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Abstract—Complex event processing (CEP) systems continuously pro-
cess input event streams to detect patterns. Over time, the input event
rate might fluctuate and overshoot the system’s capabilities. One way to
reduce the overload on the system is to use load shedding. In this paper,
we propose a load shedding strategy for CEP systems which drops a
portion of the CEP operator’s internal state (a.k.a. partial matches) to
maintain a given latency bound. The crucial question here is how many
and which partial matches to drop so that a given latency bound is
maintained while minimizing the degradation in the quality of results.
In the stream processing domain, different load shedding strategies have
been proposed that mainly depend on the importance of individual tuples.
However, as CEP systems perform pattern detection, the importance of
events is also influenced by other events in the stream. Our load shedding
strategy uses Markov chain and Markov reward process to predict the
utility/importance of partial matches to determine the ones to be dropped.
In addition, we represent the utility in a way that minimizes the overhead
of load shedding. Furthermore, we provide algorithms to decide when to
start dropping partial matches and how many partial matches to drop.
By extensively evaluating our approach on three real-world datasets and
several representative queries, we show that the adverse impact of our
load shedding strategy on the quality of results is considerably less than
the impact of state-of-the-art load shedding strategies.

Index Terms—Complex Event Processing, Approximate Computing,
Load Shedding, Stream Processing, QoS

I. INTRODUCTION

Complex event processing (CEP) is a powerful paradigm to detect
patterns in continuous input event streams. The application area
of CEP is very broad, e.g., transportation, stock market, network
monitoring, game analytics, retail management, etc. [1], [2], [3], [4],
[5], [6]. A CEP operator performs pattern matching by correlating
the input events (also called primitive events) to detect important
situations (called complex events) [6], [3], [2].

In many applications, e.g., network monitoring, traffic monitoring,
stock market [4], [1], [3], the volume of input event streams is too
high and it is not feasible to process the incoming events on a
single machine. Moreover, the detection latency of complex events is
significantly important, where the detected complex events might be
useless if they are not detected within a certain latency bound [7], [8].
A well-known solution in CEP systems to process such huge input
event streams and maintain a defined latency bound is by using par-
allelization where the CEP operator graph is parallelized on multiple
compute nodes. However, the volume of input event streams is not
stable and fluctuates over time [9], [10]. Therefore, it is not trivial to
know the number of necessary compute nodes in advance. Hence,
either the number of compute nodes should be over-provisioned,
which introduces additional cost, or the number of compute nodes
can be adapted elastically as proposed by many researchers [3], [11],
[8], [1], [12]. However, adapting the parallelization degree in case

of short input spikes introduces a high performance overhead [9].
Moreover, resources might be limited for several reasons: 1) limited
monetary budget, 2) limited compute resources if operators run in
private clouds due to security or response time reasons.

Therefore, to handle system overload in case of limited resources
or in case of short input event spikes, load shedding might have
to be used. Load shedding has been extensively studied in the
stream processing domain [13], [14], [10], [4]. The queries in this
domain (e.g., aggregation, min, max, etc.) depend on individual tuples
and hence researchers propose approaches to assign utilities to the
tuples individually without taking into consideration the dependency
between tuples. However, CEP systems perform pattern correlation
operations between different events. Hence, we must take into con-
sideration the dependency between events in patterns. In [15], the
authors proposed a load shedding strategy for CEP systems where
they assign utilities to events depending on the dependency between
events in the patterns and accordingly shed events. However, they
do not consider the order of events in patterns which is important in
CEP as in sequence and negation operators [16], [17]. In [18], the
authors proposed a load shedding strategy, called eSPICE, for CEP
systems. eSPICE drops events from the operator’s input event stream
where it takes into consideration the dependency between events and
their order in patterns.

Both the aforementioned load shedding strategies in CEP [15], [18]
use a black-box approach where primitive events are dropped from
the input event queue of a CEP operator. However, load shedding may
be performed in CEP using a white-box approach as well where a
portion of the operator’s internal state is dropped. Of course, dropping
might adversely impact the quality of results (denoted by QoR), i.e.,
detected complex events, where important situations could be missed.
Moreover, using a black-box approach to drop primitive events may
introduce falsely detected complex events, e.g., when using negation
operator. Therefore, it is crucial to shed load in a way that has low
impact on QoR. In this paper, we propose a white-box load shedding
approach and compare it with state-of-the-art black-box approaches
[15], [13] to show the advantages of a white-box approach.

More specifically, we propose an efficient load shedding strategy
for CEP systems, called pSPICE, that considers event dependency
and order in patterns. pSPICE drops a portion of the internal state of
a CEP operator. The internal state contains information about partial
matches, where a partial match is a detected part of a pattern which
could become a complex event if the full pattern is matched. As a
short hand, we call information about a partial match in the internal
state of a CEP operator as a partial match (PM) hereafter. The event
processing latency increases proportionally with number of PMs in an
operator [19], [3]. Therefore, dropping PMs from an operator reduces
the event processing latency and increases the operator throughput.
Hence, it enables the operator to maintain a defined latency bound
in case of input event overload. pSPICE drops PMs that have low
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adverse impact on QoR.
There are three main challenges to drop partial matches in CEP: 1)

determining when and how many PMs to drop for an incoming input
event rate, 2) determining which PMs to drop, and 3) performing
the load shedding in a light-weight manner so as not to burden an
already overloaded operator. To drop PMs, we associate each PM
with a utility value that indicates the importance of the PM where a
higher utility value means a higher importance. We derive the utility
of a PM from its probability to complete and become a complex event
(called partial match completion probability) and from its estimated
remaining processing time.

Our contributions are as follows:

• We propose a new load shedding strategy, called pSPICE, that
uses Markov chain and Markov reward process to predict the
utility of PMs in windows. The utility of a PM depends on
the completion probability of the PM and on its remaining
processing time.

• We develop an approach that enables us to perform the load
shedding in an efficient and light-weight manner.

• We provide an algorithm that decides when and estimates how
many PMs to drop from an operator to maintain the given latency
bound.

• We provide extensive evaluations on three real-world datasets
and several representative queries to show that pSPICE reduces
the adverse impact of load shedding on QoR considerably more
than state-of-the-art solutions.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Complex Event Processing

CEP systems process input event streams to detect patterns. A CEP
system may consist of one or more operators represented by a directed
acyclic graph (DAG), called operator graph. Each operator processes
input event streams originating from several sources to detect a
set of patterns. Sources could be sensors, upstream operators, other
applications, etc. An event (also called primitive event) in the input
event stream consists of attribute-value pairs. The attribute-value pairs
contain the event data, e.g., stock quote in a stock application, player
position in a soccer application, or bus location in a transportation
application. The attribute-value pairs might also contain sequence
number and/or timestamp. Events in the input event streams have
global order, for example, by using the sequence number or the
timestamp and a tie-breaker.

In this work, we focus on a CEP system consisting of a single
CEP operator where the operator might detect one or more patterns
(i.e., multi-query). To detect important situations (complex events),
an operator processes primitive events in the input event stream and
matches a set of patterns Q = {q1, q2, ..., qn}, where n represents
number of patterns. Patterns might have different importances and
hence each pattern has a corresponding weight (given by the domain
expert) that indicates its importance. The pattern weight WQ is
defined as: WQ = {wq1 , wq2 , ..., wqn}, where wqx is the weight of
pattern qx. A pattern in CEP is defined using an event specification
language like Tesla [20] or SASE [6]. These languages contain several
types of CEP operators: sequence, conjunction, negation, etc.

The input event stream is continuous and infinite, however in CEP,
the input event stream is partitioned using predicates into independent
chunks of events, called windows. Windows capture the temporal
relationship between the primitive events in the input event stream.
The predicates to open and close windows may depend on time

(called time-based window), on the number of events (called count-
based window), on logical predicates (called pattern-based window),
or on a combination of them [3], [14].

To detect patterns, a CEP operator performs pattern matching using
a process function that processes the incoming windows of primitive
events and searches for patterns within these windows. Windows may
overlap, however, they are processed independently by the process
function. In a window w, a matched part of a pattern is called a partial
match (PM). We define a partial match pm of a pattern qx ∈ Q as
follows: pm ⊂ qx. In the window w, the partial match pm ⊂ qx
becomes a complex event if the pattern qx is completely matched.
PMs represent a part of an operator’s internal state.

In CEP systems, the pattern matching operation can be represented
as a finite state machine [19], [2], [3], where a partial match
represents an instance of this state machine. For a pattern qx ∈ Q, we
define a set of states Sqx = {s1, s2, ..., sm} as a set of all possible
states that the pattern qx can have, including the initial state (s1 = φ).
Let us look at an example of a pattern to understand its properties.
In a traffic monitoring system [1], if more than one bus has delay
at the same bus stop, it might indicate an abnormal traffic, e.g., an
accident. To detect the abnormal behavior (i.e., a pattern), a traffic
analyst formulates the following query using the Tesla [20] event
specification language:

[qe]

define Abnormal(Bus1, Bus2, Bus3)

from BusEvent (delay > $x) as eA and

BusEvent() as eB and (delay > $x and eB.stop = eA.stop)

within 5min from eA and

BusEvent() as eC and (delay > $x and eC.stop = eA.stop)

within 5min from eA

where Bus1 = eA.Id, Bus2 = eB.Id, Bus3 = eC.Id

qe detects an abnormal traffic, i.e., a complex event, if a bus event
eA is delayed on a certain stop and the following bus events eB
and eC within 5 minutes (window size) from bus event eA also get
delayed on the same stop. Figure 1 shows the corresponding state
machine of qe. With each incoming bus event eA, a new window
w is opened. In addition, an instance of the state machine of qe is
created with the initial state s1. If the bus event eA indicates that
the bus is delayed, a new partial match pm is opened and the state
machine progresses to the next state. This is shown in Figure 1, where
the state machine transitions from the initial state (s1) to the state s2.
In the window w, with each subsequent bus event eB , pm progresses
towards completion if eB indicates that the subsequent bus is also
delayed at the same stop as eA, i.e., the state machine transitions
from the state s2 to the state s3. When receiving the bus event eC ,
pm completes, i.e., becomes a complex event, if the bus event eC
indicates that the subsequent bus is also delayed at the same stop as
eA, i.e., the state machine transitions to the state s4 (the final state).

In this example, the number of states in the state machine is 4,
including the initial state (s1 = φ), i.e., |Sqe | = 4. Please note that,
in qe, the bus event eA has less processing latency than the bus events
eB and eC since the bus events eB and eC must be checked with
more conditions than the bus event eA. Hence, events in a pattern
might have different processing latencies.

In this paper, the only assumption that we have is that operators
reveal information about the progress of PMs when processing
primitive events within windows.
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s1start s2 s3 s4
eA.delay > x

otherwise

eB .delay > x &
eB .stop = eA.stop

otherwise

eC .delay > x &
eC .stop = eA.stop

otherwise

Fig. 1: State machine for qe
B. Problem Statement

As discussed earlier, in this paper, we drop PMs from the operator’s
internal state to maintain a given latency bound (LB) in the face
of system overload. However, dropping PMs might degrade QoR,
where quality is measured by the number of missed complex events,
i.e., false negatives. Since we do not drop primitive events but
PMs, our load shedding strategy does not result in producing false
positives, i.e., detect a complex event which should not be detected.
To minimize its impact on QoR, the load shedder must drop only
those PMs that have low utility/importance. The utility of PMs is
measured by their influence on the number of missed complex events,
i.e., false negatives.

As mentioned above, an operator matches a set of patterns Q =
{q1, q2, ..., qn} and, therefore, QoR is measured by the sum of false
negatives (denoted by FNQ) of all patterns in the operator. We define
the number of false negatives for each pattern qx as FNqx . Since each
pattern qx has a weight wqx , which indicates its importance, we must
also consider the pattern’s weight wqx when calculating FNQ.

QoR is formally defined as follows:

FNQ =

n∑
i=1

wqi .FNqi

The objective is to minimize FNQ, such that the given latency bound
LB is met.

III. PSPICE

In this section, we first present the architecture of pSPICE, our
load shedding strategy. Then, we introduce the notion of utility of
PMs followed by a description of our approach to determine these
utilities using Markov chain and Markov reward process [21]. After
that, we discuss how to detect overload and compute the amount of
overflowing PMs that must be dropped by the load shedder. Finally,
we present the load shedding algorithm which efficiently drops PMs
with the lowest utility values.

A. Load Shedding Architecture

The architecture of pSPICE is depicted in Figure 2. The figure
shows an operator which is modified by adding the following
components to enable load shedding: overload detector, load shedder
(LS) and model builder.

The incoming windows of events forwarded by an upstream
operator (e.g., window operator) are queued in the input queue of the
operator. To prevent violating the defined latency bound (LB), the
overload detector checks the estimated latency for each input event.
In the scenario where LB might be violated, the overload detector
calls the LS to drop a certain number of PMs, denoted by ρ.

The model builder receives observations from the operator about
the progress of PMs. After receiving a certain number of observations,
the model builder builds the model, where it predicts the utility of
PMs using Markov chain and Markov reward process. The model
builder might be heavy-weight. However, it is not a time-critical task
and it does not need to run frequently.

LS drops ρ PMs every time it is called by the overload detector,
where ρ is determined by the overload detector. The LS depends on
utility values predicted by the model builder to select those PMs for
dropping. Both the LS and overload detector are time-critical tasks

windows

input queue
overload
detector

dr
op

(ρ
)

operator

process

PMs

complex
events

model builder
model

observ.

LS
Upm

get
PMs()

rem
ov

eP
M(Id

)

Fig. 2: pSPICE Architecture.

where they directly affect the CEP system performance and hence
they must be light-weight and efficient. As we will see later, both of
these components have very low overhead in pSPICE.

B. Utility of Partial Matches

pSPICE drops partial matches with the lowest utility/importance.
The question is– what defines the utility of a PM? The utility/im-
portance of a PM is defined by its impact on QoR, i.e., number of
false negatives. A PM that has a low adverse impact on QoR has a
low utility value, while a PM that has a high adverse impact on QoR
has a high utility value. Hence, to minimize the dropping impact on
QoR, we must find a way to assign low utility values to those PMs
that are less important than other PMs. We assign utilities to PMs
depending on three factors: 1) the probability of a PM to complete
and become a complex event (i.e., the completion probability), 2) the
estimated processing time that a PM still needs, and 3) the weight
of the pattern.

The completion probability of a PM represents the probability of
the PM to become a complex event. The existence of a complex
event depends on whether its underlying PM will complete or not. If
a PM completes, a complex event is detected. On the other hand, if
a PM does not complete, a complex event is not detected. Hence,
the completion probability of a PM is an important indicator of
the utility/importance of the PM as dropping PMs that in anyway
will not complete implies no degradation in QoR. Ppm represents
the completion probability of the PM pm. Higher is the completion
probability of the PM (Ppm), higher should be its utility. This means
that the utility of a PM is proportional to its completion probability.

The utility of a partial match pm is also influenced by its
remaining processing time (denoted by τpm). A PM that still has a
high remaining processing time (we will use only processing time
hereafter) should have lower utility than a PM that has a lower
processing time. The reason for this is that a PM with low processing
time consumes less processing time from the operator, i.e., giving
the operator more time to process other PMs. Hence, it decreases the
need to drop PMs from the operator’s internal state, which in turn
decreases the number of false negatives. This means that the utility
of a PM is inversely proportional to its processing time (τpm).

For example, let us assume that an operator has two partial matches
pm1 and pm2 in two windows w1 and w2, respectively. Suppose
that Ppm1 = Ppm2 but τpm1 < τpm2 . In this case, the importance
of pm1 should be higher than the importance of pm2 since pm1

has the same completion probability as pm2 but it imposes lower
processing time on the operator. In another case where Ppm1 < Ppm2

but τpm1 < τpm2 , we need to assign a higher utility to the PM that
results in lesser degradation in QoR. Therefore, we use the proportion
of the completion probability Ppm to the processing time τpm, i.e.,
Ppm

τpm
, as a utility value for the partial match.
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Finally, as we mentioned above, in an operator with multiple
patterns (i.e., multi-query operator), each pattern might have different
weight wqx , i.e., different importance. Therefore, when assigning
utilities to PMs, we must also take the patterns’ weights into
consideration. To consider the pattern’s weights, we increase the
utility value of a PM pm ⊂ qx proportionally to its pattern’s weight
wqx .

To incorporate the completion probability of a PM Ppm, its
processing time τpm, and its pattern’s weight wqx in deriving the
utility of the PM (denoted by Upm), we represent the utility of a PM
as follows:

Upm = wqx .
Ppm
τpm

(1)

C. Utility Prediction

Since the utility of a PM depends on its completion probability
and processing time, in this section, we explain the manner in which
we predict them using Markov chain and Markov reward process.

1) Completion probability Prediction: In a certain position in a
window w, the completion probability Ppm of a PM pm ⊂ qx, i.e.,
the probability of pm to complete the pattern qx and to become a
complex event, depends on two factors. 1) on the current state of
the PM pm (denoted by Spm), where Spm ∈ Sqx , and 2) on the
number of remaining events in the window w (denoted by Rw).
Therefore, we write Ppm as a function of Spm and Rw as follows:

Ppm = f(Spm, Rw) (2)

Spm = s1 means that pm is in the initial state while Spm = sm,
where m = |Sqx |, means that pm has completed and become a
complex event. Rw ∈ [1, ws], where ws represents the expected
window size. In case a partial match pm has a state Spm which is
close to the final state and Rw is high, the probability for pm to
complete qx and become a complex event might be high. This is
because pm needs only fewer state transitions to reach the final state
and the window w still has a high number of events that can be used
to match the pattern qx and to complete pm. On the other hand, the
completion probability might be low for a partial match pm that has
a state Spm which is close to the initial state and Rw is low. This is
because pm still needs many state transitions to reach the final state
and the window w only has a small number of events that can be
used to match the pattern qx and to complete pm.

Since a pattern in CEP systems can be represented as a state
machine, as we mentioned above, in this work, we model the pattern
matching as a Markov chain to predict the completion probability of
a partial match Ppm of a pattern. To clarify this, let us introduce the
following simple example. Let us assume that an operator matches
a pattern qx = seq(A;B;C). This pattern can be represented as
a state machine as depicted in Figure 3, where it has four states,
including the initial state, i.e., Sqx = {s1, s2, s3, s4}. The state
machine transitions from one state to other states depending on
the input symbols (events), while the Markov chain probabilistically
transitions from one state to other states using a transition matrix. In
the above example, if we assume that the input event stream has only
three event types (A, B, and C) and these events are coming randomly
with a uniform distribution, then the probability to transition from any
state to next state is 1/3. While the probability to stay in the same
state is 2/3.

Therefore, the transition matrix can be used to predict the proba-
bility of the state machine to transition from any state to other states
and hence to predict the probability of the state machine to transition

s1start s2 s3 s4
A

ts1,s2

ts1,s1
B|C

B

ts2,s3

ts2,s2
A|C

C

ts3,s4

ts3,s3
A|B

Fig. 3: State machine example

from a certain state si to the final state sm after processing Rw
input symbols. Since a PM is represented as an instance of the state
machine, the completion probability of a PM (i.e., the probability of
the state machine to reach the final state) in a certain state Spm given
that Rw events are left in the window w, i.e., Ppm = f(Spm, Rw),
can be computed using the transition matrix. Since the input event
stream might follow any distribution, not only uniform distribution,
we should learn the transition matrix by gathering statistics about the
state transitions of PMs as we describe next.

Statistic gathering & Transition matrix: For each pattern
qx ∈ Q, the model builder builds a transition matrix Tqx from
the statistics gathered during run-time by monitoring the internal
state of the operator. The statistics contain information about the
progress of PMs of pattern qx when processing the input events within
windows. For each partial match pm ⊂ qx, the operator reports,
when processing an input event e within a window, whether pm
progressed or not, i.e., the state of pm changed or not by processing
the event e. The operator forms an Observation < qx, s, s

′ >,
where s represents the current state of pm and s′ the new state of
pm after processing one event in the window.

After gathering statistics from η observations for pattern qx, the
model builder transfers these statistics to the transition matrix Tqx .
Tqx describes the transition probability between the states of Markov
chain when processing one event in a window.

Completion probability: As mentioned above, the transition ma-
trix gives the probability to transition from one state to another state
and can be used to predict the partial match completion probability
Ppm. Figure 4 shows the transition matrix for the state machine
depicted in Figure 3. Since we are only interested to know whether a
partial match will complete or not, we need only to focus on the last
column in the transition matrix, surrounded with a red box in Figure
4. This column gives the probability to move from any state Spm to
the final state, i.e., the probability to complete the partial match.

The transition matrix contains the transition probability, given that
there is only one event left in a window. Therefore, to get the
transition probability given that Rw events are still left in a window
w, we must raise the transition matrix Tqx to the power Rw. This
way, the completion probability of a partial match pm in a state Spm,
given that Rw events are left in a window w, is computed as follows:

Ppm = f(Spm, Rw) = TRw
qx (i,m) (3)

where Spm = si ∈ Sqx and m = |Sqx |, m = 4 in the above figure.
For example, in Figure 4, the completion probability of a partial
match pm ⊂ qx in the state s2 given that only one event (Rw = 1)
is left in a window w is computed as follows: Ppm = f(s2, 1) =
T 1
qx(2, 4) = p24. To get the completion probability of a partial match

given any number of events are left in a window, we need to compute
the transition matrix TRw

qx for all possible values of Rw ∈ [1, ws].
However, the window size ws might be too large which might impose
a high memory cost during the calculation of the transition matrices.
Therefore, we calculate the transition matrix only for every bs (i.e.,
bin size) events, i.e., T bsqx , T 2.bs

qx , ..., Twsqx . To get the completion

4
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s1 s2 s3 s4

s1 p11 p12 p13 p14
s2 p21 p22 p23 p24
s3 p31 p32 p33 p34
s4 p41 p42 p43 p44


Fig. 4: Transition matrix Tqx for the state machine in Figure 3.

probability of a PM in case Rw ∈ [(j − 1).bs, j.bs], where j =
1, 2, ..., ws

bs
, we use linear interpolation. For ease of presentation, we

assume that bs = 1, if not otherwise stated.
2) Processing Time Prediction: After predicting the completion

probability of PMs, now, we describe how to predict the processing
time of PMs using Markov reward process, where we model the
processing time of a PM as the reward value. Given a partial match
pm ⊂ qx in a state Spm, we define the time that is needed to match
an event in a window w with pm as ts,s′ , where s = Spm and
s′ ∈ Sqx . Hence, ts,s′ represents the processing time that is needed
for the state machine of qx to transition from state s to state s′. For
example, in Figure 3, the processing time to transition from s1 to
s2 is represented by the value ts1,s2 . We consider ts,s′ as a reward
value to move from state s to state s′ in the state machine of qx.

Therefore, to calculate the processing time of a PM, we clearly
need something more than using Markov chain which is used to
compute the completion probability of a PM. As a result, we upgrade
our Markov chain to Markov reward process, where we additionally
define the reward function Rqx(s, s

′) as the expected processing
time needed to transition from state s to state s′. Solving Markov
reward process gives us the expected reward for each state in the
state machine, given that there are still Rw events left in a window
w. Since we represent the processing time ts,s′ as reward, the reward
of a state represents the estimated processing time of a PM τpm, given
that there are still Rw events lefts in a window w.

We incorporate the processing time ts,s′ in statistics gathering
and extend the above observation as follows: Observation <
qx, s, s

′, ts,s′ >. After gathering statistics from η observations for
pattern qx, the model builder constructs the reward function (i.e.,
Rqx(s, s

′)) which is calculated as the average value for all observed
values of the processing time ts,s′ . After that, the model builder
predicts the processing time of PMs by solving Markov reward
process as we explain next.

Processing time: To predict the processing time of a partial match
pm ⊂ qx in a state Spm, the model builder must solve Markov
reward process. A well-known algorithm called value iteration [21]
can be used to solve Markov reward process. The algorithm iteratively
calculates the expected reward (processing time τpm in this case) at
every state in the state machine using the transition matrix Tqx and
the reward function Rqx . Then, it reuses the calculated reward values
in the future iterations. Here, an iteration j represents the number
of remaining events (i.e., Rw) in a window w, i.e., j = Rw. The
value iteration algorithm uses the bellman equation [22] to predict
the remaining processing time τpm of a partial match pm ⊂ qx at
state Spm given that there are still Rw events left in the window w.

Similar to the completion probability, we run the value iteration
algorithm to get the processing time τpm of a partial match pm for
all expected remaining Rw number of events in a window w. To
avoid the memory overhead in case of too large window size ws,
again, we keep the value iteration results only for every bs events.
For the intermediate values, we use linear interpolation.

3) Utility calculation: After describing how to predict the com-
pletion probability and the processing time of a PM, now, we can

derive the utility of PMs for each pattern qx ∈ Q using Equation (1).
Since the completion probabilities and processing times of PMs

have different units and scales, using Equation (1) directly on these
values, may result in unexpected behavior, where a high processing
time may overcome the completion probability and eliminate its
importance in calculating the utility of PMs. Therefore, before using
Equation (1), we bring the completion probabilities and processing
times to the same scale and then apply Equation (1) to get utilities
of PMs.

To efficiently retrieve the utilities by the LS, we store the utility
of PMs at any given state and for any number of remaining events
in a window in a table called UTqx , where each pattern qx has its
corresponding utility table. UTqx has (ws

bs
X m) dimensions, where

m = |Sqx | and each cell UTqx(i, j) represents the utility of a PM in
state si given that there are still j events left in the window, assuming
bs = 1. So the utility of a PM pm ⊂ qx is calculated as follows:
Upm = f(Spm, Rw) = UTqx(i, j), where si = Spm and j = Rw.
Getting the utility of a PM from UT has only O(1) time complexity
which is a great factor in minimizing the overhead of the LS.

D. Model Retraining

The event distribution in the input event stream and/or the content
of input events may change over time and hence our model might
become inaccurate and adversely impact QoR. To avoid this, we must
retrain the model to capture those changes. The question is– how
do we know that those changes happened and the model must be
retrained? We depend on the transition matrix to answer this question.

The transition matrix, as we know, contains the probabilities to
transition from any state to other states in the state machine, where the
transition matrix is constructed depending on the distribution of input
event stream and on the content of events. So, if there is a change in
the distribution of input event stream and/or on the content of events,
the probability values in the transition matrix will change. Therefore,
the transition matrix can be used as an indicator to those changes and
to trigger model retraining. Hence, we propose to periodically build
a new transition matrix from the gathered statistics from the operator
and compare the new transition matrix with the transition matrix
that is used in the model by using an error measurement, e.g, mean
squared error. If the deviation between the two matrices is higher than
a threshold, the model builder must rebuild the model. Please note that
building a new transition matrix is light-weight since we just need to
transfer the gathered statistics about the state transitions to probability
values. Moreover, we don’t need to calculate new transition matrices
for all expected remaining number of events in a window to check
for the need to retrain the model.

E. Detecting and Determining Overload

The goal of pSPICE is to avoid violating a defined latency bound
(LB). A high queuing latency of the incoming input events in the
operator input queue indicates an overload on the operator and hence
some partial matches must be dropped from the operator’s internal
state to avoid violating LB. Algorithm 1 formally describes the
functionality of the overload detector .

Detecting overload: The overload detector continuously gets the
primitive events from the event input queue of the operator, where for
each event, it checks whether LB might be violated. In the scenario
where LB might be violated, the overload detector calls the load
shedder to drop a certain number of PMs to reduce the overhead
on the operator and maintain LB. The violation of LB depends
on the estimated event latency (denoted by le) and load shedding
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latency (denoted by ls), where LB would be violated if the following
inequality holds:

le + ls > LB (4)

The estimated event latency le represents the time between the
insertion of the event e in the operator’s input queue and the time
when the event e is processed by the operator in all currently opened
windows, since an event may belong to several windows in case
windows overlap. The load shedding latency ls represents the time
needed by the LS to drop the needed amount of partial matches.

The estimated event latency le of an event e is the sum of the event
queuing latency (denoted by lq) and the estimated event processing
latency (denoted by lp): le = lq+ lp. The event queuing latency lq is
the time between the insertion of the event e in the operator’s input
queue and the time when the operator gets the event e from its input
queue to process it (cf. Algorithm 1, line 2). While, the estimated
event processing latency lp, represents the time an event e needs to
be processed by the operator in all currently opened windows. lp
depends on current number of partial matches (denoted by npm) in
the operator since the event e needs to be matched with all current
partial matches in the operator. Higher is the value of npm, higher is
lp. Therefore, we represent lp as a function, called event processing
latency function, of the current number of partial matches npm in
the operator: lp = f(npm), i.e., f : npm → lp.

Therefore, for each event e, the overload detector calls the event
processing latency function f(npm) that gives the estimated event
processing latency lp depending on current number of partial matches
in the operator (cf. Algorithm 1, line 3). Using lp and lq , the
overload detector can now compute the estimated event latency le
(cf. Algorithm 1, line 4). To build the function f(npm), during run-
time, we gather statistics from the operator on the event processing
latency lp for different numbers of partial matches npm. Then, we
apply several regression models on these statistics to get the function
f(npm), where we use a regression model that results in lower error.

We consider the load shedding latency ls in the inequality (4)
since during load shedding no events are processed and hence the
event queuing latency is increased by the time needed to drop PMs,
i.e., by the load shedding latency ls. Similar to the estimated event
processing latency, the load shedding latency ls also depends on the
current number of PMs npm. This is because, the load shedder must
sort all current PMs in the operator to find those PMs that have the
lowest utility values (we will show this later). Therefore, we also
represent ls as a function of npm: ls = g(npm) (cf. Algorithm 1,
line 3). Similarly, to build the function g(npm), during run-time, we
gather statistics from the operator on the load shedding latency ls for
different numbers of PMs npm. Then, we apply several regression
models on these statistics to get the function g(npm), where we use
a regression model that results in lower error.

Determining overload amount: As we explained above, if the
inequality (4) holds, the overload detector calls the LS to drop PMs
to avoid violating LB (cf. Algorithm 1, lines 5-9). The question
is– how many PMs must the LS drop? To answer this question, we
need to understand which latency values in the inequality (4) can
be controlled. We cannot reduce the event queuing latency lq and
the load shedding latency ls but we can reduce the event processing
latency lp by dropping some PMs. Therefore, we represent the new
event processing latency as l′p such that the following condition holds.

l′p + lq + ls = LB. (5)

From the above condition, l′p = LB− lq − ls. Therefore, we have
to ensure the new processing latency l′p by dropping a certain number
of PMs (denoted by ρ).

To compute ρ, we should find the number of PMs (denoted by
n′pm) that impose a latency of l′p on the operator when processing
an event. Hence, n′pm is a function of l′p. This function is the inverse
function f−1 of the event processing latency function f(npm), where
f−1 : l′p → n′pm. From the inverse function f−1, we can compute
the number of PMs n′pm. Keeping only n′pm PMs in the operator’s
internal state ensures that the operator needs only l′p time to process
an event and hence it maintains LB. Therefore, the number of PMs
to drop ρ = npm−n′pm. For each input event, the overload detector
calls the LS to drop ρ partial matches whenever the inequality (4)
holds (cf. Algorithm 1, line 9).

Please note that the inequality (4) ensures to keep the event latency
le less than or equal to LB. However, in case of sudden increase in
the input event rate or inaccuracy in the functions that predict lp
and ls, there might be a risk of violating LB. Therefore, in latency
critical applications where LB is a hard bound, we propose to add
a safety buffer (denoted by bs) to the inequality (4) as follows:

le + ls + bs > LB (6)

Algorithm 1 Detecting and Determining Overload.

1: detectOverload (event e) begin
2: lq = currentTime()− e.arrivalTime()
3: lp = f(nmp), ls = g(nmp) . nmp: Current number of PMs.
4: le = lq + lp
5: if le + ls > LB then . LB might be violated => drop PMs.
6: l′p = LB − lq − ls
7: n′pm = f−1(l′p)
8: ρ = npm − n′pm
9: LS.drop(ρ) . Call LS to drop ρ PMs.

10: end function

F. Load Shedding

In this section, we discuss the functionality of the LS component
that is called by the overload detector to drop PMs. The LS drops PMs
with the lowest utility values, where the utility of PMs are learned
and stored in UT as we explained in Section III-C. Algorithm 2
formally explains the functionality of the LS.

Whenever the LS is called by the overload detector to drop ρ PMs,
it needs to know the current ρ PMs in the operator that have the
lowest utility values. To get the utility of PMs, the LS simply uses
the utility tables given by the model builder. For a PM pm ⊂ qx
in a window w, the LS obtains the utility of pm, i.e., Upm, by a
simple lookup in the utility table UTqx . Upm = UTqx(i, j), where
Spm = si ∈ Sqx , and j = Rw, i.e., the expected number of events
left in the window w (cf. Algorithm 2, lines 2-4). Therefore, the
time complexity to get the utility of a PM is O(1) and hence to get
the utility for all current PMs in the operator is O(npm). To find
the ρ PMs with the lowest utility values among all PMs, the LS
should sort the PMs using their utility values, where a good sorting
algorithm can achieve O(npm log2(npm)) average time complexity
(cf. Algorithm 2, line 5). After sorting PMs, the LS drops the first
ρ PMs which have the lowest utilities, where the LS iterates over
the sorted PMs and asks the operator to remove those PMs from its
internal state (cf. Algorithm 2, lines 6-10). This has a time complexity
of O(ρ). Hence, the overall time complexity for the load shedding is
O(npm + npm log2(npm) + ρ). As we will show in section IV, the
overhead of our LS is extremely low.
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Algorithm 2 Load Shedding.

1: drop (ρ) begin
. get utilities of PMs and sort them.

2: for each pm in operator.getPMs() do
3: Upm = getUtility(qx, Spm, Rw), where pm ⊂ qx
4: pmArray.insert(pm)

5: sortByUtility(pmArray)
. drop ρ partial matches.

6: for index = 0→ ρ do
7: if index >= pmArray.size() then . No more PMs to drop!
8: return
9: pm = pmArray(index)

10: operator.remove(pm)

11: end function

IV. PERFORMANCE EVALUATIONS

In this section, we show the performance of pSPICE by evaluating
it with three real world datasets and several representative queries.

A. Experimental Setup

Evaluation Platform. We run our evaluation on a machine which
is equipped with 8 CPU cores (Intel 1.6 GHz) and a main memory
of 24 GB. The OS used is CentOS 6.4. We run a CEP operator in
a single thread on this machine, where this single thread is used as
a resource limitation. Please note, the resource limitation can be any
number of threads/cores and the behavior of pSPICE does not depend
on a specific limitation. We implemented pSPICE by extending a
prototype CEP framework which is implemented using Java.

Baseline. We also implemented two other load shedding strategies
to use as baselines. 1) We implemented a random partial match
dropper (denoted by PM-BL) that uses Bernoulli distribution to drop
PMs. 2) We also implemented a load shedding strategy (denoted by
E-BL) similar to the one proposed in [15]. In addition, it captures the
notion of weighted sampling techniques in stream processing [13]. E-
BL drops events from incoming windows, where an event type (e.g.,
player Id or stock symbol) receives a higher utility proportional to
its repetition in patterns and in windows. Then, depending on event
type utilities, it uses uniform sampling to decide which events to drop
from the same event type.

Datasets. We use three real-world datasets. 1) A stock quote stream
from the New York Stock Exchange, which contains real intra-day
quotes of 500 different stocks from NYSE collected over two months
from Google Finance [23]. 2) A position data stream from a real-time
locating system (denoted by RTLS) in a soccer game [5]. Players,
balls, and referees are equipped with sensors that generate events
containing their position, velocity, etc. 3) Public bus traffic (denoted
by PLBT) from a real transportation system in Dublin city [1].
It contains events from 911 buses, where each event has several
information about those buses, e.g., location, stop, delayed, etc.

Queries. We apply four queries (Q1, Q2, Q3, Q4) that cover an im-
portant set of operators in CEP: sequence operator, sequence operator
with repetition, sequence with any operator, and any operator, all with
skip-till-next/any-match [3], [20], [24], [6]. Moreover, the queries use
both time-based and count-based sliding window strategies with
different predicates. The queries are as follows:

Q1 (sequence operator): detects a complex event when rising or
falling stock quotes of 10 certain stock symbols (defined as RE or
FE, respectively) are detected within ws events in a certain sequence.
Q1 is of form: seq (RE1; RE2;..;RE10) or seq (FE1; FE2;..;FE10),
where REx or FEx is rising/falling event of the stock company x.

Q2 (sequence operator with repetition): detects a complex event
when 10 rising or 10 falling stock quotes of certain stock symbols
(defined as RE or FE, respectively) with repetition are detected

within ws events in a certain sequence. Q2 is of form: seq (RE1;
RE1; RE2; RE3; RE2; RE4; RE2; RE5; RE6; RE7; RE2; RE8;
RE9; RE10), where REx is defined as in Q1. The sequence for
falling quotes is similar.

Q3 (sequence with any operator): uses the RTLS dataset. It detects
a complex event when any n defenders of a team (defined as
DF) defend against a striker (defined as STR) from the other team
within ws seconds from the ball possessing event by the striker. The
defending action is defined by a certain distance between the striker
and the defenders. We use two players as strikers; one striker from
each team. Q1 is of form: seq (STR; any (n, DF1, DF2, .., DFn)),
where DFx is the defend event of the player x.

Q4 (any operator): uses the PLBT dataset. It detects a complex
event when any n buses within a window of size ws events get
delayed at the same stop. Q4 is of form: any (B1, B2, ..., , Bn),
where Bx is the bus event.

B. Experimental Results

In this section, we evaluate the performance of pSPICE. First, we
show its impact on QoR, i.e., number of false negatives, and compare
it with PM-BL and E-BL. Then, we show the importance of using the
processing time of a PM in calculating its utility. Finally, we present
the overhead of pSPICE.

If not stated otherwise, we use the following settings. For Q1 and
Q2, we use a count-based sliding window. For both queries, we use
a logical predicate where a new window is opened for each incoming
event of the leading stock symbols. We choose 4 important companies
as leading stock companies. Q3 uses a time-based sliding window.
Again, we use a logical predicate for Q3, where a new window is
opened for each incoming striker event (STR). For Q4, we use a
count-based sliding window and a count-based predicate, where a
new window is opened every 500 events, i.e., slide size is 500 events.
We stream events to the operator from datasets that are stored in files
where we first stream events at event input rates which are less or
equal to the maximum operator throughput until the model is built.
After that, we increase the input event rate to enforce load shedding
as we will mention in the following experiments. The used latency
bound LB = 1 second. We execute several runs for each experiment
and show the mean value and standard deviation.

Impact on QoR and the given latency bound. Now, we show
the performance of pSPICE w.r.t. its impact on QoR (i.e., number
of false negatives) and maintaining the given latency bound. Two
factors influence the performance of pSPICE: 1) match probability,
and 2) input event rate. Match probability represents the percentage
of PMs that complete and become complex events out of all PMs.
It is computed from the ground-truth by dividing the total number
of complex events by the total number of PMs. We can control the
match probability by varying the pattern size and/or the window size.

a) Impact of match probability: To evaluate the performance of
pSPICE with different match probabilities, we run experiments with
Q1, Q2, Q3 and Q4. For Q1 and Q2, we use a variable window size
to control the match probability since Q1 and Q2 have a fixed pattern
size. Higher is the window size, higher is the match probability. We
use the following window sizes for Q1: ws = 3.5K, 4.5K, 5K, 5.5K,
6K, 10K events. For Q2, the used window sizes are: ws = 6K, 7K,
7.5K, 8K, 12K, 14K events. For Q3 and Q4, we use a fixed window
size but a variable pattern size. For Q3, we use a window size ws of
15 seconds and the following pattern sizes (i.e., number of defenders):
n= 2, 3, 4, 5, 6. The window size ws for Q4 is 8K events and we
use the following pattern sizes (i.e., number of buses): n = 3, 4, 7,
8, 10. Moreover, we stream all datasets to the operator with an event
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input rate that is higher than the maximum operator throughput by
20% (i.e., event rate= 120% of the maximum operator throughput).

Figure 5 shows results for all queries, where the x-axis represents
the match probability and the y-axis represents the percentage of
false negatives. A low match probability means that most of the
PMs don’t complete and hence dropping those PMs that will not
complete decreases the dropping impact on QoR. On the other hand,
a high match probability means that most of the PMs complete and
become complex events and hence dropping any PM may result in
a false negative. This is observed in Figure 5 for all queries (Q1,
Q2, Q3, Q4). Figure 5a depicts the results for Q1, where it shows
that the percentage of false negatives produced by pSPICE increases
with increasing match probability. It increases from 16% to 32%
when the match probability increases from 6% to 89%, respectively.
We observed a similar behavior for PM-BL, where the percentage
of false negatives increases from 26% to 37% when the match
probability increases from 6% to 89%, respectively. As we observe
from the figure, a high match probability degrades the performance
of pSPICE since dropping any PM might result in a false negative
as all PMs have similar completion probability. In this experiment,
pSPICE reduces the percentage of false negatives by up to 70%
compared to PM-BL. Please note that a high rate of PM drop is
because the operator load doesn’t come only from processing PMs
but also from managing windows and events and checking whether
an event opens a partial match.

The performance of E-BL is bad when the match probability is
low and it becomes better with higher match probability as shown in
Figure 5a. This is because, a low match probability means a small
window size where the probability to drop an event that matches the
pattern is high and the probability to find an event as a replacement
for the dropped event to match the pattern is low. On the other
hand, with a higher match probability (i.e., a larger window size),
the probability to drop an event that matches the pattern is low and
the probability to find an event as a replacement for the dropped
event to match the pattern is high. Hence, the percentage of false
negatives decreases with a higher match probability. In the figure, the
percentage of false negatives, for E-BL, is 65% and 16% when the
match probability is 6% and 89%, respectively. pSPICE reduces the
percentage of false negatives by up to 300% compared to E-BL when
the match probability is not too high. For a high match probability
(cf. Figure 5a, in case match probability is 89%), E-BL outperforms
pSPICE . However, please note, in CEP, it is unrealistic to have such
a high match probability that implies completion of most PMs.

Figure 5b, using Q2, shows similar behavior to the results of Q1.
The percentage of false negatives for pSPICE and PM-BL increases
again with increasing match probability. However, pSPICE results
in a lower percentage of false negatives by up to 58% compared to
PM-BL till 81% match probability. After that, PM-BL outperforms
pSPICE. This is because, as we mentioned above, all PMs have a
high probability to complete and become complex events and hence
it is hard for pSPICE to decide which PM to drop. Besides that,
pSPICE has a slightly higher overhead than PM-BL which results in
dropping more PMs and hence resulting in more false negatives. The
results for E-BL is similar to the results in Q1.

In Figure 5c, using Q3, the percentage of false negatives produced
by pSPICE and PM-BL also increases with increasing the match
probability. pSPICE results in reducing the percentage of false
negatives by up to 92% compared to PM-BL. As in Q1 and Q2, E-BL
produces less false negatives when the match probability increases.
A higher match probability in Q3 means a smaller pattern size (in
the figure, the match probability 50% corresponds to a pattern of size

n = 2) which makes it easy to find a replacement event to match the
pattern instead of a dropped event. The results for Q3, compared to
the results for Q1 and Q2, show that E-BL outperforms pSPICE with
a smaller match probability (after 27%). This is because Q3 uses any
operator which means any event can match the pattern. Hence, the
probability to find a replacement for a dropped event is much higher
in Q3 compared to Q1 and Q2 which matches a sequence of certain
event types (stock symbol/company). Please note that, in Q1 and Q2,
only the same event type can replace a dropped event of that type.
Figure 5d, using Q4, shows similar results to the results of Q3 since
the query of bus data is similar to the query of soccer data (i.e., Q3).
As a result, we skip explaining it.

b) Impact of event rate: To evaluate the impact of input event
rate on the performance of pSPICE, we run experiments with Q1,
Q2, Q3, and Q4 using the same setting as in the above section (cf.
Section IV-B-a). However, to show the impact of different event rates,
we streamed all datasets to the operator with event input rates that are
higher than the maximum operator throughput by 20%, 40%, 60%,
80%, and 100% (i.e., event rate= 120%, 140%, 160%, 180%, 200%,
of the maximum operator throughput). In addition, we used a fixed
match probability for all queries. Figure 6 depicts the impact of input
event rates for Q1 and Q3, where the x-axis represents the event rate
and the y-axis represents the percentage of false negatives. We use a
match probability of 30% for Q1 and 4% for Q3. The results for Q2
and Q4 show similar behavior, hence we don’t show them.

It is clear that using a higher event rate results in dropping
more partial matches and hence increasing the percentage of false
negatives. In Figure 6a, using Q1, the percentage of false negatives
for pSPICE increases with increasing the event rate, where it is 18.5%
and 60% when the even rate is 120% and 200%, respectively. The
same behavior is observed for PM-BL and E-BL. The percentage of
false negatives for PM-BL increases from 29% to 86% and for E-BL
from 49% to 94%, with the two event rates. Please note that for the
considered match probability pSPICE is consistently better than PM-
BL and E-BL irrespective of the event rate. Figure 6b, using Q3, as
expected, shows similar behavior.

c) Maintaining LB: pSPICE performs load shedding to main-
tain a given latency bound. Figure 7 shows the result for running
Q2 with two event rates 120% (defined as R1) and 140% (defined as
R2). In the figure, the x-axis represents time and the y-axis represents
the event latency le. We observed similar results for other event rates
and queries and hence we don’t show them. The figure shows that
pSPICE always maintains the given latency bound LB which is 1
second in this experiment, regardless of the event rate.

Impact of processing time of a PM (τpm) on utility calculation.
As mentioned above, the completion probability Ppm of a partial

match pm is a good indicator to know whether pm will complete
or not, and therefore, we use it in calculating the utility of PMs (cf.
Equation (1)). However, the processing time of a PM (τpm) is also
an important factor in calculating the utility of a PM, and therefore,
we use it in deriving the utility of PMs as well (cf. Equation (1)).
To support this argument, we run experiments using pSPICE with
two different ways of calculating the utility of PMs as follows: 1)
using Equation (1) where we consider both the completion probability
and processing time of PMs in calculating the utility of PMs and 2)
considering only the completion probability in calculating the utility
of PMs (i.e., the denominator in Equation (1) is 1). We refer to the
load shedding strategy that considers only the completion probability
in calculating the utility of PMs as pSPICE- -.

To evaluate the performance of pSPICE and pSPICE- -, we run
both Q1 and Q2 in the same operator and use a window of size 10K
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Fig. 5: Impact of match probability.
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and a pattern weight of one for both queries. The used event rate
is 120%. Since we intend to analyze the impact of processing time
in calculating the utility of PMs on QoR, we force the processing
time of Q1 to be higher than the processing time of Q2 by a factor.
We refer to this factor as τQ1/τQ2, where we use the following
values: τQ1/τQ2 = 1, 2, 4, 8, 12, 16. Figure 8 depicts the percentage
of false negatives for pSPICE and pSPICE- -. In the figure, the x-
axis represents the factor τQ1/τQ2 while the y-axis represents the
percentage of false negatives.

In the figure, the performance of pSPICE and pSPICE- - is same
for low factors τQ1/τQ2. This is because the processing time of PMs
in Q1 and Q2 have less impact on the utility. The difference between
the percentage of false negatives between pSPICE and pSPICE- -
increases when the factor τQ1/τQ2 increases. The percentage of false
negatives for pSPICE is 23% when τQ1/τQ2 = 16 while it is 37.5%
for pSPICE- - with the same factor. This shows that pSPICE results
in reducing the percentage of false negatives by 62% compared to
pSPICE- - for τQ1/τQ2 = 16. As a result, we support our claim that
considering the processing time of PMs is an important factor in
calculating the utility of PMs.

pSPICE overhead. Next, we show the overhead of pSPICE both
during load shedding and during model building.

d) Load shedding overhead: The load shedder and the overload
detector are time-critical tasks and their overhead directly affects

QoR, therefore, they must be light-weight. To show the overhead
of the load shedder and overload detector components in pSPICE,
we run experiments with all queries using the same setting as in
Section (IV-B-a). Figure 9a depicts the results for Q1, where the
x-axis represents the used window size and the y-axis (log scale)
represents the percentage of overhead compared to the total time that
the operator needs to process the input dataset. We observed similar
results for Q2, Q3, and Q4 and hence we don’t show them.

In the figure, the overhead of pSPICE is 1% in case the window
size ws is 3.5K. The overhead of pSPICE decreases with increasing
the window size, where the overhead is 0.7% when the window size is
10K. This is because a higher window size means that more windows
are overlapped. Since events are processed in each window, higher is
the window overlap, higher is the processing latency of events and
hence lower is the operator throughput. A low operator throughput
results in having a smaller load shedding overhead as a percentage
value. The overhead of PM-BL is slightly lower than the overhead
of pSPICE which is expected since PM-BL performs random PMs
shedding and doesn’t have any cost for sorting PMs. The overhead
of E-BL is 3% in case of window size of 3.5K and increases with
increasing the window size, where it is 10% with a window size
of 10K. The reason is again related to the number of overlapped
windows. With high window overlap, since E-BL drops events from
windows, it must drop more events in total and hence it causes more
overhead. This shows that the overhead of pSPICE is lower than the
overhead of E-BL by up to 1400%. As a result, dropping PMs has
less overhead than dropping events since it is performed on a higher
granularity.

e) Model overhead: As we mentioned above, building the
model is not a time-critical task. However, since there might be a
need to retrain the model in case the distribution of input event stream
and/or the content of input events change (cf. Section III-D), we also
analyze the overhead of building the model in pSPICE. An important
factor that controls the overhead of building the model is the window
size since it represents the number of iteration in the value iteration
algorithm. Higher is the window size, more iterations is needed to
solve Markov reward process and hence higher is the overhead.

To evaluate the overhead of building the model, we run experiments
with Q1 with the same setting as in Section (IV-B-a) but we use
higher window sizes to show its impact on the overhead. We use
the following window sizes: ws = 6K, 10K, 16K, 18K, 24K, 32K
events. Figure 9b shows the overhead of model building in pSPICE,
where the x-axis represents the window size and the y-axis represents
the time needed in seconds. In the figure, as expected, the model
building overhead increases with increasing the window size, where
it is 1 second when window size is 6K events and 2.4 seconds when
window size is 32K events. However, this overhead is still small
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Fig. 9: overhead of pSPICE.

which means that the model can be retrained without introducing a
high overhead on the system or waiting a long time for a new model.

f) Discussion: Through extensive evaluations with several
datasets and a set of representative queries, pSPICE shows that it has
a very good performance w.r.t. QoR where it usually outperforms both
PM-BL and E-BL, especially with sequence operator and sequence
with repetition operator. Only in the scenario of a relatively high
match probability, E-BL might outperform pSPICE, especially for
any operator. However, E-BL, as mentioned in Section I and II,
might result in false positives, e.g., for negation operator. Moreover,
pSPICE reduces the overhead of load shedding significantly com-
pared to E-BL which has a high overhead. The overhead of pSPICE is
only slightly higher than the overhead of PM-BL.

V. RELATED WORK

CEP is used to detect patterns in input event streams which are
continuous and infinite [16], [1], [2], [3], [6], [25]. In CEP, there
are several well-known operators: sequence, negation, disjunction,
conjunction, aperiodic, and periodic [16], [6], [17], where the order
of events in the input event stream and in patterns is extremely
important, e.g., for sequence and negation operators.

The input event streams, in CEP, have high volume and usually
need to be processed at near real-time [7], [8]. To process those
events within a given latency bound, researchers have proposed
several techniques such as parallelism, optimizations, and pattern
sharing. In [2], [3], [11], [8], [1], [12], the authors proposed to
distribute the CEP operator graph on multiple compute nodes and
to parallelize each operator on one (scale-up) or more nodes (scale-
out). To efficiently process patterns, in [6], [26], the authors proposed
different optimizations, e.g., intra- and inter-operator optimizations
[6], or using a special hardware (FPGA) to speedup the event
processing [26]. Another way to improve the operator throughput is
by sharing the pattern matching between several patterns as proposed
in [19], [27]. The authors proposed algorithms to find the best sharing
between different patterns in an operator.

The above mentioned techniques may not always be possible or
may not be sufficient to handle the incoming event rate. Therefore,
load shedding is used in these situations to avoid violating a defined
latency bound. Various approximation techniques are frequently used
to avoid resource constraints in various domains such as distributed
graph processing [28], in-network processing [29], [30], stream
processing [13], [10], [4], etc. Load shedding has, especially, been
extensively studied in the stream processing domain [13], [14], [10],
[4], [31], [9], [7], [32]. The main focus here is on individual tuples,
where the authors assume that the importance/utility of tuples are
independent from other tuples.

In [13], [4], [9], the authors assume that tuples have the same
processing latency but different utilities depending on the tuple’s
content. Hence, if there is a need to drop tuples, they drop those

tuples with the lowest utilities. [13] assumes the mapping between
the utility and tuple’s content is given, for example, by an application
expert, while [13], [4] learn this mapping online depending on the
used query. The authors in [10] assume that all tuples have the same
impact on QoR but tuples may have different processing latencies.
Therefore, they drop those tuples that have the highest processing
latencies. In [7], the authors fairly select tuples to drop from different
input streams by combining two techniques, stratified sampling and
reservoir sampling. The authors in [32] also proposed to use stratified
sampling and reservoir sampling to perform approximate join. In both
these papers, the authors assume that tuples have the same utility
values and impose the same processing latency which is, however,
not true in CEP. In comparison to those approaches, we assume that
there is a dependency between events in patterns and in input event
streams in the context of CEP. Moreover, we assume that events might
have different processing latencies.

In [15], the authors proposed a load shedding strategy for CEP
systems. They formulated the load shedding problem in CEP as a
set of different optimization problems, where they consider a multi-
pattern operator. The authors consider only the repetition of events in
the input event stream and in patterns. However, they don’t consider
the order of events in both the input event stream and in patterns
which is important in CEP, e.g., in sequence and negation operators.
In [18], the authors proposed a load shedding strategy, called eSPICE,
for CEP systems. eSPICE drops events from the operator’s input
event stream, where it considers the order and dependency of events
in patterns and in the input event stream. It assigns utility values to
events within a window where an event might have different utility
values in different windows, depending on its position within the
windows. eSPICE efficiently drops events that have the lowest utility
values from windows by finding a utility value that can be used as a
threshold utility to drop events. However, eSPICE imposes a higher
overhead on the operator compared to pSPICE since it performs
dropping on a finer granularity. Moreover, since eSPICE drops events,
it might result in producing false positives, e.g., when using negation
operator.

VI. CONCLUSION

In this paper, we proposed an efficient, light-weight load shedding
strategy, called pSPICE. In case of overload, pSPICE drops PMs from
a CEP operator’s internal state to maintain a given latency bound.
To minimize the impact of load shedding on QoR, we proposed to
utilize two important features (current state of a PM and number of
remaining events in a window) that reflect the importance of PMs
and used these features in calculating the utility of PMs, where we
model the pattern matching operation as a Markov reward process.
By thoroughly evaluating pSPICE with three real-world datasets and
multiple important queries in CEP, we show that pSPICE consid-
erably reduces the degradation in QoR compared to state-of-the-art
load shedding strategies. Moreover, we show that dropping partial
matches instead of individual primitive events significantly reduces
the overhead of load shedding on the system.
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