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Abstract—As the recent COVID-19 outbreak rapidly expands
all over the world, various containment measures have been
carried out to fight against the COVID-19 pandemic. In Mainland
China, the containment measures consist of three types, i.e.,
Wuhan travel ban, intra-city quarantine and isolation, and inter-
city travel restriction. In order to carry out the measures, local
economy and information acquisition play an important role.
In this paper, we investigate the correlation of local economy
and the information acquisition on the execution of containment
measures to fight against the COVID-19 pandemic in Mainland
China. First, we use a parsimonious model, i.e., SIR-X model to
estimate the parameters, which represent the execution of intra-
city quarantine and isolation in major cities of Mainland China.
In order to understand the execution of intra-city quarantine and
isolation, we analyze the correlation between the representative
parameters including local economy, mobility, and information
acquisition. To this end, we collect the data of Gross Domestic
Product (GDP), the inflows from Wuhan and outflows, and the
COVID-19 related search frequency from a widely-used Web
mapping service, i.e., Baidu Maps, and Web search engine, i.e.,
Baidu Search Engine, in Mainland China. Based on the analysis,
we confirm the strong correlation between the local economy
and the execution of information acquisition in major cities of
Mainland China. We further evidence that, although the cities
with high GDP per capita attract more inflows from Wuhan,
people are more likely to conduct the quarantine measure and to
reduce travelling to other cities. Finally, the correlation analysis
using search data shows that well-informed individuals are likely
to carry out containment measures.

Index Terms—Covid-19, SIR model, containment, pearson
correlation, MCMC

I. INTRODUCTION

Since December 2019, novel coronavirus COVID-19 has
been identified and the outbreak has expanded rapidly through-
out various countries, e.g., China [1], United States [2],
European countries [3], etc. In China, the number of confirmed
cases increased from 571 on January 23, 2020 to 84,388 on
May 1, 2020 and saturated around 84.5 thousand. The COVID-
19 has become a global emergency and is currently spreading
throughout the whole world [4], [5]. In order to deal with the
rapid outbreak of the COVID-19 pandemic in Mainland China,
a range of containment measures have been put in place by
Chinese authorities [6]–[8]. Similar containment measures have
been adopted in major countries all over the world [9], [10].

Fig. 1: The comparisons of normalized outflows from Wuhan
between 2020 and 2019 in Mainland China. We believe the
peak on April 4, 2019 is due to the vacation of Qingming
Festival.

In Mainland China, the containment measures consist of
intra-city and inter-city measures. For intra-city measures,
suspected and confirmed cases have been quarantined in
hospitals or monitored self-quarantine at home [11], which is
denoted the “quarantine” measure in the paper. The authorities
also encouraged citizens to stay-at-home, discouraged mass
gatherings, and closed schools [12]. In addition, Wuhan city
travel ban was adopted, i.e., all transport was prohibited in
and out of Wuhan city from 10:00 a.m. on 23 January 2020,
which incurred a significant reduction of the outflows from
Wuhan as shown in 1. Inflows and outflows represent counts
of the number of people entering and leaving a city. As shown
in Figure 2, the national spring vacation has been prolonged
and inter-city travel has been discouraged to reduce massive
human migration across cities in order to reduce infection.

Mobile applications, e.g., Baidu Migration 1 and search
engines, e.g., Baidu 2, can be easily used to achieve information
acquisition for citizens to keep informed during the outbreak of
COVID-19. There are a great number of studies [1], [13]–[19]
that demonstrated the feasibility to leverage mobile applications
for information acquisition. As a result, the history search
records can reflect the information acquisition status and the

1Baidu Migration - http://qianxi.baidu.com/
2Baidu - https://www.baidu.com/
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Fig. 2: The comparisons of normalized volumes of the volume
of migration between 2020 and 2019 in Mainland China. We
believe the peaks between April 4, 2019 and April 7, 2019 are
due to the vacation of Qingming Festival.

history statistical migration data can be used to analyze the
status of the COVID-19 outbreak. As well-informed individuals
are likely to travel less when there is COVID-19 [20], it is
interesting to analyze the correlation between information
acquisition and the execution of the containment measures.
In addition, the correlation between the local economy and the
information acquisition can be used to reveal how people in
different economic situations react to the COVID-19 pandemic.

In this work, we aim at using a parsimonious model, i.e.,
SIR-X model, and Markov Chain Monte Carlo (MCMC) [21]
methods to estimate the parameters of the execution of intra-city
containment measures in major cities of Mainland China. Then,
we analyze the correlation among different random variables,
i.e., information acquisition status (COVID-19-related search
frequency), local economic situation (GDP per capita) and
the parameters in the SIR-X model, in order to understand
the relationship among economy, information acquisition and
the execution of containment measures. More specifically, we
would like to investigate following problems:

• How to construct a model to fit the number of confirmed
cases? This research issue has been studied [7], [11] at
province scale using the migration scale index released by
Baidu Migration Open Data, where the index is calculated
based on the past historical statistical records from a
widely-used Web mapping service, i.e., Baidu Maps 3.
We propose to construct an SIR-X model based on the
confirmed cases at city scale using a Markov Chain Monte
Carlo (MCMC) method. We provide solid results using
exact figures for major Chinese cities.

• To what degree does the local economy affect the pandemic
outbreaks of COVID-19 and the execution of containment
measures in major cities of China? The impact of the
COVID-19 pandemic on economy has been studied [22],
[23] while the correlations between local economy and the
outbreaks of the COVID-19 pandemic or the execution of

3Baidu Maps - https://map.baidu.com/

containment measures are not analyzed. We hypothesize
that the outflows from Wuhan tend to go to the cities
where GDP per capital is high. We further hypothesized
that there would be more initial confirmed cases as more
infected people arrived at these cities. In addition, we
hypothesized that the people in the cities where GDP
per capital is high tend to perform more information
acquisition activities through voluntary COVID-19-related
search in order to be well informed on the situation of the
COVID-19 pandemic. We analyze the correlations based
on the estimated parameters of SIR-X and the statistical
data from Baidu Maps and provide solid results for major
Chinese cities.

• To what degree does the information acquisition affect
the execution of containment measures in major cities of
China? Strong positive correlation between the pandemic
outbreaks of COVID-19 and the information acquisition
has been reported in [20] while the correlation between the
information acquisition and the execution of containment
measures are not analyzed. As reported in [20] and was
seen in the collective responses to the emergencies [24],
[25] and panics [13], people voluntarily acquire infor-
mation more frequently when the pandemic situations
become worse in their cities. We hypothesized the well-
informed people tend to apply the containment measures
more strictly in order to avoid the risk to be infected
and the risk to make the situation worse. We analyze this
correlation based on the estimated parameters of SIR-X
and the statistical data from Baidu Maps and Baidu Search
Engine, and provide solid results for major Chinese cities
as well.

Different from existing research [1], [6], [7], [11], we
particularly analyze the correlation between local economy
strength and the COVID-19-related search frequency with the
city population size (a controlling variable) removed in order to
avoid the impact of the scale of city. Compared to the existing
work [20], [22], we analyze the correlations not only based
on the data from Baidu Maps and Baidu Search Engine but
also based on the combination of an SIR-X model and MCMC
methods.

II. MODELING EPIDEMIC SPREAD WITH CONTAINMENT
MEASURES

In this section, we first present the existing models to capture
COVID-19. Then, we propose using SIR-X and MCMC to
construct the model. Afterwards, we present the comparison
between the official number and the model fitting number of
accumulated confirmed cases.

Susceptible Infectious Recovered (SIR) model [26], [27]
and Susceptible Exposed Infectious Recovered (SEIR) model
[28]–[30] are largely adopted to characterize the outbreak
of COVID-19 epidemic. However, the containment measures
cannot be described in the standard SIR or SEIR model. A
modified SEIR model [31] is proposed with the consideration
of mobility while it is still not able to infer the execution of
containment measures. A Long-Short-Term-Memory (LSTM)
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(a) Number of confirmed cases in Beijing.
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(b) Number of confirmed cases in Shanghai.
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(c) Number of confirmed cases in Guangzhou.
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(d) Number of confirmed cases in Shenzhen.
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(e) Number of confirmed cases in Wuhan.
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(f) Number of confirmed cases in Chongqing.

Fig. 3: Comparison between official number of confirmed cases and fitting number from the SIR-X model on May 1, 2020 in
Beijing, Shanghai, Guangzhou, Shenzhen, Wuhan and Chongqing.

[31] model is proposed to project the number of accumulated
confirmed cases, which is not able to describe the execution
of containment measures either.

In order to characterize the outbreak of COVID-19 epidemic
with containment measures at city level, we exploit the SIR-
X model [11]. The SIR-X model is a modified SIR model,
which takes the containment measures into consideration. We
have the same assumptions and use the same representative
parameters as those in [11]. We assume that there are public
containment efforts, e.g., stay-at-home, reduced interaction
with other people, which is referred as ‘containment’ and
represented by a variable κ0. In addition, we assume that
infected individuals are quarantined, which is referred as
‘quarantine’ and represented by a variable κ. We use α to
represent the infection speed of an infected individual and β−1

to represent the average time an infected individual remains
infectious before recovery or removal. Then, the SIR-X model
is expressed by the following differential equations:

∂tS = −αSI − κ0S
∂tI = αSI − βI − κ0I − κI
∂tR = βI + κ0S

∂tX = (κ+ κ0)I

(1)

Instead of fixing the same parameters (α and β) for
each province in [11], we estimated the parameters using
a MCMC [21] method, inspired by [32]. In the model, I0
represents the number of initial infected individuals. The basic
reproduction number R0 represents the average number of
secondary infections an infected will cause before he or she
recovers or is removed [11]. The reproduction number can be
calculated as: R0 =

α

β + κ+ κ0
. We use R0,free to represent

the reproduction number without containment or quarantine
measures. As high temperature and high humidity significantly
reduce the transmission of COVID-19 [33], R0,free and β may

be different for different cities because of the diversity of local
environments [34]. Thus, we use the MCMC [21] method to
estimate the distribution of the parameters, i.e., α, β, κ, κ0,
I0, while the other parameters are fixed (S0 is the population
in the city, R′0 is fixed as 0 and X0 is the number of initial
confirmed cases) at the beginning (January 23, 2020) with S0,
R′0, X0 and I0 representing the initial values of S, I , R and
X .

Specifically, we use the uniform distribution as the param-
eters’ prior distribution. And with the consideration of the
nonlinearity of SIR-X model, we adopt the Sequential Monte
Carlo sampler to achieve the posterior distribution of model’s
parameters including α and β. Finally, we take the expected
value of each parameter to construct the model.

In order to have stable results from the MCMC method, we
use a priori conditions, i.e., R0 < R′0,free and κ0 < κ. The
results of MCMC methods may not be stable, i.e., the results
of each execution may be different without a priori conditions.
Thus, we introduce a priori conditions, i.e., R0 < R′0,free,
κ0 < κ, and the model fit number of accumulated confirmed
cases should be equal or bigger than the official number of
confirmed cases. R′0,free represents a maximum value of R0.
We set R′0,free as 6.2, which is in accordance with the result
from [11] that the R0 should be between 1.4 and 3.3. During
the fitting process, if the a priori conditions are not met, the
fitting process will be executed again until reaching a limit, e.g.,
20 times of execution, in order to avoid infinite execution. We
assume that the quarantine measure is applied more strictly on
the infected individuals than other public citizens, i.e., κ0 < κ.

In order to use the SIR-X model, we need to assume that
few travelers and symptomatic infected individuals travel into
or from a city. As reported in [20], there is strong correlation
between the inflows from Wuhan and the confirmed cases
in a city. We assume that few infected individuals travelled
into major cities after January 23, 2020 as Wuhan travel ban
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(a) Aggregated number of confirmed cases in
Hubei.
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(b) Aggregated number of confirmed cases in
Hebei.
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(c) Aggregated number of confirmed cases in
Zhejiang.
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(d) Aggregated number of confirmed cases in
Sichuan.
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(e) Aggregated number of confirmed cases in
Xingjiang.
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(f) Aggregated number of confirmed cases in
Yunnan.

Fig. 4: Comparison between official number of confirmed cases and fitting number from the SIR-X model on May 1, 2020 in
Hubei, Hebei, Zhejiang, Sichuan, Xingjiang and Yunnan.
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Fig. 5: Comparison between official number of confirmed cases
and fitting number from the SIR-X model on May 1, 2020 in
China.

has been put in place since January 23, 2020 and few people
went to other cities from Wuhan as shown in Figure 1. In
addition, we assume that the number of infected individuals
in the inflows from other cities can be ignored compared to
the number of infected individuals among the local citizens
in a city. With these two assumptions, we can use the SIR-X
and MCMC to estimate parameters for each major cities in
Mainland China based on the number of confirmed cases 4

from January 23, 2020 to May 1, 2020.
Figures 3a - 3f illustrate the confirmed cases in several

major cities of Mainland China. From figures, we can see that
the combination of SIR-X and MCMC captures the number
of confirmed cases in different cities very well, e.g., Beijing,
Shanghai, Shenzhen, Wuhan and Chongqing. However, the
model does not well characterize the number of confirmed cases
in Guangzhou as there are many (127 5) infected individuals

4COVID-19 statistics - https://github.com/canghailan/Wuhan-2019-nCoV
5Confirmed cases in Guangzhou from National Health Commission - http:

//wjw.gz.gov.cn/ztzl/xxfyyqfk/yqtb/content/post_5815637.html

Fig. 6: Significant correlation among different factors.

from other countries, which cannot be captured by the SIR-X
model. In addition, we believe that the errors between the
confirmed cases and fitted data are mainly due to the travelers
from other countries in Beijing (174 confirmed cases from
other countries) and Shanghai (326 confirmed cases from other
countries). Then, we calculate the confirmed cases of different
provinces by adding the number of confirmed cases in each
affiliated city. Figures 4a - 4f shows the number of confirmed
cases in several provinces of Mainland China. We can see that
the SIR-X well captures the aggregated cases at province scale.
Furthermore, we use the same method to calculate the number
of confirmed cases in Mainland China as shown in Figure 5.

III. CORRELATION STUDY

Besides the number of confirmed cases (May 1, 2020), we
collected three datasets, i.e., GDP, mobility and COVID-19-
related search frequency for major cities in Mainland China.
The GDP dataset was collected from [35], which characterized
local economic development in 2019. The mobility data was
captured from Baidu Maps and the COVID-19-related search
frequency (the ratio between COVID-19-related search volume
from January to March 2020 and population in each city)
data was gathered from a widely-used Web search engine.
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Fig. 7: Significant positive correlation has been found between
GDP per capita and COVID-19-related search frequency for
major cities in Mainland China. Shaded area represents the
95% Confidence Interval (CI).
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Fig. 8: Significant positive correlations have been found
between GDP per capita and inflow rate from Wuhan. Shaded
area represents the 95% CI.

We analyze the correlation among local economy, mobility,
search behaviors and the parameters estimated based on the
combination of the SIR-X model and the MCMC method
as presented in Section II for 238 cities in Mainland China
(excluding Wuhan). We normalize inflow, outflow, search
volume by the following formula:

Normalize(data) =
data− datamin

datamax − datamin
. (2)

In this way, the data in the study are curved into the range from
0 to 1 proportionally. The results of our data-driven analysis are
summarized as shown in Figure 6. In this section, we present
the observations obtained from the analysis.

A. Significant positive correlations have been evidenced be-
tween local economy and COVID-19-related search frequency

We have evidenced the significant positive correlations be-
tween local economy and COVID-19-related search frequency
for major Chinese cities. In order to analyze the correlation
between two random variables, we calculated the Pearson corre-
lation coefficients [36] and conducted the Student’s T-test (two
tails) to verify the significance test (the same for the following
analysis in the paper). The Pearson correlation between the
local GDP per capita and the total COVID-19-related search
volume (between January and March 2020) is R∗∗∗ = 52.5%
(N = 238 and p-value= 3.06× 10−18 < 0.0001) for each city.
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Fig. 9: Significant positive correlations have been found
between GDP per capita and inflows from Wuhan. Shaded
area represents the 95% CI.
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Fig. 10: Significant positive correlations have been found
between the inflows from Wuhan and I0. Shaded area represents
the 95% CI.

However, we considered that this observation can be incurred
by the scale of the city, as a larger city would have larger
population, and would correspond to bigger GDP and high
total COVI-19-related search volume.

We therefore tested the significance of the correlations be-
tween GDP per capita and COVID-19-related search frequency,
where we evidenced the significance in the correlations as
R∗∗∗ = 63.5% (N = 238 and p-value=2.91×10−28 < 0.0001).
In addition, in order to obviate the impact of the scale of the
city, i.e., the impact of city population, we conducted partial
correlation analysis [37], [38] between GDP per capita and
the COVID-19-related search frequency with the effects of
the city population size (a controlling variable) removed. In
order to estimate the partial correlation of random variables X
and Y with the random variable Z removed, we expressed the
partial correlation coefficient in terms of the Pearson correlation
coefficients as

ρ(X,Y |Z) ≡ ρ(X,Y )− ρ(X,Z)ρ(Y,Z)√
(1− ρ2(X,Z))(1− ρ2(Y,Z))

. (3)

We find a strong correlation with significance as well, such
that R∗∗∗ = 57.0% (N = 238 and p-value= 7.15× 10−22 <
0.0001). Thus, we can conclude that no matter whether the
scale of the city is big or small, GDP per capita has a
significant positive correlation with the COVID-19-related
search frequency. Please see also Figure 7 for the visualization
of the correlations.
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Fig. 11: Significant positive correlations have been found
between the inflow rate from Wuhan and R0. Shaded area
represents the 95% CI.
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Fig. 12: Significant positive correlations have been found
between I0 and the number of confirmed cases. Shaded area
represents the 95% CI.

B. Correlation analysis for the spread of the COVID-19
pandemic

We have evidenced the significant positive correlation
between GDP per capita and inflows from Wuhan. We hypothe-
sized that cities with higher GDP per capita would attract larger
inflows from Wuhan. Therefore, for every city in the study, we
correlated GDP per capita and the inflows from Wuhan, where
we obtained Pearson correlation coefficients of R∗∗∗ = 42.3%
(N = 238 and p-value= 9.88 × 10−12 < 0.0001). In
addition, in order to obviate the impact of the scale of the
city, we correlated GDP per capita and the inflows rate
from Wuhan, i.e., the ratio between inflows from Wuhan and
the population. We found a strong positive correlation with
significance as well, such that R∗∗∗ = 32.6% (N = 238 and
p-value= 2.67 × 10−7 < 0.0001). Please see also Figures 8
and 9 for the visualization of the correlations.

We have evidenced the significant positive correlation
between I0 and the inflows and the significant positive
correlation between R0 and the inflow rate. We hypothesized
that cities with larger inflows from Wuhan have more initial
infected cases, i.e., I0 in the SIR-X model. Thus, we correlated
the inflows from Wuhan and I0, where we found a strong
positive correlation with significance, such that R∗∗ = 21.6%
(N = 238 and p-value= 8.11×10−4 < 0.001). In addition, we
analyzed the correlation between the inflow rate and R0, where
we found a strong positive correlation with significance, such
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Fig. 13: Significant positive correlations have been found
between R0 and confirmed case rate. Shaded area represents
the 95% CI.
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Fig. 14: Significant positive correlations have been found
between GDP per capita and κ. Shaded area represents the
95% CI.

that R∗ = 19.2% (N = 238 and p-value= 2.93×10−3 < 0.01).
Please see also Figures 10 and 11 for the visualization of the
correlations.

We have evidenced the significance of the positive correlation
between the number of initial infected individuals and the
number of confirmed cases and the positive correlation between
R0 and the number of confirmed case rate. We hypothesized
that cities with bigger I0 finally have more confirmed cases.
To this end, we performed correlation analysis using I0 and
the number of confirmed cases on May 1, 2020. We found a
significant positive correlation, such that R∗∗ = 22.5% with
N = 238 and p-value= 4.67× 10−4 < 0.001. In addition, we
hypothesized that cities with bigger R0 have more confirmed
case rate, i.e., the ratio between the confirmed cases and the
population. We performed correlation between R0 and the
confirmed case rate, where we obtained a significant positive
correlation, such that R∗∗∗ = 29.8% with N = 238 and p-
value= 2.82× 10−6 < 0.0001. Please see also Figures 12 and
13 for the visualization of the correlations.

We obtained a strong positive correlation with significance
between the number of confirmed cases and the COVID-19-
related search frequency, such that R∗∗∗ = 41.5% (N = 238
and p-value= 2.45 × 10−11 < 0.0001). Furthermore, we
obtained a strong positive correlation with significance be-
tween confirmed case rate and the COVID-19-related search
frequency, such that R∗∗ = 21.4% (N = 238 and p-
value= 9.01×10−4 < 0.001). Similar results are also reported
in [20].
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Fig. 15: Significant negative correlations have been found
between GDP per capita and the outflow recovery rate. Shaded
area represents the 95% CI.

We thus can conclude that for each major city in the
study, GDP per capita and the factors that incur infections,
e.g., inflows from Wuhan, I0, R0, have significant positive
correlation. This indicates that the rich cities attracted more
inflows from Wuhan, which caused infections and in order to
fight against COVID-19, the citizens in the rich cities tend to
perform more search activities in order to be well-informed.

C. Correlation analysis for the execution of containment
measures

In this section, we analyze the correlation among local
economy, information acquisition and containment measures.
As the quarantine measure (see details in Section II) is directly
related to the number of confirmed cases, we analyze the
correlation between κ and other factors (local economy and
information acquisition). In addition, we are also interested
in the realization of inter-city containment measures, i.e., the
outflow recovery rate (the ratio between the outflows of 2020
and that of 2019).

We have evidenced the significance of the positive correlation
between the execution of the quarantine measure and GDP
per capita for major Chinese cities in the study.

Among all 238 cities in the correlation study, we hypothe-
sized that people with high GDP per capita would try harder
to implement the quarantine measure for infected individuals.
Therefore, we correlated GDP per capita and κ, where Pearson
correlation coefficients are R∗ = 17.3% (N = 238 and p-
value= 7.46× 10−3 < 0.01). Furthermore, we correlated GDP
per capita and the outflow recovery rate, where we obtained
Pearson correlation coefficients of R∗∗∗ = −46.5% (N = 238
and p-value= 3.82×10−14 < 0.0001). The correlation analysis
result suggests that people with higher GDP per capita are
more likely to apply the quarantine measure. Please see also
Figures 14 and 15 for the visualization of the correlations.

We have evidenced the significance of the positive correla-
tions between the realization of quarantine measure and the
COVID-19-related search frequency. We performed correlation
using the COVID-19-related search frequency and κ. We found
a significant positive correlation, such that R∗ = 17.8% with
N = 238 and p-value= 5.84 × 10−3 < 0.01. Please see
also Figures 16 for the visualization of the correlations. We
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Fig. 16: Significant positive correlations have been found
between the COVID-19-related search frequency and κ. Shaded
area represents the 95% CI.

found that the negative correlations between the COVID-
19-related search frequency and the outflow recovery rate
are stronger with R∗∗∗ = −51.4% (N = 238 and p-
value= 1.88× 10−17 < 0.0001) (similar result is also reported
in [20]). The correlation analysis result suggests that people
with higher per capita COVID-19-related search frequency are
more likely to apply the containment measures, i.e., separate
the infected individuals and small outflow recovery rate.

We can conclude that for every city in the study GDP
per capita and the COVID-19-related search frequency have
significant positive correlation to the realization of containment
measures. We believe it is due to the will to avoid the risk to
be infected and the natural response to the fear and massive
panics [13], [20]. In addition, the reason also goes to the
fact that the people in the cities of higher GDP per capita
tend to have bigger capacity or more tolerance to apply the
containment measures.

IV. CONCLUSION

In this work, we first exploit the SIR-X model and MCMC
method to estimate the parameters related to the COVID-19
pandemic at the scale of city. Then, we examined the correlation
between the local economy and the spread of COVID-19
pandemic and the execution of containment measures in major
cities of Mainland China. We conducted correlation analysis
based on the mobility data and search data from Baidu Maps
and Baidu Search Engine in Mainland China. Our analysis
brings novel knowledge of the correlation among different
factors related to the COVID-19 pandemic. The cities of
higher GDP per capita attracts bigger inflows from Wuhan,
which cause more confirmed cases. However, the demands of
information from individuals become higher, which incurs the
reaction to apply the containment measure. Furthermore, well-
informed individuals are more likely to apply the intra- and
inter- city containment measures, i.e., quarantine of infected
individuals and reducing going to other cities. The implications
of these correlations include that, the better the local economy
is and the more timely information is attained by residents,
the better the containment measures are realized, which help
to fight against the COVID-19 pandemic in major cities of
Mainland China.
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