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Abstract—Sparse inverse covariance estimation (i.e., edge de-
tection) is an important research problem in recent years, where
the goal is to discover the direct connections between a set of
nodes in a networked system based upon the observed node
activities. Existing works mainly focus on unimodal distributions,
where it is usually assumed that the observed activities are
generated from a single Gaussian distribution (i.e., one graph).
However, this assumption is too strong for many real-world
applications. In many real-world applications (e.g., brain net-
works), the node activities usually exhibit much more complex
patterns that are difficult to be captured by one single Gaussian
distribution. In this work, we are inspired by Latent Dirichlet
Allocation (LDA) [4] and consider modeling the edge detection
problem as estimating a mixture of multiple Gaussian distribu-
tions, where each corresponds to a separate sub-network. To
address this problem, we propose a novel model called Gaussian
Mixture Graphical Lasso (MGL). It learns the proportions
of signals generated by each mixture component and their
parameters iteratively via an EM framework. To obtain more
interpretable networks, MGL imposes a special regularization,
called Mutual Exclusivity Regularization (MER), to minimize the
overlap between different sub-networks. MER also addresses the
common issues in read-world data sets, i.e., noisy observations
and small sample size. Through the extensive experiments on
synthetic and real brain data sets, the results demonstrate that
MGL can effectively discover multiple connectivity structures
from the observed node activities.

I. INTRODUCTION

Edge detection of brain network [6] aims at identifying
the edges between nodes (i.e., functionally coherent brain
regions) of a brain mapping [3] from a temporal sequence of
observed activities (e.g., fMRI scans). Since a well-constructed
connectivity network servers as the prerequisite for many
graph mining algorithms on brain disorder diagnosis and brain
functionality analysis [1]], it is significant to design a more
effective and accurate edge detection method. Existing edge
detection methods usually rely on the assumption that all
nodes’ activities obey a multivariate Gaussian distribution, and
the connections between nodes could be depicted by their
inverse covariance matrix (a.k.a. precision matrix).A widely
used variation of this line of works is known as Graphical
Lasso (GLasso) [7l], which additionally imposes sparseness
on the precision matrix. However, in many neurology studies
such as [5], human brains usually exhibit dramatically different
activity modes when they perform different tasks. Based on
these studies, we believe that the cognitive structure of the
human mind can be paralleled into several sub-graphs based on
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Fig. 1: The problem of Gaussian mixture sparse inverse
covariance estimation. The brain activities over time may
originate from the mixture of multiple latent cognitive brain
modes (i.e. different connectivity structures among nodes).
Without knowing the mode proportions and assignments in the
observed brain images, our goal is to discover these underlying
sub-networks for different modes.

different cognitive control processes and behavior. Cognitive
control means a set of dynamic processes that engage and
disengage different nodes of brain to modulate attention and
switch between tasks. Applying GLasso without considering
different latent cognitive modes is equivalent to deriving an
“average” network representation. Since the behavior of dif-
ferent brain modes varies significantly, the derived “average”
network may lose crucial information. Under such context, as
illustrated in Figure [I] it is natural to investigate whether and
how one could extend the edge detection methods applied in
brain network to capture the connectivity structures of multiple
underlying cognitive brain modes.

To incorporate the concept of multiple connectivity structure
into edge detection, we follow the idea of latent Dirichlet
allocation (LDA) [4] to adopt Gaussian mixture model on
this problem. LDA views a document as a mixture of various
topics, and it assumes that the generation of a document
follows some topic-word distributions which can be found by
sampling. Similarly, we could view brain scans as mixtures of
latent modes, where each mode is characterized by a Gaussian
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Fig. 2: Comparison of Latent Dirichlet Allocation(LDA),
Graphical Lasso (GLasso) and our model in this paper. In
each sub-graph, the boxes are ’plates” representing replicates,
which are repeated entities. The outer plate represents docu-
ment in LDA or observation subject in brain network study,
while the inner plate represents the generative process of word
(W) in a given document or brain node activity (A) in a
given subject, each of which word or scan is associated with
a choice of topic (17') or mode (M) and the parameter of the
corresponding word or node activity distribution (¢ or ¥). 7
is the topic or mode distribution. N denotes the number of
words or scans.

distribution with different covariance X,;. Each covariance
matrix Xy corresponds to a specific connectivity among brain
nodes. In the generation of each brain node activity, our model
chooses a mode M based on the mode distribution 7 (as LDA
chooses a topic), and then it generates a brain node activity
A; ~ Multinomial(0, Xy) (as LDA generates a word based
on the topic chosen). Figure [2] illustrates the relations and
differences between our proposals and LDA, we also compare
with traditional edge detection methods Graphical Lasso [[7]],
where all brain node activities are assumed being produced by
a single unified zero-mean Y-covariance multivariate Gaussian
distribution.

In this paper, our goal is to reveal these structure of under-
lying sub-network from the observed activities simultaneously.
To solve above issues, our main challenges are as follows:

o Mixture of multiple connectivity networks: In real-
world cases, the proportions and assignments of each
mode are not observable. Without the prior knowledge of
them, general GLasso only discovers a simple graph for

the whole data sets. While our problem setting requires
estimating the proportions and assignments of multiple
latent cognitive modes as well as the parameters of the
network for each mode, with the same input as GLasso,
which is much more challenging.

o Direct connectivity among the nodes: The finite Gaus-
sian Mixture Model (GMM) [12] seems a straightfor-
ward solution to our problem, which incorporates a
heterogeneous structure into the graphical model. It fits
multivariate normal distributions and treats proportions
and assignments as prior and posterior probabilities (esti-
mators) in the Bayesian setting respectively. However, it
estimates the covariance of each distribution rather than
the inverse covariance, which indicates that the discov-
ered connections could be indirect and make the network
unnecessarily complicated. So GMM is inappropriate to
distinguish the directed relationships between each pair
of nodes.

« Noisy Observations and Small Sample: It is already
a challenging task to discover a single network given
the noisy observations and the small size of the data
sample. GLasso employs simple ¢;-norm regularization
on to alleviate the sensitiveness to noises, but it is not
sufficient for our case. Based on the cognitive studies
on the human brain [[L1], each brain sub-network is not
only sparse but also has limited overlapping with other
sub-network, simply adopting ¢;-norm regularization as
in GLasso may make the derived sub-network highly
intertwined and hard to interpret. So we want to design a
new regularization into the model, which can enforce it
to discover a set of different sub-graphs, no matter small
sample size or noisy data.

To tackle the above challenges, we propose a new model,
namely MGL, to discover such mixture connectivity structures
of the brain network. Similar to GMM, MGL learns the
proportions and assignments of each latent cognitive mode
iteratively via an EM framework, with the emphases on infer-
ring the inverse covariance matrix of each latent distribution.
A novel regularization approach called Mutual Exclusivity
Regularization (MER) is also proposed to differ each inverse
covariance matrix, implying that sub-network of different brain
regions are activated under different cognitive modes.

II. PRELIMINARY

A. Notation

Throughout this paper, R denotes the set of all real numbers,
R™ stands for the n-dimensional euclidean space. The set of
all m x n matrices with real entries is denoted as R™*",
All matrices are written in boldface. We write X > 0 to
denote that matrix X is positive definite. We write tr(-) to
refer the trace of a matrix, which is defined to be the sum
of the elements on the main diagonal of the matrix. We use



|X]| to denote the determinant of a real square matrix X. We
define a special matrix of X as follows:

) 0 | X12| | X1n]
X = ||Xa2] 0 | Xan| (1
| Xn1] [ Xn2| -+ 0

X is the non-negative copy of X removed all diagonal
elements.

B. Graphical Lasso

Graphical Lasso (GLasso) or Gaussian Graphical Model
(GGM) is usually formulated as the following optimization
problem,

min —log|®[ +tr(SO) + A[|O |1 2)

where S = 1XTX is the empirical covariance matrix. © =
1 is defined as the inverse covariance matrix, which can
filter the directed links between all relationships. ||®||; is the
¢1-norm regularization that encourages sparse solutions, and A
is a positive parameter denotes the strength of regularization.

III. MGL METHOD

A. Gaussian Mixture Graphical Lasso

Given the number of base distributions K and the number
of node NV, we assume the observed sample of each node is a
mixture of the K distributions. Thus, the joint probability of

all observations X = (] , - - - wN) € R¥*P js given by
p(X|Ok, py, o) = H Z orN (4], Bie)
i=1k=1

We could assume p;, = 0 without losing generality, so the
negative log likelihood (NLL) in terms of {®}} is given by,

N K
NLL() = - log( Y enN(@il0,01)) ()
i=1 k=1
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B. The Mutual Exclusivity Regularization

©,. } is the model parameters.

Similar to the Adaptive Lasso in citezou2006adaptive, we
also need to impose regularization on our mixture model to ob-
tain interpretable results, which means non overlapping edges
exist among all estimators of precision matrices. However, be
different with adaptive lasso or fused lasso, the intuitions are
two folds: (1) we want each ®j to be sparse; (2) we want
each © to be fairly different from other ®;/. Towards this
end, we propose to the mutual exclusivity regularization as
follows,

Ox 0 ({Or})
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where © is the non-negative copy of ® removed all diagonal
elements. The first term is identical to graphical lasso, which
imposes sparsity controlled by A; > 0 on each ®,. The second
term is the summation of the approximate divergence measure

Algorithm 1 Algorithm for MGL

Require: i: X: The observations of D-variate Gaussian dis-
tribution
ii: k: the number of Gaussian distributions
iii: Ap: the Lagrangian multiplier of sparsity con-
straint
iv: Ag: The Lagrangian multiplier of mutual exclu-
sivity constraint
Vi 1termam the maximum number of iteration
Output. @)k, ¢k
1: Initialization: initialize gbk ), 6(0) and r(o)
2: repeat
: E step: Update the latent variable 7”1(1?
¢(t71) and @ (t—1)
M step: Update ¢ e with r(t D
p: Up ko Sk
5. until iter = iter,,,, or convergence

with given

between each pair (®;,®;). It is easy to see when there is
no overlapping non-zero entities between each @y, this term
reaches its minimal value 0. A > 0 is employed to tune the
strength of the second regularization. So it makes sense that
we can use this term to force each estimation of ®; in the
result to have as few over-lapping elements as possible.

Hence, we formally present the objective of our MGL as
follows,

{ém;lo}NLL({@k}) + 000 ({Or}) ®)

C. The Latent States

Since there are K separate latent distributions, so each data
sample x; could come from one of the K distributions, we
denote the corresponding state as z; € {1,---, K}. Thus, the
NLL function could be rewritten as follows,

—lz;logZ( = wlk)emk))

i Ti, Zik | Ok P
(p( Q(kzik)k k))

Here Q(z;1) is the latent variable and Zszl Q(zir) = 1.
According to the expression in the Equation (), it can
not be directly computed because the expression in log is
a sum term. So we can use the Expectation Maximization
(EM) algorithm to optimize the above NLL w.r.t. {©}. We
summarized the MGL algorithm in Algorithm ().

NLL(6)

(6)

I
'Pﬁz
M= I

D. Initialization

As we know from the Algorithm (I), we need to give
starting values of each estimators. In the process of com-
parative experiments, we found that the initialization of the
parameters will largely affects the performance of our model.
The following scheme we found empirically works well in
our experiments. For each observation ¢ = 1,..., N, we
distribute it randomly a class k € {1,..., K}. Then we assign



LI spectral I} spectral

%U -A- Kmeans -A- Kmeans
00 JGL : JGL
) W S O MG\ O Nt
04 A L‘"‘A---A‘"'A"“A——--Z

0s !\E,-B»ﬂ._ﬂ_-a——ﬂ—-{

100150 200 250

pf-B--B-Be g B

300 350 400 450 500 0.1 02 03 04 05 06 07 08
n noise

(a) Low Dimension - Sample (b) Low Dimension - Noise
Size (Scenario 1) (Scenario 2)

L} spectral o 06] TF Spectral
-A- Kmeans s -A- Kmeans
05 JGL %os JGL

B EESES TC  S
B = i =t - WU B N - B = = o B

200 300 400 500 600 700 800 900 1000 01 02 03 04 05 06 07 08
n noise

(c) High Dimension - Sample (d) High Dimension - Noise
Size (Scenario 3) (Scenario 4)

Fig. 3: Comparison of each model on edge detection. Each
figure shows the results of Fl-score. The dark blue line
indicates GLasso + Spectral; the light blue indicates k-means
+ GLasso; the orange one shows the result of MGL without
Mutual Exclusivity Regularization and the green one shows
the result of MGL.

a weight 7;; = 0.9 for this observation i and distribution k
0.1

and 7;; = 57=7 for all other distributions. In the M-step, we
update ®y, from the initial values é,(co) computed by GLasso
based on the whole samples. and ¢;, from the initial values
O = %

IV. EMPIRICAL STUDY

In this part, we demonstrate the performance of our pro-
posed model through extensive comparative experiments. We
evaluate our proposed model in synthetic datasets at first.
To comprehensively evaluate proposed model, we conduct
experiment to answer the following research questions:

« RQ 1: How does MGL perform compared with state-of-
the-art models in the consideration of the effect of sample
size?

¢ RQ 2: Does our model still show robustness under noise?
If the MER regularization term has positive influence on
the performance under noise?

¢ RQ 3: How do hyper-parameters in comparative experi-
ments impact each model performance?

e RQ 4: Is there a problem with mixture brain network
structure in real ADHD-200 datasets?

A. Compared Baselines

To demonstrate the effectiveness of our proposed method,
we test against several variations of the state-of-art method
Graphical Lasso:

o GLasso + Spectral Clustering: GLasso algorithm that
assumes all data samples are drawn from the same Gaus-
sian distribution, then using Spectral Clustering divide the
whole network into several sub-graph.

o k-means + GLasso: This is a pipeline method that first
employs k-means to assign each x; to different groups,
then using GLasso for each group to obtain the final ®.

o JGL [9]: This is the Joint Graphical Model with fused
lasso, which is proposed in [9]. It is equivalent to our
proposed model without MER term. So it can work as
the comparative method for assessing the performance of
MER.

B. Synthetic Simulations

Due to the lack of ground truth in many real-world data, we
first compare our proposed method against other competitors
on several carefully designed synthetic data sets.
1) Data Set: In this sub-section, we design some synthetic
data sets purposefully. Firstly, we generate k diagonal matrices
(k is the number of distribution, which is given in advance),
then divide it into several equal-scale blocks. It makes sense
for two reasons: we need to control each sub-graphs ®; with
non-overlapping edges on off-diagonal areas; by making edges
of each sub-graph more concentrated, it is helpful for making
results conductive to visualization. Secondly, we choose differ-
ent off-diagonal blocks on each ®y, giving connectivities for
these chosen blocks with a high density. Following the above
steps, we generate each ®;, without overlapping edges on off-
diagonal areas. Based on ®,, we compute each 3, then select
Ny, samples (Zle Nj = N) randomly from each Gaussian
distribution. In the next subsection, in order to evaluate the
stability of our model, we also add noise into the samples.
To exclusive the system randomness, we sample 10 times for
all experiments, calculate the average of each experiments. So
we can evaluate the precision and stability of our model at the
same time.
2) Experimental Settings: We simulate four scenarios by
controlling one parameter and holding on the others. In these
situations, we select sample size N and the standard error of
noise o as the controlled parameters.
e Scenario 1: We fix p = 8 (the number of variables),
k = 2 (the number of Gaussian distributions), and ¢ = 0
(the standard error of noise), and then control sample size
N from 100 to 520.
e Scenario 2: We fix p = 8, £k = 2, and N = 500, and
then control noise ¢ from 0.1 to 0.8.

e Scenario 3: We fix p = 20, k = 2, and o = 0, and then
control sample size N from 200 to 1000.

e Scenario 3: We fix p = 20, k = 2, and N = 1000, and
then control noise o from 0.1 to 0.8.

3) Evaluation: To evaluate the quality of each sub-
graph, we define the Fl-score of edge detection as F'1 =
ﬁm, where N, is the number of true edges detected
by the model, IV, is the number of true edges and N, is the
total number of edges detected. According to the expression,
higher F1-score indicates better quality of edge detection.

Figure [3] shows the comparison between MGL and other
baseline models. The results in the figure answer the first
three RQ mentioned at the beginning of this section. The
first column shows the results when we control sample size



N and hold on the others, which corresponds to RQ1. It is
obvious that k-means and Spectral models are useless when
the ground truth data sets are drawn from mixture Gaussian
distribution. Meanwhile, when the sample size is not large
enough, the precision of JGL is lower than that with MGL. The
second column shows the results when we control noise, which
corresponds to RQ2. We fix the sample size N on 500, so
when o = 0, JGL is as good as MGL. According to the results,
The louder the noise, the worse JGL performs, which means
sensitive to the noise.So the result demonstrates that MER
regularization can improve the performance of our proposed
model. Compared to the others, MGL shows robustness in this
scenario. To answer RQ3, we can figure out the answer from
both column in this figure. Since our experiments are setting
in low-dimensional and high-dimensional space separately,
we can see from all comparison results that the issue of
hyper-parameters does not affect the performance of MGL. In
contrast, the performance of JGL in high-dimensional space
isn’t as well as that in the low-dimensional space, no matter
in the scenario of sample size or noise. In summary, in the
comparative experiment of synthetic datasets with ground-
truth, our proposed method MGL shows better accuracy and
robustness than that of other comparison methods.

C. Real fMRI Data

In the subsection, we evaluate our proposed method on
fMRI dataset from ADHD-200 projecﬂ Through this paper,
we discover the network discovery from a collection of fMRI
scans, in which each sample corresponds to a 4D brain image
(a sequence of 3D images) of a subject. Our real world dataset
is distributed by nilearlﬂ Specifically, there are 40 subjects in
total. Among them, 20 subjects are labeled as ADHD, and the
others are labeled as TDC. The fMRI scan of each subject in
the dataset is a series of snapshots of 3D brain images of size
61 x 76 x 61 over ~176 time steps.

In our experiment, we only choose the subjects which are
labeled as ADHD. We focus on the multiple connectivity
structures among the same subjects, in order to provide
evidence on feature selection between different subjects in
further study. Rather than discover the brain network on the
level of voxels, we extracts the signal on regions defined via
a probabilistic atlas, to construct the data sets. So it is more
conventional for visualization of the results. The data sets is
a 1899 x 39 data sets and we consider that they are drawn
from a mixture Gaussian distribution. However, the number k
of it is unknown, which need to be given in advance. Through
repeated experimental observations, we found that £ = 4 can
provide the most reasonable results on the data sets.

Because real fMRI data lacks ground-truth as a reference
to measure the accuracy and robustness of the model. We
are more concerned with the interpretability and rationality
of the results. Specific to our proposed model, we are more
concerned about whether our model can mine different con-
nectivity structures among nodes from the fMRI datasets.

Thttp://fcon_1000.projects.nitrc.org/indi/adhd200
Zhttp://nilearn.github.io/

(a) Sub-graphs discovered by k-means

(b) Sub-graphs discovered by JGL

(c) Sub-graphs discovered by MGL

Fig. 4: Comparison of k-means + GLasso, JGL and MGL on
ADHD dataset. The results show how to estimate a mixture
connectivity structure on a group of subjects using different
group sparse inverse covariance estimation models from real
fMRI data set. The closer the color of elements in off-diagonal
is to blue, the bigger probability the directed edges between
corresponding nodes.

According to the Figure @] we can find that there are almost
no differences among four sub-graphs discovered by k-means
plus GLasso. It indicates that this method is useless for mining
sub-graphs in ADHD data sets. JGL shows four different
sub-graphs, however, so many overlapped areas among them.
These results seem not to be sparse matrices, which indicates
that the corresponding connectivity structure is not very clear
through this method. Compared to it, sub-graphs discovered
by MGL is clearer and the number of overlapped areas is
less. Therefore, although lacking the ground truth in ADHD
data, we can still believe that the inferred results of MGL is
consistent with the defined problem in this paper, especially
in the consideration of mixture Gaussian distribution with
non-overlapping areas among their precision matrices. The
Figure [5] shows the corresponding connectivity structure of
the results discovered by MGL. Here we only choose the
axial direction of the cuts to show. The closer the color
is to red, the stronger the directed relationship between the
corresponding nodes. We highlight the stronger edges by ad-
justing the threshold of colorbar. According to the visualization
of results, we can see that different sub-graphs highlight
different relationships among all nodes. Different sub-graphs
emphasize the relationships of different nodes, which means
that subjects present different network structures on the time-
line. This phenomenon is more obvious between the nodes
related to DMN (default mode network), which includes
the Parietal, Occipital Lobes, the Cingulum Region Posterior
and the Frontal Cortex. Although the hypothesis about non-
overlapped areas among each connectivity structure may not
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Fig. 5: We turn the results of Fig. E| into connectome for
visualization. Each precision matrix is displayed on glass brain
on extracted coordinates. These graphs of precision matrices
discovered by MGL in ADHD dataset. The closer the color of
edge is to red, the stronger the directed relationship between
corresponding nodes.

exist in real ADHD subjects, we believe that MGL with
MER regularization can more prominently show the difference
between each connectivity structures discovered, so that we
can have a better understanding of the association between
cognitive network and human activities.

According to the analysis above, despite the lack of ground-
truth, we believe that the existing results are still consistent
with the problem defined in this paper. So the result shows that
there is a mixture connectivity structure among nodes in the
fMRI datasets, and our proposed model MGL can effectively
mine this mixture connectivity structure.

V. RELATED WORK

In the edge detection of brain network, it has two major
branches: effective connectivity estimation and functional con-
nectivity estimation. For the first branch, scholars pay more
attention on obtaining a directed network from fMRI data
through structure learning method for Bayesian networks [10].
In contrast, the second branch focuses on some approaches
such as hierarchical clustering, pairwise correlations and in-
dependent component analysis, which can be found in [§] for
more details. [7] proposed sparse gaussian graphic models ,
which are a very useful for discovering directed links of brain
network based on large-scale dataset by using sparse inverse
covariance estimation. However, in the task of edge detection,
these methods focus on unimodal distributions, where it is
usually assumed that the observed samples are drawn from a

single Gaussian distribution, which is opposed to some recent
studies [2]. The Joint Graphical Model with fused lasso, which
is proposed in [9], is in the framework of multivariate Gaussian
mixture modeling. However, this method has shown to be
sensitive to the noise and small size of the data sample.

VI. CONCLUSION

To address the problem of mixture connectivity substruc-
tures between nodes in brain network discovery, we propose
embedding one of the current methods of estimating multiple
Gaussian graphical models in the framework of Gaussian
mixture modeling, then design a new regularization term,
called mutual exclusivity regularization, to make sub-graphs
un-overlapped with each other. Through extensive controlled
experiments, we demonstrate that our proposed model MGL
shows more effectiveness than other baseline models, mean-
while, MGL shows more robustness than JGL, especially in the
consideration of small samples or noisy data sets. In addition,
this conclusion is also demonstrated in the experiment of real
fMRI brain scanning datasets from ADHD subjects. So we
have reason to believe that, our method can also be applied
in other domains when network connectivity structure is very
complex.
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