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Abstract—Oak Ridge National Laboratory (ORNL) experi-
mental neutron science facilities produce 1.2 TB a day of raw
event-based data that is stored using the standard metadata-rich
NeXus schema built on top of the HDF5 file format. Performance
of several data reduction workflows is largely determined by
the amount of time spent on the loading and processing al-
gorithms in Mantid, an open-source data analysis framework
used across several neutron sciences facilities around the world.
The present work introduces new data management algorithms
to address identified input output (I/O) bottlenecks on Mantid.
First, we introduce an in-memory binary-tree metadata index
that resemble NeXus data access patterns to provide a scalable
search and extraction mechanism. Second, data encapsulation
in Mantid algorithms is optimally redesigned to reduce the total
compute and memory runtime footprint associated with metadata
I/O reconstruction tasks. Results from this work show speed ups
in wall-clock time on ORNL data reduction workflows, ranging
from 11% to 30% depending on the complexity of the targeted
instrument-specific data. Nevertheless, we highlight the need for
more research to address reduction challenges as experimental
data volumes increase.

Index Terms—experimental data, reduction workflows, data
management, metadata, indexing, Mantid, NeXus, HDF5, neu-
tron scattering
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I. INTRODUCTION

Vast quantities of data are produced at two of the largest
neutron source facilities in the world hosted at Oak Ridge
National Laboratory (ORNL): the High Flux Isotope Reactor
(HFIR) and the Spallation Neutron Source (SNS) [1]. Neutron
scattering data produced at ORNL is used to address major
scientific challenges across several industries. Currently ORNL
instruments produce experimental data at a rate of 1.2 TB a
day, for a grand total of 1.6 PB, with plans to expand the
current volumes as new instruments, for example the VENUS
beamline [1], [2], become available.

Instruments at ORNL’s HFIR and SNS facilities record indi-
vidual neutron events [3] containing three essential elements: i)
detector pixel identifier, ii) total neutrons’ time-of-flight (TOF)
from source to detector, and iii) wall-clock time of the proton
pulse the neutron is associated with [4]. The vast amount
of raw event data is stored using the metadata-rich standard
NeXus schema [5], built on top of the self-describing HDF5
hierarchical data file format [6]. Each instrument at HFIR and
SNS stores a subset of the NeXus schema according to its
application. This data is hosted at ORNL computing facilities
and available to users via remote access for their scientific
needs [7].

As shown in Fig. 1, the stored NeXus datasets are loaded
for post-processing by several data reduction workflows using
the open-source data analysis and visualization Mantid frame-
work [8], written in C++ [9]. Mantid is part of an international
collaboration between several neutron science facilities around
the world; including ORNL’s SNS and HFIR, the ISIS Neutron
and Muons Source [10], and The Institut Laue–Langevin
(ILL) [11]. Loading NeXus files is an essential component in
existing production data reduction workflows deployed to the
facilities users. Mantid creates an in-memory data structure
named an “event workspace” to interpret raw event data by
loading and processing algorithm operations on NeXus files.
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Fig. 1: Overview of the central role of the Mantid framework
in data reduction workflows, from [8]. The step going from
NeXus files to (event) Workspaces has been identified as a
bottleneck at ORNL.

The latter operation has been identified as a major bottleneck
in data reduction workflows [12]. Tackling these data I/O
bottlenecks is critical for integrating novel paradigms, such as
machine learning algorithms on vast amounts of experimental
data, as they become more important across neutron science
applications [13], [14].

As presented by Foster et al. [15], data I/O bottlenecks
have been largely identified in high performance computing
(HPC) co-design data reduction efforts. Furthermore, Alam et
al. [16] refers to the “metadata wall” as one of the critical
aspects in the performance of parallel file systems as more
rich self-describing data is produced. Current efforts have been
deployed in HPC systems to address metadata and data related
bottlenecks at scale, such as ADIOS 2 [17] and ExaHDF5 [18].
As described by Zhang et al. [19], proper metadata indexing is
essential for efficient search and information discovery as sci-
entific applications continue to produce large amounts of data.
Much of the data generated from experiments, observations,
and simulations is stored using self-describing data formats; in
which the metadata and data can be accessed efficiently all at
once. However, the authors also argue that very few systematic
studies exist on the discovery of in-memory index strategies
for different scientific applications. Diederich and Milton [20]
proposed the creation of metadata structures that are domain-
specific, as opposed to well-established knowledge-based data
models. The latter metadata problem has been identified in
this work as one of the bottlenecks to address in the targeted
neutron scattering data reduction workflows.

The present work introduces optimal data management
strategies to address current I/O bottlenecks in the Mantid
framework processing stages of NeXus datasets. In particular,
managing the metadata entries in-memory to reduce the com-
pute and memory runtime footprint. First, a suitable memory-
persistent binary-tree [21] structure is introduced to speed up
search and extraction operations by using an “absolute-path”
metadata entry index that matches processing operations on

Mantid. The goal is to replace the current hierarchical ap-
proach to reconstruct indices using a “relative-path” approach
similar to walking through the directories of a file system.
This incurs in added cost as memory and disk input output
(I/O) resources are used “on-demand”. Second, Mantid’s algo-
rithms architecture encapsulation is reformulated to facilitate
persistent data sharing across stages of processing NeXus
files. These changes in the architecture allow for reusable
information, thus reducing current bottlenecks associate with
computing and memory run time footprint.

The remainder of the article is organized as follows. Sec-
tion II describes the NeXus format used for the raw event-
based neutron data stored at ORNL SNS/HFIR facilities and
a description of the current data reduction operations and
challenges in the Mantid framework. Section III presents the
proposed data management strategies in Mantid: introduction
of an in-memory binary-tree metadata indexing structure and
modifying the encapsulation on Mantid algoritms. The impact
is shown in section IV illustrating the consistent speed ups ob-
tained with the proposed strategy for different SNS and HFIR
instruments. In particular, the small angle neutrons scattering
(SANS) reduction workflows of interest. Lastly, conclusions
and future work are presented in section V outlining the
need for further co-design research efforts to provide optimal
management strategies for the generated neutron sciences
experimental data.

II. NEUTRON SCATTERING DATA REDUCTION
WORKFLOWS

A. The NeXus file format

SNS and HFIR instruments at ORNL use the international
standard NeXus schema [5] for storing raw neutron event-
based data. NeXus is based on the HDF5 [6] file format
and follows a strict hierarchy for groups, datasets and at-
tributes that identify each group of raw event based data
from a neutron scattering experiment. Typical sizes for each
file ranges between 0.1 up to 30 GB for each experiment
depending on the complexity of the instrument and the number
of entries of each dataset. These datasets are then stored in
a ORNL-hosted warehouse in the neutron science computing
facilities, analysis.sns.gov, which already amounted to 1.6 PB
of available experimental raw data as of 2020.

The NeXus schema is illustrated in Table I for the metadata
structure saved to an underlying HDF5 file. Each level in
the hierarchy maps to a “group” in the underlying HDF5
dataset that is described with a string attribute with key
“NX class” to identify the group type according to the data
source of information. Two representative groups are shown
for: i) logs, NX class=NXlog, and ii) bank event data entries,
NX class=NXevent data, which represent the majority of the
processed group data type as described in subsection II-B. Log
entries are essentially process variables stored as time-stamped
data which serve as a link to raw event data entries. Actual
value entries, such as arrays or single values, are represented
as scientific datasets (SDS) entries, or NX class=SDS in
the NeXus schema. Thus, SDS entries don’t require explicit
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attribute annotation in the NeXus stored metadata on-disk as
they map directly to the HDF5 definition of a dataset [6].
As a result, NeXus event-based datasets have a hierarchical
metadata structure in which group types are the first level
searching criteria.

Data Type Entry Name
group /entry
attribute /entry/NX class

...
group /entry/DASlogs
attribute /entry/DASlogs/NX class → “NXlog”
group /entry/DASlogs/BL6:CS:DataType
attribute /entry/DASlogs/BL6:CS:DataType/NX class
dataset (SDS) /entry/DASlogs/BL6:CS:DataType/average value
dataset (SDS) /entry/DASlogs/BL6:CS:DataType/average value error

...
group /entry/bank1 events
attribute /entry/bank1 events/NX class → “NXevent data”
dataset (SDS) /entry/bank1 events/event id
dataset (SDS) /entry/bank1 events/event index

...
group /entry/bank91 events
attribute /entry/bank91 events/NX class → “NXevent data”
dataset (SDS) /entry/bank91 events/event id
dataset (SDS) /entry/bank91 events/event index

TABLE I: Schematic representation of the hierarchical NeXus
schema [5] for recorded raw event-based neutron data.

B. Data Reduction Workflows on Mantid

NeXus files are processed in data reduction workflows using
the Mantid framework [8]. These workflows include several
input NeXus files for the physical interpretation, analysis and
visualization tasks required by users of SNS and HFIR instru-
ments. Figure 2 shows the typical user interactions of typical
reduction workflows through the Mantid interface, in which
several MB or GB of NeXus data is reduced to a histogram
or a pixelated image. Reduction workflows call a single and
unified “LoadEventNexus” Mantid function for each NeXus
file. “LoadEventNexus” return an in-memory Mantid structure
called an “EventWorkspace” which is designed specifically for
sorting time-of-flight event histograms [4]. To build a reduced
“EventWorkspace”, “LoadEventNexus” requires internal calls
to different algorithms processing different parts of the NeXus
file entries. Particularly time consuming algorithms include
those processing logs and bank event data and those forming
the in-memory metadata index at each step for each group.
For more details, the reader is referred to the documentation
of the “LoadEventNexus” algorithm on Mantid [22].

Mantid’s original architectural design isolates each algo-
rithmic step shown in Fig. 3, this encapsulation prevents
sharing “expensive” data resources, such as metadata index
information and file handlers, among these steps. Therefore,
the existing implementation reconstructs metadata index infor-
mation for every group level that is accessed in the search for
data entries. As a result, several extra calls are made to the
underlying HDF5 library tracking the metadata in appropriate
b-trees structures [6], as well as increasing the number of
memory allocations required to reconstruct each hierarchical

Fig. 2: Mantid graphical interface illustrating a reduced
“EventWorkspace” and physical quantities generated from
NeXus files, from [8].

Mantid
LoadEventNexus

EventWorkspace

LoadLogs NXlog

LoadMonitors (optional) NXmonitor

LoadGeometry NXgeometry

LoadBankData NXevent data

Raw input data <instrument> < run number>.nxs.h5

Fig. 3: Mantid’s LoadEventNexus steps for processing entries
of a single input NeXus file identified by instrument and
experiment run number in data reduction workflows.

level index. The latter adds to the overall wall-time bottlenecks
observed in several neutron data reduction workflows using
Mantid.

III. PROPOSED DATA MANAGEMENT STRATEGY

The present effort introduces new data management strate-
gies in the stages of Mantid’s “LoadEventNexus” to address
current I/O bottlenecks. First, an in-memory index binary tree
structure is introduced along all the stages of “LoadEvent-
Nexus”. The index key consists of a string prefixed with
the entry “type”, the value of the “NX class” attribute for
each entry in Table I, followed by the absolute path to each



NX class

NXlog

NXevent data NXmonitor

SDS

NXlog

/entry/Log4

/entry/Log3 /entry/Log6

/entry/Log5 /entry/Log7

NXevent data

/entry/bank4 events

/entry/bank3 events /entry/bank6 events

/entry/bank5 events /entry/bank7 events

SDS: Scientific Dataset

/entry/bank4 events/..

/entry/bank3 events/.. /entry/bank6 events/..

/entry/bank5 events/.. /entry/bank7 events/..

Fig. 4: Schematic representation of the efficient binary-tree in-
memory index metadata for NeXus files entries classified by
NX class types at the top level. Each NX class node (NXlog,
NXevent data, SDS) is a binary-tree on its own.

entry. Second, the proposed index is generated as soon as a
NeXus file is opened and reused in the stages of Mantid’s
“LoadEventNexus”. The intention is to replace the current
I/O bottlenecks due to the cost associated with hierarchical
metadata reconstruction at each NeXus group level, as those
shown in Table I. The goal is to also match the search and
processing patterns of NeXus entries in “LoadEventNexus”,
as illustrated in Fig 3.

Figure 4 and Table II show a schematic representation of
the proposed index structure. The first search bucket of this
binary tree is given by the number of entry types (NX classes),
which is typically only a few groups in the NeXus file as
described in II-A. Each node is a binary-tree on its own, since
the Scientific Dataset (SDS) type refers to actual values (single
or array values) it is the node with the largest number of entries
(NX class-entries). As a result, the complexity of a search for
a given entry becomes logarithmic on the number of classes
and the number of entries-per-class:

Key: NX class Value: Sorted binary-tree with absolute-path entry key
NXcollection /entry/DASlogs

/entry/DASlogs/BL6:CS:DataType/enum
/entry/DASlogs/BL6:Chop:Skf1:PhaseLocked/enum
/entry/DASlogs/BL6:Chop:Skf2:PhaseLocked/enum
...

NXdetector /entry/instrument/bank1
/entry/instrument/bank2
...
/entry/instrument/bank48

NXlog /entry/DASlogs/BL6:CS:DataType
/entry/DASlogs/BL6:CS:beamslit4
/entry/DASlogs/BL6:Chop:Skf1:MotorSpeed
...

NXevent data /entry/bank1 events
/entry/bank2 events
...
/entry/bank48 events

SDS /entry/DASlogs/BL6:CS:DataType/average value
/entry/DASlogs/BL6:CS:DataType/average value error
...
/entry/bank1 events/event id
/entry/bank1 events/event index
/entry/bank1 events/event time offset
/entry/bank1 events/event time zero
/entry/bank1 events/event total counts
...
/entry/bank48 events/event id
/entry/bank48 events/event time offset
/entry/bank48 events/event time zero
/entry/bank48 events/event total counts
...

TABLE II: Resulting in-memory index implementation using
C++’s map<string,set<string> data structure, show-
ing the two search levels by i) NX class and ii) absolute-path
entry for a single NeXus file. SDS entries are the largest sub-
tree.

search ∼ O (log (NX classes × NX entries-per-class)) .
(1)

The resulting index is immediately constructed in-memory
and passed along the algorithms called inside “LoadEvent-
Nexus” in Fig. 3. The latter required architectural changes in
the algorithms encapsulation inside Mantid to enable reusabil-
ity of “expensive” resources, such as the introduced binary
tree index in Fig. 4, to avoid frequent memory allocation
operations.

From the implementation perspective, the available data
structures from the C++ standard template library (STL) [9]
are used. The end result is a two-step ordered binary tree,
“map<string,set<string>”, in which the STL “map”
and “set” associative containers have logarithm complexity
guarantees. Due to the average number of entries, typically
in the lower thousands range (2,000-3,000), no added benefit
was seen with other associative data structures, e.g. hash. In
addition, the sorted aspect is also desired to enable range
loops as observed in the current implementation of “Load-
EventNexus” [22]. For implementation details and, most im-
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Fig. 5: Mantid’s “LoadEventNexus” CPU profiling flame
graph representation for (a) Mantid v5.0, (b) Mantid latest
implementation with our proposed strategy. The reduction of
metadata-related CPU operations bottlenecks is illustrated in
this comparison.

portantly, results and performance reproducibility the reader
is referred to the changes on Mantid’s source code: https:
//github.com/mantidproject/mantid/pull/28495 currently avail-
able on Mantid’s latest development branch.

IV. IMPACT

A. Mantid LoadEventNexus Performance

The proposed changes in data management resulted in
fewer metadata operations inside Mantid’s “LoadEventNexus”.
Figure 5 shows the flame graph [23] representation (x-width
illustrates the cost of each function, y-heigth is function call
stack) of the CPU profiling for all the existing Mantid tests
using “LoadEvenNexus” for: (a) Mantid v5.0, and (b) Mantid
latest development branch with the proposed improvement.
It can be seen that the CPU time spent on tasks related
to metadata management for entry search have been largely
reduced for a variety of files.

NeXus file Entries Size (MB)
CG2 8179 (GPSANS) 3,683 62
CG2 8947 3,712 725
CG3 943 (BIOSANS) 3,203 71
CG3 816 3,203 766
CG3 1545 3,607 137
CG3 1056 3,387 269
CG3 1003 3,387 1800
CORELLI 83353 2,660 297
CORELLI 145950 2,974 510
EQSANS 112300 2,529 461
EQSANS 113407 2,532 5800
NOM 78093 1,572 1100
NOM 78106 1,572 488

TABLE III: Summary of selected representative NeXus files
generated at ORNL instruments for Mantid’s “LoadEvent-
Nexus” performance comparison.

Further measurements are provided to understand the im-
pact on each individual NeXus file generated from different
SNS and HFIR instruments at ORNL neutron facilities. Each
instrument generates a set of “runs”, with each run stored as
a NeXus file. Selected files are provided in Table IV for a
variety of instruments highlighting the different number of
NeXus entries and sizes, which are typically processed with
Mantid’s “LoadEventNexus”.

Performance of Mantid’s “LoadEventNexus” is measured
for the v5.0 release version and compared against the latest
development branch with the introduced changes from this
work. As shown in Fig. 6, wall-clock times are reported for
“LoadEventNexus” on the NeXus files listed on Table III
running on a AMD Ryzen 7 3700X 8-Core processor, 64 GB
of RAM, and a Hitachi HDP72505 500 GB hard drive for file
storage. For completeness, we provide measured wall-clock
times using “non-cached” files (not previously used), and “hot
cached” files (previously used) to cover the different scenarios
in which a NeXus file could be retrieved by users. Overall,
results in Fig. 6 demonstrate that the changes introduced
from this work provide a consistent speed up across different
instrument generated NeXus files. Impact may vary depend-
ing on the file characteristics. For example, large files from
EQSANS [24] show little speed up in the wall-clock times,
which indicates the need for identifying more bottlenecks in
“LoadEventNexus”, while the smaller GPSANS (CG2) [25]
files see larger benefits in speed up. More research is needed
to understand the relationship between internal compute and
I/O algorithms and file characteristics, in particular metadata
entries and file sizes, as those shown in Table III. The long-
term goal is to co-design efficient data reduction workflows as
new use-cases are identified.

B. ORNL Data Reduction Workflows

Data reduction workflows are typically composed by a
handful of NeXus files identified by different runs, such as
those presented in Table III. The end result is the reduction
of the raw NeXus event-based data into physical quantities
of interest, in particular histograms and images. The current
algorithmic improvements are then applied to three data reduc-

https://github.com/mantidproject/mantid/pull/28495
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(a)

(b)

Fig. 6: Comparison of Mantid’s “LoadEventNexus” wall-clock
times for Mantid v5.0 release and our proposed strategy on
Mantid’s latest implementation. Results are shown for: (a)
non-cached files (run once), (b) cached files showing varying
improvements across different ORNL instrument generated
files.

tion workflows of interest for small angle neutron scattering
(SANS) instruments at ORNL facilities.

Table IV shows results for the SANS instruments reduc-
tion workflows running on ORNL production systems at
analysis.sns.gov. The production hardware consist of an Intel
Xeon CPU E5-2670 v3 with 48 cores equipped with 512
GB of RAM. The SANS instruments consist of one time-
of-flight instrument, EQSANS [24], where information from
each event is used to reduce the data; and two monochromatic
instruments, BIOSANS [26] and GPSANS [25], where event
data is traditionally not used. Relative speed ups are presented
as the ratio of the difference between wall-clock times obtained
with Mantid v5.0 and the latest development version with the
current algorithm improvements divided by the original wall-
clock time obtained with Mantid v5.0.

These data reduction workflows are composed of different
NeXus files, each representing a run number, thus impact
might vary according to the I/O and computation character-
istics ratio from different calls to “LoadEventNexus”. Overall,

it can be seen that improvements apply consistently to all
the production workflows when wall-clock times are measured
before and after introducing the proposed index structure. As
expected from our initial single file assessment for “LoadE-
ventNexus” in Fig. 6, the GPSANS data reduction workflows
shows the largest improvements, 30% speed ups, which are
typically composed of a large number of entries and small
file sizes. On the other hand, improvements on EQSANS
data reduction workflows reach a reproducible 10% speed
up, which are a more modest improvement as expected from
the results in Fig. 6. BIOSANS improvements are placed in
between at 19%, even though the workflow takes the longest
as more data process is required. Overall, we proved that the
improvement are universal and impact a wide range of NeXus
files and their composition in data reduction workflows.

ORNL NeXus Max Mantid Mantid Relative
Instrument entries file size v5.0 WC latest WC speed
Workflow approx (MB) time (s) time (s) up
GPSANS [25] 3,700 45 58.9 41.8 29%
BIOSANS [26] 3,700 444 100.2 80.9 19%
EQSANS [24] 2,500 62 99.0 88.0 11%

TABLE IV: Overall wall-clock (WC) times comparison
and speed up on production data reduction workflows for
SNS/HFIR instruments running on analysis.sns.gov hardware
system.

V. CONCLUSIONS

This work introduces efficient data management strategies
to address I/O bottlenecks in existing data reduction work-
flows at ORNL neutron scattering experimental facilities. For
reproduciblity, the present work is available in the latest devel-
opment branch of the Mantid data analysis and visualization
framework. These improvements are also expected to benefit
the larger Mantid community at other neutron source facilities
around the world, such as ISIS (UK) and ILL (France), as they
impact several NeXus files with a wide range of entries and file
sizes. Efficient metadata indexing search is introduced using
an entry “absolute path” key binary-tree, while reduction of
CPU runtime and memory footprint is achieved by modifying
the current encapsulation in Mantid algorithms that process
NeXus files. The overall impact on wall-clock time results
in speed ups ranging from 11% to nearly 30% in current
data reduction workflows of interest for Small Angle Neutron
Scattering (SANS) instruments at ORNL. Future direction
includes continuing researching different data management
strategies to further customize existing reduction workflows.
The latter is expected to focus on specific areas such as: event
data filtering, histograms generation, data storage compression,
and machine learning applications.

ACKNOWLEDGMENT

Work at Oak Ridge National Laboratory was sponsored
by the Division of Scientific User Facilities, Office of Basic
Energy Sciences, US Department of Energy, under Contract
no. DE-AC05-00OR22725 with UT-Battelle, LLC. We would

analysis.sns.gov
analysis.sns.gov


like thank Dr. Mathieu Doucet, Dr James Kohl, and Mr. Rich
Crompton of the Neutron Sciences Division at Oak Ridge
National Laboratory for their helpful input to this work.

REFERENCES

[1] Oak Ridge National Laboratory, “Neutron Sciences.” [Online].
Available: https://neutrons.ornl.gov/

[2] H. Bilheux, K. Herwig, S. Keener, and L. Davis, “Overview of the
conceptual design of the future venus neutron imaging beam line at the
spallation neutron source,” Physics Procedia, vol. 69, pp. 55 – 59, 2015,
proceedings of the 10th World Conference on Neutron Radiography
(WCNR-10) Grindelwald, Switzerland October 5–10, 2014.

[3] G. E. Granroth, K. An, H. L. Smith, P. Whitfield, J. C. Neuefeind,
J. Lee, W. Zhou, V. N. Sedov, P. F. Peterson, A. Parizzi, H. Skorpenske,
S. M. Hartman, A. Huq, and D. L. Abernathy, “Event-based processing
of neutron scattering data at the Spallation Neutron Source,” Journal of
Applied Crystallography, vol. 51, no. 3, pp. 616–629, Jun 2018.

[4] P. F. Peterson, S. I. Campbell, M. A. Reuter, R. J. Taylor, and J. Zikovsky,
“Event-based processing of neutron scattering data,” Nuclear Instru-
ments and Methods in Physics Research Section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment, vol. 803, pp. 24 – 28,
2015.

[5] M. Könnecke, F. A. Akeroyd, H. J. Bernstein, A. S. Brewster, S. I.
Campbell, B. Clausen, S. Cottrell, J. U. Hoffmann, P. R. Jemian,
D. Männicke, R. Osborn, P. F. Peterson, T. Richter, J. Suzuki, B. Watts,
E. Wintersberger, and J. Wuttke, “The NeXus data format,” Journal of
Applied Crystallography, vol. 48, no. 1, pp. 301–305, Feb 2015.

[6] The HDF Group. (1997-NNNN) Hierarchical Data Format, version 5.
[Online]. Available: http://www.hdfgroup.org/HDF5/

[7] S. I. Campbell, S. D. Miller, J.-C. Bilheux, M. A. Reuter, P. F. Peterson,
J. A. Kohl, J. R. Trater, S. S. Vazhkudai, V. E. Lynch, and M. L. Green,
“The SNS/HFIR web portal system for SANS,” Journal of Physics:
Conference Series, vol. 247, p. 012013, oct 2010.

[8] O. Arnold, J. Bilheux, J. Borreguero, A. Buts, S. Campbell, L. Chapon,
M. Doucet, N. Draper, R. F. Leal], M. Gigg, V. Lynch, A. Markvardsen,
D. Mikkelson, R. Mikkelson, R. Miller, K. Palmen, P. Parker, G. Passos,
T. Perring, P. Peterson, S. Ren, M. Reuter, A. Savici, J. Taylor, R. Taylor,
R. Tolchenov, W. Zhou, and J. Zikovsky, “Mantid—data analysis and
visualization package for neutron scattering and µ sr experiments,”
Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment, vol.
764, pp. 156 – 166, 2014.

[9] B. Stroustrup, The C++ Programming Language, 4th ed. Addison-
Wesley Professional, 2013.

[10] J. Thomason, “The ISIS Spallation Neutron and Muon Source—The
first thirty-three years,” Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Asso-
ciated Equipment, vol. 917, pp. 61 – 67, 2019.

[11] P. Ageron, “Cold neutron sources at ILL,” Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, vol. 284, no. 1, pp. 197 – 199,
1989.

[12] G. Shipman, S. Campbell, D. Dillow, M. Doucet, J. Kohl, G. Granroth,
R. Miller, D. Stansberry, T. Proffen, and R. Taylor, “Accelerating Data
Acquisition, Reduction, and Analysis at the Spallation Neutron Source,”
in 2014 IEEE 10th International Conference on e-Science, vol. 1, 2014,
pp. 223–230.

[13] C. Garcia-Cardona and R. Kannan and T. Johnston and T. Proffen and
K. Page and S. K. Seal , “Learning to Predict Material Structure from
Neutron Scattering Data,” in 2019 IEEE International Conference on
Big Data (Big Data), 2019, pp. 4490–4497.

[14] B. Sullivan, R. Archibald, V. Vandavasi, P. Langan, L. Coates, and
V. Lynch, “Volumetric Segmentation via Neural Networks Improves
Neutron Crystallography Data Analysis,” in 2019 19th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing (CCGRID),
2019, pp. 549–555.

[15] I. Foster, “Computing just what you need: Online data analysis and re-
duction at extreme scales,” in 2017 IEEE 24th International Conference
on High Performance Computing (HiPC), 2017, pp. 306–306.

[16] S. R. Alam, H. N. El-Harake, K. Howard, N. Stringfellow, and F. Verzel-
loni, “Parallel i/o and the metadata wall,” in Proceedings of the Sixth
Workshop on Parallel Data Storage, ser. PDSW ’11. New York, NY,
USA: Association for Computing Machinery, 2011, p. 13–18.

[17] W. F. Godoy, N. Podhorszki, R. Wang, C. Atkins, G. Eisenhauer,
J. Gu, P. Davis, J. Choi, K. Germaschewski, K. Huck, A. Huebl,
M. Kim, J. Kress, T. Kurc, Q. Liu, J. Logan, K. Mehta, G. Ostrouchov,
M. Parashar, F. Poeschel, D. Pugmire, E. Suchyta, K. Takahashi,
N. Thompson, S. Tsutsumi, L. Wan, M. Wolf, K. Wu, and S. Klasky,
“ADIOS 2: The Adaptable Input Output System. A framework for high-
performance data management”,” SoftwareX, vol. 12, p. 100561, 2020.

[18] Suren Byna, M. Scot Breitenfeld, Bin Dong, Quincey Koziol, Elena
Pourmal, Dana Robinson, Jerome Soumagne, Houjun Tang, Venkatram
Vishwanath, Richard Warren, “ExaHDF5: Delivering Efficient Parallel
I/O on Exascale Computing Systems,” Journal of Computer Science and
Technology, vol. 35, no. 1, p. 145, 2020.

[19] W. Zhang, S. Byna, C. Niu, and Y. Chen, “Exploring metadata search
essentials for scientific data management,” in 2019 IEEE 26th Interna-
tional Conference on High Performance Computing, Data, and Analytics
(HiPC), 2019, pp. 83–92.

[20] J. Diederich and J. Milton, “Creating domain specific metadata for
scientific data and knowledge bases,” IEEE Transactions on Knowledge
and Data Engineering, vol. 3, no. 4, pp. 421–434, 1991.

[21] R. Bayer and E. McCreight, “Organization and maintenance of large
ordered indices,” in Proceedings of the 1970 ACM SIGFIDET (Now
SIGMOD) Workshop on Data Description, Access and Control, ser.
SIGFIDET ’70. New York, NY, USA: Association for Computing
Machinery, 1970, p. 107–141.

[22] Mantid, “LoadEventNexus v1 Algorithm.” [Online]. Available: https:
//docs.mantidproject.org/nightly/algorithms/LoadEventNexus-v1.html

[23] B. Gregg, “The Flame Graph,” Commun. ACM, vol. 59, no. 6, p.
48–57, May 2016. [Online]. Available: https://doi.org/10.1145/2909476

[24] J. K. Zhao, C. Y. Gao, and D. Liu, “The extended Q-range small-
angle neutron scattering diffractometer at the SNS,” Journal of Applied
Crystallography, vol. 43, no. 5 Part 1, pp. 1068–1077, Oct 2010.

[25] K. D. Berry, K. M. Bailey, J. Beal, Y. Diawara, L. Funk, J. S. Hicks,
A. Jones, K. C. Littrell, S. Pingali, P. Summers, V. S. Urban, D. H.
Vandergriff, N. H. Johnson, and B. J. Bradley, “Characterization of the
neutron detector upgrade to the GP-SANS and Bio-SANS instruments at
HFIR,” Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment,
vol. 693, pp. 179 – 185, 2012.

[26] W. T. Heller, V. S. Urban, G. W. Lynn, K. L. Weiss, H. M. O’Neill, S. V.
Pingali, S. Qian, K. C. Littrell, Y. B. Melnichenko, M. V. Buchanan,
D. L. Selby, G. D. Wignall, P. D. Butler, and D. A. Myles, “The
Bio-SANS instrument at the High Flux Isotope Reactor of Oak Ridge
National Laboratory,” Journal of Applied Crystallography, vol. 47, no. 4,
pp. 1238–1246, Aug 2014.

https://neutrons.ornl.gov/
http://www.hdfgroup.org/HDF5/
https://docs.mantidproject.org/nightly/algorithms/LoadEventNexus-v1.html
https://docs.mantidproject.org/nightly/algorithms/LoadEventNexus-v1.html
https://doi.org/10.1145/2909476

	I Introduction
	II Neutron Scattering Data Reduction Workflows
	II-A The NeXus file format
	II-B Data Reduction Workflows on Mantid

	III Proposed Data Management Strategy
	IV Impact
	IV-A Mantid LoadEventNexus Performance
	IV-B ORNL Data Reduction Workflows

	V Conclusions
	References

