d, respectively.

The space usage of LIST for nodes at level ` is (b+1) ·t`+
o(t`) bits. When all t nodes are represented by LIST, the space
usage is

∑L
`=1{(b+1) ·t`+o(t`)} = (b+1) ·t+(t) bits and is

more space-efficient than the LOUDS-trie of (b+ 2) · t+ o(t)
bits of space.

Selection of TABLE and LIST Representations: Either the
TABLE representation or LIST representation is adaptively
applied to the series of nodes according to node density (Eq.
1) at each level. For the selection, we ignore the auxiliary
spaces for rank and select because they are negligible. Since
the space usages for the TABLE representation (the LIST rep-
resentation) at level ` are 2b ·t`−1 ((b+1)·t`), we use threshold
2b/(b+ 1) for the node density. If D(`− 1, `) > 2b/(b+ 1),
TABLE is more space efficient and is applied; otherwise, LIST
is applied.

C. Representation for Sparse Layer

The sparse layer between level `s and level L includes a set
of subtries, each of which has a height of L− `s. We collapse
the subtries into their root-to-leaf paths and handle them as
strings rather than trie structures. The representation for the
sparse layer uses two arrays of P and D. P is an array of length
(L− `s) · tL such that P[(L− `s) · (v − 1) + 1..(L− `s) · v]
stores the edge labels on the path from the root in the subtrie

1 2

P a a

1

D 1

5 6 7 8

a a b b

3 4

1 0

3 4

a b

2

1

9

c b

5

1

c a c c

6 7

1 0

c c

8

1

d d

9

1

10 11 12 13 14 15 16 17 18

Paths from node 53 to leaves 65 and 75 are restored as follows:
i. Compute leaf id range [6, 7] as select(D, 5) = 6 and select(D, 5+1)–1 = 7
ii. Restore path ca from node 53 to leaf 65 as P[(6–1)⋅2+1..6⋅2] = P[11..12] = ca
iii. Restore path cc from node 53 to leaf 75 as P[(7–1)⋅2+1..7⋅2] = P[13..14] = cc

Fig. 5. Representation of subtries in sparse layer of the trie in Figure 2.

s 0 0 0 1 1 1

a b d

q 0 0 1 0 1 1

a c d

s’ 0 0 1 0 1 1 q’ 0 1 1 0 0 1

s’ [1] s’ [2] q’ [1] q’ [2]

vertical
format

Fig. 6. Illustration of the sketches s′ and q′ in vertical format for 2-bit
sketches of length 3. s = abd, and q = acd.

containing leaf vL. D is a bit array of length tL such that
D[v] stores 1 if and only if leaf vL is the leftmost leaf in the
subtrie. Figure 5, which shows arrays P and D, is an example
of the representation for the sparse layer.

The paths from a given node u`s to the leaves can be
restored using the select operation on D in the following four
steps: (i) i← select(D, u), (ii) j ← select(D, u+1)−1, (iii)
compute P[(L− `s) · (i− 1) + 1..(L− `s) · j], and (iv) return
subarrays of P[(L− `s) · (i− 1) + 1..(L− `s) · j] and of every
length (L− `s) as the paths. Leaf ids of the subtrie with root
u`s are computed as vL for v ∈ [i, j].

Figure 5 shows an example of restoring the paths ca and
cc from node 53 to leaves 65 and 75, respectively. Given node
53, i ← select(D, 5) = 6 and j ← select(D, 6) − 1 = 7 are
computed. Leaf ids of the subtrie with root 53 are 65 and 75. In
this example, L−`s = 5−3 = 2. The path from root 53 to leaf
65 is P[(2·(6−1)+1)..(2·6)] = P[11..12] = ca. The path from
root 53 to leaf 75 is P[(2·(7−1)+1)..(2·7)] = P[13..14] = cc.

After restoring paths in a subtrie by using P and D, we can
simulate traversing the subtrie by computing the Hamming
distance between the query and the paths. Therefore, the fast
computation of ham is crucial in the sparse layer, which is
explained in the next paragraph.

Hamming Distance Computation Approach: Let us consider
computing ham(s, q) for b-bit sketches s and q, each of length
L. When the operation is naively performed by comparing s
and q character by character, the computation time is O(L).

Zhang et al. [19] proposed a faster computation approach by
exploiting a vertical layout and the bit-parallelism offered by
CPUs. For this approach, we consider the binary representation
of a character in sketches, e.g., a = 00, b = 01, c = 10, and
d = 11 for b = 2. The approach encodes s into s′ in a vertical
format, i.e., the i-th significant L bits of each character of s
are stored in s′[i] of consecutive L bits. The resulting s′ is an

array of length b in which each element is in L bits. Figure 6
shows an example of 2-sketches each of length 3, which are
represented in the vertical format.

Given sketches s′ and q′, we can compute ham(s, q) as
follows. Initially, we prepare a bitmap bits of L bits in which
all the bits are set to 0. For each i = 1, 2, . . . , b, we iteratively
perform bits ← bits ∨ (s′[i] ⊕ q′[i]), where ∨ and ⊕ denote
bitwise OR and XOR operations, respectively. For the resulting
bits, popcnt(bits) is the same as ham(s, q), where popcnt
counts the number of 1s and belongs to the instruction sets
of any modern CPU. For example, for s′ and q′ in Figure 6,
the resulting bits becomes 010 as (s′[1] ⊕ q′[1]) ∨ (s′[2] ⊕
q′[2]) = (001⊕ 011) ∨ (011⊕ 001) = 010 ∨ 010 = 010.
popcnt(010) is the same as ham(abd,acd) (i.e., one). The
operations ∨, ⊕, and popcnt can be performed in O(1) time
per machine word. Let w be the machine word size; we can
compute ham(s, q) in O(bdL/we) time.

We conducted preliminary experiments to compare the com-
putation speeds of the naive and vertical-format approaches.
From the result for 32-dimensional 4-bit sketches, the com-
putation time of the vertical-format approach was more than
an order of magnitude faster than that of the naive approach.
Therefore, we apply the vertical-format approach to P repre-
sentation.

VI. EXPERIMENTS

In this section, we demonstrate the effectiveness of similar-
ity searches using bST through experiments using real-world
datasets. The source code implementing our bST is available
at https://github.com/kampersanda/integer sketch search.

A. Setup

We used four real-world datasets as shown in Table I.
Review is 12,886,488 book reviews in English from Amazon
[35]. We eliminated the stop words from the reviews and
then represented each of reviews as a 9,253,464 dimensional
fingerprint where each dimension of the fingerprint represents
the presence or absence of a word. We used b-bit minhash
[14] to convert each binary vector into a 2-bit sketch of 16
dimensions. CP consists of 216,121,626 compound-protein
pairs each of which is represented as a binary vector of
3,621,623 dimensions. We used b-bit minhash to convert each
binary vector into a 2-bit sketch of 32 dimensions. SIFT
consists of 128 dimensional SIFT descriptors built from the
BIGANN dataset [36] of one billion images. We used 0-
bit CWS [15] to convert each feature into a 4-bit sketch
of 32 dimensions. GIST consists of 384 dimensional GIST
descriptors built from 79,302,017 tiny images [37]. We used
0-bit CWS to convert each descriptor into a 8-bit sketch of 64
dimensions. Following [14], [16], we used parameter settings
of b = 2 for b-bit minhash and b = 4 or 8 for 0-bit CWS.

We randomly sampled 1,000 vectors from each dataset for
queries. We evaluated the search time for τ in the range from 1
to 5 and chose parameters L for each dataset in consideration
of the number of solutions obtained. Table II shows the average

TABLE I
SUMMARY OF DATASETS.

n Hashing L b

Review 12,886,488 b-bit minhash 16 2
CP 216,121,626 b-bit minhash 32 2
SIFT 1,000,000,000 0-bit CWS 32 4
GIST 79,302,017 0-bit CWS 64 8

TABLE II
AVERAGE NUMBER OF SOLUTIONS.

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5

Review 12 28 181 1,273 7,671
CP 418 622 1,473 2,831 5,201
SIFT 174 1,057 5,603 26,840 111,727
GIST 168 1,664 10,787 51,085 189,188

number of solutions for each τ , and a substantial number of
solutions are obtained.

We conducted all experiments on one core of quad-core
Intel Xeon CPU E5–2680 v2 clocked at 2.8 Ghz in a machine
with 256 GB of RAM, running the 64-bit version of CentOS
6.10 based on Linux 2.6.

B. Comparison of Succinct Tries

We compared bST with the state-of-the-art succinct tries of
LOUDS-trie and FST in combination with the single-index
approach. LOUDS-trie was implemented using the TX library
downloadable from https://github.com/hillbig/tx-trie, and FST
was implemented using the SuRF library downloadable from
https://github.com/efficient/SuRF. Since the single-index ap-
proach needs the inverted index for similarity searches, it
enables us to fairly evaluate the search performance and space
usage of data structures for implementing an inverted index.
Thus, we evaluated the performance of similarity searches
on single-index using a succinct trie on each dataset. We
fixed parameter λ = 0.5. Parameters `m and `s were used
as (`m, `s) = (8, 11) for Review, (`m, `s) = (9, 14) for CP,
(`m, `s) = (0, 21) for SIFT, and (`m, `s) = (0, 49) for GIST.

LOUDS-trie and FST were applicable to sketches whose
length was less than 232 because of the implementation issues
with the TX and SuRF libraries, respectively. Thus, they were
not applicable to SIFT whose length was 32 billion.

Table III shows the experimental results of search time and
space usage. bST was much faster than LOUDS-trie and FST
by a large margin. bST was at most 6.2 times faster than
LOUDS-trie and was at most 3.8 times faster than FST on
Review. bST was at most 5.0 times faster than LOUDS-trie
and was at most 4.4 times faster than FST on CP. bST was
much more space-efficient than LOUDS-trie and FST. bST
was 2.6 times smaller than LOUDS-trie and was 1.9 times
smaller than FST on Review. bST was 2.4 times smaller than
LOUDS-trie and was 1.8 times smaller than FST on CP.

Those results show that bST as an engineered representation
for b-bit sketches was much more efficient than LOUDS-trie
and FST with respect to search performance and space usage.

https://github.com/kampersanda/integer_sketch_search
https://github.com/hillbig/tx-trie
https://github.com/efficient/SuRF

TABLE III
AVERAGE SEARCH TIME IN MILLISECONDS PER QUERY AND SPACE USAGE

IN MEBIBYTES (MIB) OF SUCCINCT TRIE. THE FASTEST TIME AND
SMALLEST SPACE ARE IN BOLD.

Review
τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 Space

bST 0.006 0.05 0.37 2.0 8.3 9
LOUDS 0.036 0.32 2.23 11.6 45.2 24
FST 0.021 0.19 1.42 7.7 31.5 18

CP
τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 Space

bST 0.019 0.14 0.88 4.9 23 308
LOUDS 0.090 0.67 4.37 23.1 99 741
FST 0.084 0.60 3.88 20.0 82 548

SIFT
τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 Space

bST 0.22 3.4 30 171 690 6,082
LOUDS – – – – – –
FST – – – – – –

GIST
τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 Space

bST 0.32 3.8 26 105 304 1,072
LOUDS 0.75 9.5 65 279 905 1,329
FST 0.53 7.0 49 206 633 1,163

bST was the only method applicable to SIFT. The similarity
search performance for bST is shown in the next subsection.

C. Comparison of Similarity Search Methods

We compared single-index and multi-index using bST with
representative similarity search methods of SIH, MIH, and
HmSearch. Single-index and multi-index using bST for imple-
menting an inverted index are referred to as SI-bST and MI-
bST, respectively. HmSearch is the state-of-the-art similarity
search for b-bit sketches and is reviewed in Section III.

SIH and MIH are single-index and multi-index using the
hash table for implementing an inverted index, respectively.
Since SIH and MIH were designed for binary sketches (i.e.,
b = 1) as in [9], we modified them for integer sketches (i.e.,
b > 1). Since the similarity search of SIH with large τ and b
took a large amount of time, we limited the execution time to
within 10 seconds per query.

The implementations of SIH and MIH are also contained in
our library. The implementation of HmSearch is available at
https://github.com/kampersanda/hmsearch.

For MI-bST and MIH, we tested the number of blocks m ∈
{2, 3, 4} for each threshold τ and chose the best value of m
achieving the fastest similarity search. MI-bST with m = 2
was the fastest for all pairs of datasets and thresholds. MIH
with m = 3 was the fastest for τ ∈ [4, 5] on GIST, and MIH
with m = 2 was the fastest for the other pairs.

Figure 7 shows the average similarity search time in mil-
liseconds (ms) per query for each method. Since SIH had been
designed for binary sketches, its performance was evaluated
only with them [9], [11]. In contrast, when integer sketches
were used, SIH did not perform well even for small τ for each
dataset. SIH did not finish within 10 seconds for a τ of no less

TABLE IV
SPACE USAGE OF SIMILARITY SEARCH METHOD IN MIB. THE SMALLEST

SPACE USAGE IS IN BOLD.

Review CP SIFT GIST

SI-bST 48 1,057 9,802 1,338
MI-bST (m = 2) 126 3,232 23,159 5,513
SIH 172 2,329 32,727 4,501
MIH (m = 2) 125 4,633 28,876 6,128
MIH (m = 3) 160 3,997 26,665 5,744
HmSearch (τ = 1, 2) 866 53,097 – 48,456
HmSearch (τ = 3, 4) 860 29,396 – 27,337
HmSearch (τ = 5) 860 28,866 – 25,305

than four on SIFT and no less than two on GIST because the
large numbers of signatures were generated on those datasets.

Although MIH had also been designed for binary sketches
as well as SIH, it performed well for large τ in contrast to
SIH. On the other hand, MIH was slower than SIH for small
τ (e.g., τ = 1) on each dataset.

Although HmSearch was a similarity search on the multi-
index approach with engineered assignments of the number of
blocks and thresholds, it was slower than MIH on Review, CP,
and GIST. In addition, the space usage of HmSearch exceeded
the memory limitation of 256 GB on SIFT. Those results on
b-bit sketches were consistent with those results on binary
sketches, which were shown in [38].

For each τ ≤ 4, SI-bST was the fastest among all the
methods on each dataset, while only SIH was competitive
compared to SI-bST for τ = 1 on Review and SIFT. For τ = 5,
MI-bST and MIH were the fastest and competitive except on
GIST, while SI-bST was the fastest on GIST. The results show
our SI-bST and MI-bST were the fastest for similarity searches
on huge datasets of b-bit sketches.

Table IV shows the experimental results of space-efficiency.
HmSearch, MIH, and MI-bST were similarity searches on the
multi-index approach. HmSearch consumed a large amount of
memory and consumed approximately 860 MiB memory for
Review, more than 256 GiB memory for SIFT, and at least 25
GiB memory for GIST. MIH was more space-efficient than
HmSearch, but MIH’s space-usage was problematic for large
datasets. In particular, MIH consumed more than 26 GiB of
memory for SIFT and more than 5.7 GiB of memory for GIST.
MI-bST was the most space-efficient among all methods on the
multi-index approach for each dataset. MI-bST consumed 3.2
GiB for CP, 23 GiB for SIFT, and 5.4 GiB for GIST. Although
SIH was a similarity search on the single-index approach, SIH
was not space-efficient, and it consumed 2.3 GiB for CP , 32
GiB for SIFT, and 4.5 GiB for GIST. SI-bST was the most
space-efficient among all the methods for each dataset. SI-bST
consumed only 1.0 GiB for CP, 9.6 GiB for SIFT, and 1.3 GiB
for GIST.

For thresholds τ ≤ 4, the results of the comparison of
similarity searches showed that SI-bST was the best among
all the methods in terms of search time and space usage. For
τ = 5, MI-bST can be used instead of SI-bST for fast and
space-efficient similarity searches.

https://github.com/kampersanda/hmsearch

>10s

>10s >10s
>10s >10s >10s >10s 36s

Fig. 7. Average search time in milliseconds per query (log scale). The bars denote SI-bST (red), MI-bST (blue), SIH (purple), MIH (gray), and HmSearch
(yellow) starting from the left. The upper limit of results the figure plots is 10 seconds since we aborted the similarity search process of SIH if the time
exceeds 10 seconds. Other than SIH, only the result of HmSearch for GIST when τ = 5 exceeded 10 seconds (it was 36 seconds).

VII. CONCLUSION

We presented bST, a novel succinct representation of trie for
fast and space-efficient similarity searches on b-bit sketches.
Our experimental results using real-world datasets demon-
strated that bST outperformed other state-of-the-art succinct
tries in terms of search time and memory.

Subsequently, we presented SI-bST and MI-bST, single-
index and multi-index using bST implementing an inverted
index. Our experimental results demonstrated that SI-bST was
the fastest for thresholds τ ≤ 4. For τ = 5, MI-bST was the
alternative to SI-bST. In addition, the space-efficiency of SI-
bST was the best among all the methods, and it consumed 10
GiB of memory for storing a billion-scale database, while a
state-of-the-art method consumed 29 GiB of memory.

REFERENCES

[1] M. Henzinger, “Finding near-duplicate web pages: a large-scale evalu-
ation of algorithms,” in Proceedings of the 29th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, 2006, pp. 284–291.

[2] J. Song, Y. Yang, Y. Yang, Z. Huang, and H. T. Shen, “Inter-media
hashing for large-scale retrieval from heterogeneous data sources,” in
Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, 2013, pp. 785–796.

[3] J.-I. Ito, Y. Tabei, K. Shimizu, K. Tsuda, and K. Tomii, “PoSSuM: a
database of similar protein–ligand binding and putative pockets,” Nucleic
Acids Research, vol. 40, pp. D541–D548, 2012.

[4] A. Gionis, P. Indyk, R. Motwani, and Others, “Similarity search in
high dimensions via hashing,” in Proceedings of the 25th International
Conference on Very Large Data Bases (VLDB), vol. 99, no. 6, 1999, pp.
518–529.

[5] S. Gog and R. Venturini, “Fast and compact Hamming distance index,”
in Proceedings of the 39th International ACM SIGIR Conference on
Research and Development in Information Retrieval, 2016, pp. 285–
294.

[6] A. X. Liu, K. Shen, and E. Torng, “Large scale hamming distance query
processing,” in Proceedings of the 27th International Conference on
Data Engineering (ICDE), 2011, pp. 553–564.

[7] G. S. Manku, A. Jain, and A. Das Sarma, “Detecting near-duplicates for
web crawling,” in Proceedings of the 16th International Conference on
World Wide Web (WWW), 2007, pp. 141–150.

[8] M. Norouzi, A. Punjani, and D. J. Fleet, “Fast search in hamming space
with multi-index hashing,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2012, pp. 3108–
3115.

[9] ——, “Fast exact search in hamming space with multi-index hash-
ing,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 36, no. 6, pp. 1107–1119, 2014.

[10] J. Qin, Y. Wang, C. Xiao, W. Wang, X. Lin, and Y. Ishikawa, “GPH:
Similarity search in Hamming space,” in Proceedings of the 34th
International Conference on Data Engineering (ICDE), 2018.

[11] A. Torralba, R. Fergus, and Y. Weiss, “Small codes and large image
databases for recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2008, pp. 1–8.

[12] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig, “Syntactic
clustering of the Web,” Computer Networks and ISDN Systems, vol. 29,
no. 8, pp. 1157–1166, 1997.

[13] M. Theobald, J. Siddharth, and A. Paepcke, “Spotsigs: robust and effi-
cient near duplicate detection in large web collections,” in Proceedings
of the 31st Annual International ACM SIGIR conference on Research
and Development in Information Retrieval, 2008, pp. 563–570.

[14] P. Li and C. König, “b-Bit minwise hashing,” in Proceedings of the
19th International Conference on World Wide Web (WWW), 2010, pp.
671–680.

[15] P. Li, “0-bit consistent weighted sampling,” in Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2015, pp. 665–674.

[16] ——, “Linearized GMM kernels and normalized random fourier fea-
tures,” in Proceedings of the 23rd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, 2017, pp. 315–324.

[17] D. Greene, M. Parnas, and F. Yao, “Multi-index hashing for information
retrieval,” in Proceedings of the 35th Annual Symposium on Foundations
of Computer Science (FOCS), 1994, pp. 722–731.

[18] J. Qin and C. Xiao, “Pigeonring: A principle for faster thresholded
similarity search,” in Proceedings of the 44th International Conference
on Very Large Data Bases (VLDB), 2018, pp. 28–42.

[19] X. Zhang, J. Qin, W. Wang, Y. Sun, and J. Lu, “Hmsearch: An efficient
hamming distance query processing algorithm,” in Proceedings of the
25th International Conference on Scientific and Statistical Database
Management (SSDBM), 2013, p. 19.

[20] E. Fredkin, “Trie memory,” Communications of the ACM, vol. 3, no. 9,
pp. 490–499, 1960.

[21] S. Kanda, K. Morita, and M. Fuketa, “Compressed double-array tries for
string dictionaries supporting fast lookup,” Knowledge and Information
Systems, vol. 51, no. 3, pp. 1023–1042, 2017.

[22] G. E. Pibiri and R. Venturini, “Efficient data structures for massive n-
gram datasets,” in Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval,
2017, pp. 615–624.

[23] H. Zhang, H. Lim, V. Leis, D. G. Andersen, M. Kaminsky, K. Keeton,
and A. Pavlo, “SuRF: Practical range query filtering with fast succinct
tries,” in Proceedings of the 2018 International Conference on Manage-
ment of Data, 2018, pp. 323–336.

[24] G. Jacobson, “Space-efficient static trees and graphs,” in Proceedings of
the 30th IEEE Symposium on Foundations of Computer Science (FOCS),
1989, pp. 549–554.

[25] O. Delpratt, N. Rahman, and R. Raman, “Engineering the LOUDS
succinct tree representation,” in Proceedings of the 5th International
Workshop on Experimental and Efficient Algorithms (WEA), 2006, pp.
134–145.

[26] D. Belazzougui, “Faster and space-optimal edit distance “1” dictionary,”
in Proceedings of the 20th Annual Symposium on Combinatorial Pattern
Matching (CPM), 2009, pp. 154–167.

[27] D. Belazzougui and R. Venturini, “Compressed string dictionary look-up
with edit distance one,” in Proceedings of the 23rd Annual Symposium
on Combinatorial Pattern Matching (CPM), 2012, pp. 280–292.

[28] R. Cole, L.-A. Gottlieb, and M. Lewenstein, “Dictionary matching and
indexing with errors and don’t cares,” in Proceedings of the 36th annual
ACM Symposium on Theory of Computing (STOC), 2004, pp. 91–100.

[29] H.-L. Chan, T.-W. Lam, W.-K. Sung, S.-L. Tam, and S.-S. Wong,
“Compressed indexes for approximate string matching,” Algorithmica,
vol. 58, no. 2, pp. 263–281, 2010.

[30] A. C. Yao and F. F. Yao, “Dictionary look-up with one error,” Journal
of Algorithms, vol. 25, no. 1, pp. 194–202, 1997.

[31] C. Li, J. Lu, and Y. Lu, “Efficient merging and filtering algorithms for
approximate string searches,” in Proceedings of the 24th International
Conference on Data Engineering (ICDE), 2008, pp. 257–266.

[32] T. Kudo, T. Hanaoka, J. Mukai, Y. Tabata, and H. Komatsu, “Efficient
dictionary and language model compression for input method editors,”
in Proceedings of the 1st Workshop on Advances in Text Input Methods
(WTIM), 2011, pp. 19–25.

[33] Y. Tabei, “Succinct multibit tree: compact representation of multibit
trees by using succinct data structures in chemical fingerprint searches,”
in Proceedings of the 12th International Workshop on Algorithms in
Bioinformatics (WABI), 2012, pp. 201–213.

[34] S. Gog, T. Beller, A. Moffat, and M. Petri, “From theory to practice:
Plug and play with succinct data structures,” in Proceedings of the 13th
International Symposium on Experimental Algorithms (SEA), 2014, pp.
326–337.

[35] J. McAuley and J. Leskovec, “Hidden factors and hidden topics:
understanding rating dimensions with review text,” in Proceedings of
the 7th ACM Conference on Recommender Systems, 2013, pp. 165–172.

[36] H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg, “Searching in
one billion vectors: re-rank with source coding,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011,
pp. 861–864.

[37] A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny images: A
large data set for nonparametric object and scene recognition,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 30,
no. 11, pp. 1958–1970, 2008.

[38] J. Qin, C. Xiao, Y. Wang, and W. Wang, “Generalizing the pigeonhole
principle for similarity search in Hamming space,” IEEE Transactions
on Knowledge and Data Engineering (Early Access), 2019.

APPENDIX

A. Evaluation for Single- and Multi-indexes

We evaluate the time performance of the single-index ap-
proach using a hash table data structure (i.e., SIH) for the
similarity search per query as cost costS in the following
equation:

costS = sigs(b, L, τ) · L+ |I|, (2)

= 1 = 2 = 3 = 4 = 5
Threshold

102

103

104

105

106

107

108

109

Se
ar

ch
 C

os
t

b = 2

CostS

CostM (m = 2)
CostM (m = 3)
CostM (m = 4)

= 1 = 2 = 3 = 4 = 5
Threshold

102

104

106

108

1010

1012

Se
ar

ch
 C

os
t

b = 4
CostS

CostM (m = 2)
CostM (m = 3)
CostM (m = 4)

Fig. 8. costS and costM for b = 2 (left) and b = 4 (right); the other
parameters are chosen as L = 32, b ∈ {2, 4}, and m ∈ {2, 3, 4}.

where sigs(b, L, τ) is the number of signatures as follows:

sigs(b, L, τ) =

τ∑
k=0

(
L

k

)
(2b − 1)k. (3)

Since costS depends largely on the number of signatures, it
is linearly proportional to L and exponentially proportional to
τ and b.

We evaluate the time performance of the multi-index ap-
proach using hash tables (e.g., MIH) for the similarity search
per query as cost costM by the summation of the filtering and
verification costs as follows:

costM =

m∑
j=1

{
sigs(b, Lj , τ j) · Lj + L · |Cj |

}
, (4)

where term
∑m
j=1 sigs(b, Lj , τ j) · Lj is the filtering cost for

m blocks of query, and term L
∑m
j=1 |Cj | is the verification

cost depending on the total number of candidate solutions and
sketch length.

Figure 8 shows the values of costs costS and costM by
fixing the parameters of (n,L) = (232, 32) and varying
the parameters of m ∈ {2, 3, 4} and τ ∈ {1, 2, . . . , 5}.
In that figure, we compute |I| = sigs(b, L, τ) · n/(2b)L in
costS and |Cj | = sigs(b, Lj , τ j) · n/(2b)Lj

in costM under
the assumption that n sketches in a database are uniformly
distributed in the Hamming space.

We can see costS for the single-index approach expo-
nentially increases for parameters τ and b. Thus, similarity
searches on the single-index approach cannot be applied to
b-bit sketches and large τ . We can also see that costM for the
multi-index approach increases for parameters of τ and b, but
the increase is relatively small when large m (e.g., m = 4)
is used. However, when a large number of blocks are used,
a large number of candidate solutions are generated, resulting
in a large verification cost. In addition, since many inverted
indexes are built for large blocks, methods on the multi-index
approach consume a large amount of memory.

	I Introduction
	II Similarity Search Problem
	III Related Works
	III-A Single-Index Approach
	III-B Multi-Index Approach

	IV Trie-based Similarity Search
	IV-A Data Structure
	IV-B Similarity Search
	IV-C Review on Succinct Tries

	V b-Bit Sketch Trie (bST)
	V-A Representation for Dense Layer
	V-B Representation for Middle Layer
	V-C Representation for Sparse Layer

	VI Experiments
	VI-A Setup
	VI-B Comparison of Succinct Tries
	VI-C Comparison of Similarity Search Methods

	VII Conclusion
	References
	Appendix
	A Evaluation for Single- and Multi-indexes

