
Towards Self-Tuning Parameter Servers
Chris Liu*, Pengfei Zhang*, Bo Tang**, Hang Shen***, Lei Zhu*, Ziliang Lai*, and Eric Lo*

*The Chinese University of Hong Kong
**Southern University of Science and Technology

***SiChuan University

Abstract—Recent years, many applications have been driven
advances by the use of Machine Learning (ML). Nowadays, it
is common to see industrial-strength machine learning jobs that
involve millions of model parameters, terabytes of training data,
and weeks of training. Good efficiency, i.e., fast completion time
of running a specific ML job, therefore, is a key feature of a
successful ML system. While the completion time of a long-
running ML job is determined by the time required to reach
model convergence, practically that is also largely influenced
by the values of various system settings. In this paper, we
contribute techniques towards building self-tuning parameter
servers. Parameter Server (PS) is a popular system architecture
for large-scale machine learning systems; and by self-tuning we
mean while a long-running ML job is iteratively training the
expert-suggested model, the system is also iteratively learning
which system setting is more efficient for that job and applies it
online. While our techniques are general enough to various PS-
style ML systems, we have prototyped our techniques on top of
TensorFlow. Experiments show that our techniques can reduce
the completion times of a variety of long-running TensorFlow
jobs from 1.4× to 18×.

I. INTRODUCTION

Recently, the Parameter Server (PS) architecture [1], [2],
[3], [4], [5], [6] has emerged as a popular system architecture
to support large-scale distributed learning on a cluster of
machines. The PS architecture advocates the separation of
working units as “servers” and “workers”, where the servers
collectively maintain the model state and the workers duly
“pull” the latest version of the model from the servers,
scan their own part of training data to compute the model
refinements, and “push” the model updates back to the servers
for aggregation. The PS architecture has the advantage of
improving the network utilization so that it can scale-out to
bigger model and more machines.

Generally, the completion time of a long-running machine
learning job is determined by the time required to reach
model convergence. Practically, however, the completion time
is largely influenced by the values of the various system knobs,
such as the server-worker ratio (i.e., how many hardware
threads are dedicated to the servers and workers), the device
placement (i.e., which operation shall be shipped to the GPU
for processing and which shall stay in the CPU), and the
parallelism degree (e.g., the model replication factor, the
model partitioning scheme). Today, unfortunately, the burden
falls on the users who submit the ML jobs to specify the knob
values.

	4	8	12	16	20

tf.train.ClusterSpec:	Workers
	6 	8 	10 	12

intra_op_parallelism_threads

600

1200

1800

2400

C
om

pl
et

io
n	

tim
e	

(s
)

Fig. 1. A 2D response surface of a TensorFlow job

Determining the right set of knob values that achieve
optimal completion time has way surpassed human abilities.
Part of what makes that so enigmatic is that the response
surfaces of ML jobs are highly complex. Figure 1 shows
a response surface of running a PS-style TensorFlow job
on our cluster (experiment details are presented later). The
two system knobs involved are: tf.train.ClusterSpec::worker
and intra op parallelism threads, which respectively vary the
server-worker ratio and the thread affinity of operations (i.e.,
the mapping between TensorFlow operations and hardware
threads). The figure shows that the response surface is complex
and non-monotonic, and the optimal lies at where human can’t
easily find. What adds to the challenge is that, the completion
time of a ML job, unlike traditional data processing, is a
complex interplay between statistical efficiency (how many
iterations are needed until convergence) and hardware effi-
ciency (how efficiently those iterations are carried out) [7].
Consider the server-worker ratio as an example. On the one
hand, more workers would increase the hardware efficiency
by having a higher degree of data parallelism. On the other
hand, that might hurt the statistical efficiency when servers
accept asynchronous updates from workers. That is because
when more workers concurrently update the global model, the
model would be more inconsistent and require more iterations
to converge. Figure 2 shows such a case. It shows that varying
just one system setting (server-worker ratio) would already
yield a 2.5× difference in statistical efficiency

Configuring distributed ML systems to reduce the long-
running execution time of ML jobs currently requires system

ar
X

iv
:1

81
0.

02
93

5v
2

 [
cs

.D
B

]
 4

 A
ug

 2
02

0

0.4

0.8

1.2

1.6

2.0

2.4

0.5×104 1×104 1.5×104 2×104

Lo
ss

Iteration

server/worker=4/32

server/worker=32/4

Fig. 2. Different system settings would influence statistical efficiency (con-
vergence threshold = loss 0.4)

expertise – something many ML users may lack. Even for
system experts, the dependencies between the knobs (e.g,
changing one knob may nullify the benefits of another) make
the whole task nontrivial if that is not downright impossi-
ble. Furthermore, this manual tuning task must be repeated
whenever the expert-suggested model or hardware resources
changes.

In this paper we present a suite of techniques for building
self-tuning parameter servers. By self-tuning, we mean when a
long-running ML job is iteratively training an expert-suggested
model, the system itself is also iteratively learning which
setting is more efficient for that job and dynamically applies it
online. Our goal is to free ML users from the system details as
much as they could and let the system progressively discover
and apply better and better system settings for a job as it
proceeds. The principled contributions of this paper are as
follows:

1) Online Optimization Framework (Section III). We
present a framework that is applicable to all PS-style
ML systems to support self-tuning. In online tuning,
we always hope to discover the optimal system setting
as soon as possible (so as to apply that in the next
iteration immediately) while minimizing the number of
iterations to discover it. Therefore, there is an intrinsic
balance between trying a potentially better system setting
or applying a known good setting before the start of
each iteration. The crux of the framework is the use
of Bayesian Optimization (BO) [8], [9], [10] to learn
and recommend a system setting. Bayesian Optimization
has been extensively used in various offline auto-tuning
projects (e.g., [11], [12]). However, there are subtleties
when coming to online ML system tuning. For example,
in ML learning, the influence of the same system setting
would depend on whether the training just starts or the
model is converging. Therefore, we have formulated a
BO that is aware of those intrinsic ML factors.

2) Online Progress Estimation (Section IV). A key input
to our Bayesian Optimization is the estimated remaining
completion time of an in-flight ML job. The challenge
there is to estimate the statistical progress — “how
many more iterations to go based on the current model
and current system setting?”. While there is a wealth
of works that study the convergence rates of different

learning algorithms on different ML problems [13], [14],
[15], they are all theoretical bounds under an offline
setting, i.e., bounding the maximum number of iterations
required given an untrained model. Focusing on gradient
descent based learning algorithms (e.g., SGD, Hogwild!
[13]), our contributions here are a formal extension of
those bounds for an online setting and a methodology
to transform those bounds to be legitimate statistical
progress estimation functions.

3) Online Reconfiguration (Section V). None of the above
would be meaningful unless there is a way to online
reconfigure a PS-style ML system to a new system
setting while active jobs are still running. While most
ML systems have built-in checkpointing facilities for
recovery purpose, implementing online reconfiguration
by checkpointing the state of a job and restoring the
state under the new system setting would incur excessive
overhead and cause system quiescence. To this end, we
introduce a novel technique called On Demand Model
Relocation (ODMR) so that non-quiescent and efficient
online reconfigurations can be carried out.

4) Experimentation on TensorFlow (Section VI). One
point worths noticing is that all of the our contribu-
tions (online optimization framework, online progress
estimation, and online reconfiguration) above are system
agnostic. That is, any existing PS-style systems can
implement our techniques and enjoy faster end-to-end
runtime through self-tuning. As an experimental proto-
type, we have implemented our techniques on top of
TensorFlow [6] and we name it TensorFlowOnline. Ex-
periments show that TensorFlowOnline can reduce the
long-running completion times of different TensorFlow
jobs by 1.4×–18×. TensorFlowOnline is open-source.
So its statistical progress estimation component can be
easily adapted to any new convergence results from the
machine learning community.

In this paper, we focus on online system parameter tuning.
By system parameters we refer to those would influence only
the efficiency but not the quality of the models. Therefore, the
server-worker ratio in Tensorflow is a system parameter while
the learning batch size is not. Instead, the learning batch size is
a hyperparameter because it influences the quality of the final
model and is not learnable from the data. With this difference
is clear, we can see that our work is orthogonal to projects
that focus on hyperparameter tuning (e.g., Spark TuPAQ
[16], Auto-WEKA [17], Google Vizier [18], Spearmint [19],
GpyOpt[20], and Auto-sklearn [21], Ease.ml [11]). In fact,
hyperparameter tuning is generally a trial-and-error process,
where each trial is a different job using a different set of
hyperparameters (e.g., learning rate, batch size) under the same
system setting (e.g., worker-server ratio). Our work thereby
can complement those systems to expedite the execution of
each trial and shorten the overall hyperparameter tuning cycle.

Next, we present the preliminary and background for this
paper (Section II), followed by our main contributions (Sec-

tions III–VI). We give a review of related work afterwards
(Section VII) and conclude this paper with some interesting
future directions (Section VIII). The appendix includes some
detailed implementation of our prototype TensorFlowOnline,
additional experimental results, and a table that summarizes
the major notations used in this paper.

II. BACKGROUND AND PRELIMINARY

ML jobs come in many forms, such as logistic regression,
support vector machine, and neural networks. Nonetheless,
almost all seek a model w of parameters that minimize an
empirical risk function R:

R(w) =
1

n

n∑
i=1

l(w, di)

where n is the number of data examples in the whole training
dataset D and l is the loss function that quantifies how good
the model w explains a data example di ∈ D.

A. Iterative-Convergent ML Algorithms

A ML job is usually executed by an iterative-convergent
algorithm and can be abstracted by the following additive
operation:

wj = wj−1 + α∆(wj−1, S)

where wj is the state of the model after iteration j and the
update function ∆ computes the parameter updates based on
some data S ⊆ D at a learning rate α.

Gradient Descent (GD) is arguably the most popular fam-
ily of iterative-convergent optimization algorithms. GD is
applicable to most of the supervised, semi-supervised, and
unsupervised ML problems. By its name, GD is a class of
first-order methods whose update function ∆ is based on com-
puting gradients from the data. Batch GD (BGD), Stochastic
GD (SGD), Mini Batch GD (MGD), and SVRG++ [22] are
some example GD family members. In these algorithms, each
iteration draws m samples from D as S and the loss of an
iteration j is denoted as:

lj =
1

m

m∑
i=1

l(wj , si) (1)

where si ∈ S ⊆ D. Generally, a lower loss indicates a better
model accuracy. Such an algorithm is said to be converged
when w stops changing or lj drops below a threshold ε. More
specifically, gradient descent learning algorithms theoretically
converge when E[R(wj)−R(w∗)] ≤ ε, where w∗ is the opti-
mal model. Practically, since w∗ is unknown, R(wj)−R(w∗)
is approximated by lj to determine convergence. Recent
works (e.g., [23], [24], [25]) have shown that many industrial-
strength tasks require thousands of iterations or weeks to reach
convergence.

ML
Program ML System

Front-end
J

Repository
ML System
Back-end

Instrumentation Tuning Manager

Metrics

J

Fig. 3. Online Optimization Framework

B. Parameter Server Architecture

Recently, it is not uncommon to see models with millions
of parameters [1], [3] and terabytes of training data [6]. To
support learning at that scale, the Parameter Server (PS) ar-
chitecture [1], [2], [3], [4], [5], [6], [26] has been advocated to
distribute the workload across clusters of nodes. The concept
of a node is abstract. It can refer to any computation unit like
a physical machine, a CPU in a NUMA machine, or a core
in a CPU. Generally, the model parameters are maintained
by multiple server nodes. Worker nodes periodically “pull”
(part of) the latest model from the server(s), perform local
computation like calculating stochastic gradient by accessing
their part of training data, and then “push” the updates
back to the server(s) whose parameters need to be updated.
Servers update the global model by aggregating the local
updates from workers (e.g., averaging the stochastic gradients
from workers). As opposed to traditional message-passing and
MapReduce-like frameworks where pairwise communications
between workers are needed in order to exchange each other’s
parameter updates, the PS architecture has the advantage of
only requiring communications between workers and servers,
thereby mitigating the network bottleneck. Under the PS
architecture, the server-worker ratio is a key knob.

III. ONLINE OPTIMIZATION FRAMEWORK

Figure 3 shows our general framework to support self-
tuning on PS-style ML systems. Many ML systems have a
front-end and a back-end. Take TensorFlow as an example,
the core operations are carried out by the back-end, which
is implemented in C++. The front-end is responsible for
optimizing and orchestrating a job’s execution. The front-
end also offers a high-level API for users to write their
programs. There are different TensorFlow front-ends but the
most popular one is implemented in Python.

On receiving a ML program J from the front-end, the
program would be instrumented before sending to the ML
system back-end. The instrumented program would then be
executed as a job J’, which would emit various per-iteration
metrics (e.g., execution time, loss) to a repository during its
execution. Before starting an iteration, the Tuning Manager
will (1) update a Gaussian Process (GP) model using the
metrics collected from the previous iteration, (2) carry out
Bayesian Optimization (BO) to get a possibly new system
setting X ′, and (3) reconfigure the system to setting X ′. Practi-
cally, the Tuning Manager would not carry out reconfiguration
every iteration but execute a certain number of iterations for

each setting in order to well understand its online statistics
efficiency (its live convergence rate).

A. Bayesian Optimization
Bayesian Optimization (BO) is a strategy for optimizing a

black-box objective function that is unknown beforehand but
observable through conducting experiments [8], [9], [10]. Con-
ventionally, in BO, each experiment is executed by a different
system setting, and the same system setting is used throughout
the same experiment. In our context, each experiment (ML
job) is going to be executed by a number of different system
settings until the job terminates. Therefore, we introduce the
loss of the model to the BO’s input space so as to differentiate
whether a system setting is applied to an early stage or to a
late stage of the job. That is important because, in ML, a lousy
system setting might improve the loss when the training just
starts, whereas an optimal setting might hardly improve the
loss if the model is converging.

Given an active ML job J, the goal of the BO is to
recommend the next system setting X∗ that is expected to
minimize the remaining completion time of J. Let X =
〈c1 = v1, . . . , cd = vd〉 be a system setting, where each ci
is a configurable system parameter with value vi. We use
T (〈X, l〉) to denote the remaining completion time of the job
if we switch to setting X when the model has reached a loss
l. 〈X, l〉 is thus a (d + 1)-dimensional vector that includes
both the system setting and the loss of the model. So, the
optimization problem is, given a model whose loss is l′, find
the X∗ that minimizes T . Knowing T (〈X, l〉) ahead of time
would be infeasible. Bayesian Optimization thus returns an
approximation solution with little overhead.

We model T as a GP (Gaussian Process) [27] and use BO
to suggest the next setting based on a pre-defined acquisition
function. An acquisition function can be updated with more
observations. There are many choices of acquisition function
such as (i) Probability of Improvement (PI) [9], which picks
the next setting that can maximize the probability of improving
the current best; (ii) Expected Improvement (EI) [27], which
picks the next setting that can maximize the expected im-
provement over the current best; (iii) Upper Confidence Bound
(UCB) [28], which picks the one that has the smallest lower
bound in its certainty region. Different acquisition functions
have different strategies to balance between exploring (so that
it tends to suggest a possibly new setting from an unknown
region of the response surface) and exploiting the knowledge
so far (so that it tends to suggest a setting that lies in a known
high performance region). In this paper, we choose EI because
it has shown to be more robust than PI, and unlike UCB, it
is parameter-free. Using BO with EI has the ability to learn
the objective function quickly and always return the expected
optimal setting. BO itself is noise resilient. That is important
because what we can collect from experiments is actually T ′:

T ′ = T + e

where e is a Gaussian noise with zero mean, i.e., e ∼ N(0, σ2).
Since T ′, T , and e are Gaussian, we can infer T and its

〈j,Xi, t
j
i , l

j
i 〉

〈0, X0, t
0
0, l

0
0〉

. . .
〈4, X0, t

4
0, l

4
0〉

〈5, X1, t
5
1, l

5
1〉

. . .
〈9, X1, t

9
1, l

9
1〉

. . .
〈J,Xb, t

J
s , l

J
s 〉

〈Xi, li, Yi〉
〈X0, linit, Y0〉
〈X1, l

4
0, Y1〉

〈X2, l
9
1, Y2〉

. . .
〈Xb, l

ab−1
b−1 , Yb〉

linit refers to the loss
of the initial model

(a) major execution metrics (b) training data

Fig. 4. Major execution metrics and training data

confidence interval [12]. As we discuss in Section IV mo-
mentarily, the observation noise comes from the fact T ′ is not
a direct measurement but a product between (i) per-iteration
execution time (hardware efficiency) and (ii) estimated number
of iterations left (statistical progress). Although (i) could be
directly observed, (ii) has to be based on certain empirical
estimations (Section IV).

BO has an advantage of being non-parametric, meaning it
does not impose any limit on T , making our techniques useful
for a variety of ML systems. Furthermore, it can deal with
non-linear response surface but require far fewer samples than
others which have similar power (e.g., deep network). Lastly,
BO has a good track record on tuning database systems [29],
[30]. An approach similar to BO is reinforcement learning [31]
and we will explore that direction as a future work.

B. Initialization Phase

We propose to divide the execution of a ML job into
two phases: initialization and online tuning. The goal of
the intialization phase is to quickly bring in a small set of
representative settings and their execution metrics to build the
GP. Initially, the job starts the first a iterations using the setting
X0, which is the default or the one given by the user. Iterations
after that will be executed under b random settings from the
setting space, and for each setting it runs a iterations. Figure 4a
illustrates the major execution metrics that would be inserted
into the repository after trying b different settings, with a = 5
iterations. Each record in the collected execution metrics is a
quadruple 〈j,Xi, t

j
i , l

j
i 〉, with Xi indicates that iteration j was

executed using setting Xi, t
j
i indicates the execution time of

that iteration, and lji indicates the loss of the model after that
iteration.

The loss of one iteration alone is insufficient to judge
whether a setting has good statistical efficiency. Consequently,
the execution metrics would be preprocessed into triples
〈Xi, li, Yi〉, where li is the loss of the iteration just before
using setting Xi, i.e., li = lai−1i−1 (e.g., l2 = l91 in Figure
4), and Yi is the estimated remaining completion time if
starting using Xi from a model with loss li (details of Yi in
Section IV). Furthermore, it is known that some iterations may
incur abnormal loss occasionally [32]. Therefore, we apply an
outliner removal technique in [33] to remove outliers. Figure
4b shows the training data after preprocessing.

The initialization phase takes a total of J = a+b·a iterations
and it ends with building a GP based on the collected execution
metrics (e.g., to compute the parameter values of the kernel
function). After that, the online tuning phase starts.

C. Online Tuning Phase

In this phase, a new setting X ′ is selected from the GP
with the highest expected improvement EI every a iterations.
Depending on the online reconfiguration cost Rcost (Section
V), if the expected improvement (EI) of X ′ is larger than
Rcost, then an online reconfiguration to X ′ takes place. In
other words, if a reconfiguration costs more than what it will
potentially save, that reconfiguration would not take place.
Overall, the online tuning phase goes on until the job finishes.

D. Miscellaneous

System settings may involve categorical attributes. For ordi-
nal categorical attributes, we simply pre-process their values to
be integers. For nominal categorical attributes, we use one-hot
encoding [34] to pre-process their data. Suppose a categorical
attribute contains k categories {c0, c1, c2, ..., ck−1}, in order
to denote category ci, one-hot encoding represents that value
as a k-dimensional bit vector with only the i-th bit as 1 and
all other bits are zero.

We end this section by discussing how to set the values
of a and b. Our major purpose is to avoid our techniques
being parametric if possible. The main usage of a is to deduce
the statistical progress (live convergence rate). So, we set a,
the number of iterations executed for each setting, be three
times the number of workers so as to assume each worker has
already pushed the update to the server around three times. Our
experimental results support our choice empirically. We regard
the theoretical foundation of this choice as a future work. In
this paper, we empirically set b, the number of random settings
to try in the initialization phase, as 10. So far, no auto tuners
can reach 100% parameter-free [29], [30]. In Section VIII, we
discuss how to possibly eliminate this very last knob, or even
the entire initialization phase, by transfer learning [35].

IV. ONLINE PROGRESS ESTIMATION

One key input to the online optimization framework is the
estimated remaining completion time Yi of a job. Concretely,
Yi can be formulated as:

Yi = t̄i × rji
which is a product between (i) per-iteration execution time t̄i
(hardware efficiency) and (ii) estimated number of iterations
left rji (statistical progress). t̄i could be directly computed as
the average of the recorded iteration times of using that setting
Xi, e.g., t̄1 can be computed as (t51 + t61 + · · · + t91)/5 in
Figure 4a.

In this section, we focus on rji , the remaining number of
iterations required to reach model convergence. We posit that
estimating rji in ML systems is as challenging as estimating
cardinalities in query optimization. It is known that today we
could still find errors up to orders of magnitude in cardinality

estimation techniques [36]. Yet, most query optimizers live
with that in practice. So following decades of experiences from
query optimization [37], we aim for estimates that would not
lead us to disastrous settings, instead of perfect estimates that
are not demanded in practice.

A. From Bounds to Legitimate Estimation

Studying the convergence rate of various learning algo-
rithms is a very active research topic in machine learning
[38], [13], [39], [40]. Since parameter server is a parallel
learning architecture, in this paper we focus on parallel
gradient descent learning algorithms. For example, Hogwild!
[13] is a parallel gradient descent learning algorithm that
would theoretically converge, i.e., E[R(wz) − R(w∗)] ≤ ε
after z iterations, where

z ≥ H

ε
log

d

ε
(2)

under the assumptions of R is c-strongly convex and L-
smooth, and H is the hidden constant, d = L||w0−w∗||2 and
L is the Lipschiz constant, w∗ is the optimal model parameter,
w0 is the initial model parameter, and ε is the user-specific
convergence threshold.

In this paper, we use Hogwild! as an example (because its
convergence results apply to both bulk synchronous and asyn-
chronous model update) and generalize its offline convergence
analysis to be an online estimation function. Without loss of
generality, assume the learning has finished j0 iterations and
switches to use setting Xi to execute a more iterations. Then,
we know the a new pairs of {〈j, lji 〉}

j=j0+a
j=j0+1 would be scattered

around the curve of:

j = j0 +
Hi

lji
log

di

lji
(3)

Fitting those a pairs of 〈j, lji 〉 to Equation 3 could then
determine the values of Hi and di for setting Xi. When Hi

and di are known, we can estimate rji as:

rji =
Hi

ε
log

di
ε

(4)

This methodology was pioneered by [41], but focused on
gradient based algorithms under a serial and offline setting.
For example, they deduce the total number of iterations as
z = H/ε, with only one hidden constant. For online tuning,
the fitting needs to be carried out multiple times, once for
each different setting Xi from different starting point j0 (c.f.
Equation 3). Furthermore, for gradient based algorithms under
a parallel setting, like Hogwild!, their convergence guarantees
usually capture both the algorithmic factor di (e.g., use of
risk function) and the environmental factor Hi (e.g., data
distribution, network delay). While Hi is explicitly related to
〈j, lji 〉, the relationship between the algorithmic factor di and
live metric 〈j, lji 〉 is implicit. To determine di, we first derive
its upper bound. Specifically, we show that di ≤ 2qlj :

(i) lj = R(wj)−R(w∗) //Section II-A
(ii) di = L||wj − w∗||2

(iii) ||wj−w∗||2 ≤ 2
c (R(wj)−R(w∗)) // R(w) is c-strongly

convex
(iv) ||wj − w∗||2 ≥ 2

L (R(wj) − R(w∗)) // R(w) is L-
smooth

(v) Combine (i), (ii) and (iii), we have di ≤ 2L
c lj

(vi) Combine (iii) and (iv), we get L
c ≥ 1

(vii) Consider a constant q = L
c ≥ 1, then we have di ≤ 2qlj

Now the question becomes how to determine di (and Hi)
using the a collected 〈j, lji 〉 pairs. Notice that we should not fit
both Hi and di together because that may find a value for di
exceeding its upper bound. But up to this point, we understand
that (a) di should not be a large number, because of the log
term in Equation 3 means log di − log lji and the difference
between lji and lj+1

i is tiny in practice. As such, a large di
would dominate the term log di

lji
and degenerate it to a constant.

On the other hand, we understand (b) if di is smaller than many
of the lji ’s collected, then during fitting many log di

lji
’s would

result in negatives, making Hi be fitted as negative. That would
make Equation 4 returns negative numbers as results, which
is undesirable. Based on these information, we set di as

min{2lj0i ,max{lj0+1
i , lj0+2

i , · · · , lj0+a
i }} (5)

and then deduce Hi based on the a collected 〈j, lji 〉 pairs. In
Equation 5, the term 2lj0i is the supremum of di based on its
upper bound to address concern (a) and the max term inside
addresses concern (b).

B. Limitations and Opportunities
The foundation of our statistical progress estimation (and

also [41]) are based on known theoretical convergence bounds
of the various learning algorithms. The advantage of this
approach is that in principle anyone can follow our method-
ology to improve the estimation function whenever there are
new results on the bounds (e.g., tighter bounds that consider
more factors). Nonetheless, while the convergence bounds of
many ML problems are known, the convergence bounds of a
number of non-convex problems are still under development.
For example, there are bounds for non-convex PCA [42]
and two-layer neural networks with ReLU [15], but bounds
for deeper neural networks with many layers are still being
developed. For our TensorFlowOnline prototype, we have
implemented an estimation function based on Hogwild! (which
assumes problems are convex). Our experiments show that
our estimation function is able to avoid disastrous settings
and return efficient system settings for two convex and one
non-convex problems. We regard this system paper as an
initial effort and we will develop more specific estimation
functions for each class of ML models and learning algorithms
with known convergence bounds. This scale of work would
however require effort of the community and we open-source
our prototype to facilitate that.

V. ONLINE RECONFIGURATION

Online reconfiguration changes the system setting in the
course of a ML job. Under the PS architecture, the following
physical changes could be triggered by a reconfiguration:

• (Type I) Data Relocation: For example, a recommen-
dation that suggest turning a worker node to a server
node would trigger this type of reconfiguration. Here, we
further bifurcate data relocation into:

– (Type I-a) Training Data Relocation
– (Type I-b) Model Data Relocation

• (Type II) System Setting Reconfiguration: For example,
in TensorFlow, there is a knob to turn on or off the
function inlining optimization. This kind of knobs would
not trigger any data relocation.

To implement online reconfiguration, a baseline solution is
to re-use the system’s checkpointing and recovery feature (e.g.,
the save & restore in TensorFlow). In most circumstances,
that feature is collectively implemented by four techniques:

1) Checkpointing (CKP): This saves the model state (e.g,
the current model wj , the current iteration number j)
to a persistent storage. Usually, this would not save
any system settings (e.g., whether function inlining is
on or off) because those values are stored separately
in a system configuration/property file/in-memory data
structure. Moreover, checkpointing does not involve the
training data because there is a master copy of the training
data in the shared storage (e.g., HDFS).

2) System Setting Recovery (SSR): This is built-in as
part of the recovery process, in which the system is
reinitialized based on the setting specified in the con-
figuration/property file/data structure.

3) Model Data Recovery (MDR): This is the other part of
the build-in recovery process, in which the model state is
restored to the servers based on the system setting.

4) Training Data Recovery (TDR): Because the training
data is read only and stored in the shared storage.
Therefore, on recovery, the workers would simply fetch
the missing data from the shared storage directly.

Existing ML systems implement their checkpointing and
recovery process as a CKP and a full SSR+MDR+TDR,
respectively. We regard that as the baseline reconfiguration
implementation. It is expected this baseline implementation
incurs high overhead (e.g., checkpointing the state) and cause
system quiescence. In this paper, we have developed a new
scheme that can carry out online reconfiguration more ef-
ficiently. Before introducing that, we first present a new
technique for carrying out Type I-b reconfiguration efficiently.

On-Demand-Model-Relocation (ODMR) In our experience
of applying our techniques on TensorFlow, a lion’s share of
reconfiguration cost attributes to Type I-b, i.e., the cost of
relocating some model parameters from one node to another
node (e.g., when a recommendation suggests increasing the
number of servers). Consequently, we design a technique,
namely, On-Demand-Model-Relocation, that can carry out
more efficient Type I-b model data relocation.

The idea of ODMR is to carry out parameter relocation
on demand. Concretely, on receiving a Type I-b request, the
system only invokes SSR to reflect the decision of moving a

parameter from a source to a destination. The actual parameter
movement takes place only when a parameter is pulled from
the source server and pushes back to the destination server.
Suppose there are two servers S1 and S2 and they origi-
nally manage parameters {w1, . . . , w6} and {w7, . . . , w12},
respectively. Now, assume a reconfiguration suggests to add
one more server S3 so that the three servers, S1, S2, and
S3 manage parameters {w1, . . . , w4}, {w7, . . . , w10}, and
{w5, w6, w11, w12}, respectively. So, when a worker requests
a parameter that is supposed to be relocated, e.g., w12, we
simply let the worker to pull from the old destination S2.
After the workers have computed the updates, they push both
their original values and the updates to the new destination
S3. The reasons of pushing the original value are that (1)
the destination S3 does not have the original value o, so
sending the updates u alone is not enough and (2) the original
value “flags” the servers that this push is special and to avoid
possibly repeated counting — the first time the server receives
the message 〈o, u1〉 it should create a new parameter with
value o+u1, but the second time it receives a message 〈o, u2〉,
it should act like receiving a normal push with u2.

The ODMR approach has the merit of overlapping a Type I-
b relocation with the usual push-and-pull operations. It would
not cause any system quiescence as the basic solution does. By
mix-and-match the existing checkpointing and recovery tech-
niques in PS-style systems and ODMR, our reconfiguration
scheme is as follows:

• For Type I-a reconfiguration only, invoke TDR.
• For Type I-b reconfiguration only, invoke ODMR.
• For Type II reconfiguration only, change the system

configuration file and invoke SSR.
• For any combination of the above, invoke the union of

their actions.

We end this section by recalling the need to estimate
the reconfiguration cost Rcost for the online tuning phase
(Section III-C). With the discussion above, it becomes clear
that Rcost depends on the reconfiguration type and technique.
Nonetheless, empirically we observe that the cost variance of
each technique is small and thus we can simply deduce the
costs of each individual techniques from the execution metrics
collected during the initialization phase.

VI. EXPERIMENTS

We implemented our techniques on top of TensorFlow
v1.8. The details about our implementation can be found in
Appendix B. Briefly, the implementation includes a user-level
library written in Python 2.7 in order to abstract out the system
setting of a TensorFlow program. We implemented the Tuning
Manager and the repository using Python. We modified the
front-end of TensorFlow so as to support our reconfiguration
scheme. We refer this prototype implementation as Tensor-
FlowOnline in this section. TensorFlowOnline can support
both asynchronous parallel (ASP) and bulk synchronous paral-
lel (BSP) training. Table I lists all the system knobs supported
by TensorFlowOnline.

Hardware We performed all the experiments on a cluster
of 36 identical servers, connected by Ethernet. The network
bandwidth is 10Gbps. The computing nodes run 64-bit CentOS
7.3, with the training datasets on HDFS 2.6.0. Each node is
Intel Xeon E5-2620v4 system with 16 cores CPU running at
2.1 GHz, 64GB of memory, and 800GB SSD.

Comparison For comparison purposes, we use vanilla Ten-
sorFlow as the baseline and compare it with TensorFlowOn-
line. For each experiment executed by TensorFlow, we re-
peated the job 100 times, each using a different random system
setting and report:

1) Worst: the worst completion time of TensorFlow among
100 random settings.

2) Average: the average completion time of TensorFlow
among 100 random settings.

3) Best: the best completion time of TensorFlow among
100 random settings.

Note that the result of Best could not be achievable in
practice. That is because nobody would really run the same
job on TensorFlow a hundred times just for identifying the
best system setting for a particular model (hyperparameter)
and dataset. We also note that TensorFlow, although popular,
is more like a software library than a system — currently
users must explicitly specify most system parameters (e.g.,
the number of workers) and there are no default values per
se.

Workload and Datasets We evaluate TensorFlowOnline
with three widely used machine learning models: (i) l2 regular-
ized Logistic Regression (LogR), (ii) Support Vector Machine
(SVM), and (iii) Convolutional Neural Network (CNN). For
CNN, we used AlexNet [47], a convolutional neural network
with five layers. AlexNet is also used in many work [48], [5].
We remark that AlexNet is non-convex, and its convergence
bound is still actively researched by the machine learning
community. But as a system paper, we still try AlexNet to see
if we can use our current estimation function as a heuristic.
This is not uncommon in machine learning. For example,
it is known that SGD might converge to a saddle point /
local optimal but not global optimum when facing non-convex
problems. Nonetheless, SGD is still being extensively used in
all sort of deep learning problems in practice.

Table II summarizes the characteristics of the datasets and
the workloads used in our experiments. For CNN, we used two
different datasets. Specifically, ImageNet is a typical dataset
for deep learning. However, each training job on ImageNet
can take weeks on our cluster. When running TensorFlow in
the baseline experiments, some random (poor) settings took
even a longer time to finish. As we have to run a lot of
baseline experiments, we follow [46] to use a reduced version
of ImageNet, namely ImageNet8, which consists of the first
8 classes in the original data. The convergence thresholds ε
for LogR, SVM, and CNN are set as 0.2, 0.98, 0.5, and 1.5,
respectively. These thresholds are chosen to ensure we can

TABLE I
SYSTEM KNOBS TUNED IN TensorFlowOnline

Knob Meaning
tf.ClusterSpec::ps The number of parameter servers
tf.ClusterSpec::worker The number of workers
tf.ConfigProto::intra op parallelism threads The number of thread of thread pool for the execution of an individual

operation that can be parallelized
tf.ConfigProto::inter op parallelism threads The number of thread of thread pool for operations that perform blocking

operations
tf.OptimizerOptions::do common subexpression elimination A switch to enable common subexpression elimination
tf.OptimizerOptions::max folded constant in bytes The total size of tensor that can be replaced by constant folding optimization
tf.OptimizerOptions::do function inlining A switch to enable function inlining
tf.OptimizerOptions::global jit level The optimization level of jit compiler: {OFF, ON 1, ON 2}
tf.GraphOptions::infer shapes Annotate each Tensor with Tensorflow Operation output shape
tf.GraphOptions::place pruned graph A switch to place the subgraphs that are run only, rather than the entire graph
tf.GraphOptions::enable bfloat16 sendrecv A switch to transfer float values between processes using 16 bit float

TABLE II
TRAINING DATASETS AND WORKLOADS

Dataset Data Size Model Model Size Model Update
(# of parameters)

KDD12 [43] 17G LogR 109,372,904 Asynchronous
CRITEO [44] 2.2T SVM 1,000,000 Asynchronous

CIFAR10 [45] 160M CNN 654,968 Asynchronous
ImageNet8 [46] 1.2G CNN 58,289,352 Bulk Synchronous

obtain the baseline results within months.

A. Performance Evaluation

Figure 5 compares the completion time of TensorFlowOn-
line with TensorFlow. We see that TensorFlowOnline has
about 1.4× (CNN on ImageNet8) to 2.5× (SVM) speedup
when compared with Average, meaning TensorFlowOnline
saves much time for average ML users who have little system
background. Furthermore, TensorFlowOnline helps users to
avoid disastrous bad settings, which are 6× (LogR) to 18×
(CNN on ImageNet8) slower than using TensorFlowOnline.

Figure 6 shows that the loss of the jobs with respect to
the job training time. In the figure, we indicate the moment
when TensorFlowOnline switches from its initialization phase
to the online tuning phase with a vertical dotted line. We
also add a marker on the x-axis whenever TensorFlowOnline
changes the system setting online. From the figure, we observe
that TensorFlowOnline might have a slower convergence
rate during the initialization phase because it was trying
different settings and some of those might not be good
ones. Nonetheless, we know that is worth doing because
once TensorFlowOnline enters the online tuning phase, it
progressively uses better system settings and converges much
faster afterwards.

B. Statistical Efficiency versus Hardware Efficiency

The completion time of a ML job is a complex interplay
between statistical efficiency and hardware efficiency because
a setting good at one efficiency might be a bad setting overall.
Figure 7 confirms that. The figure shows the loss of the jobs
with respect to the iterations executed. In fact, both Tensor-
FlowOnline and Best have chosen settings that need slightly
more iterations to convergence on LogR and CNN (CIFAR)

when compared with settings chosen by Worst and Average.
But Table III, which gives the details of the number of
iterations and the execution time per iteration on all workloads,
shows that the settings chosen by TensorFlowOnline and
Best essentially have much better hardware efficiencies than
the settings chosen by Worst and Average. That explains why
TensorFlowOnline and Best have much better end-to-end
completion time overall. On ImageNet8, TensorFlowOnline
has chosen a setting which is more hardware efficient but
Best has chosen a setting which is more statistical efficient.
We believe that is caused by the fact that our estimation
function is only a heuristic when facing non-convex problems.
But we remark that the setting chosen by TensorFlowOnline
is a fairly good one after all.

Tables IV, IX, X, and XI list the system settings cho-
sen by Worst, Average, TensorFlowOnline and Best in
detail. For Average, the reported setting is the one whose
completion time closest to the average completion time. For
TensorFlowOnline, the reported setting is the final one found
by TensorFlowOnline in the online tuning phase. Take the
settings reported in the SVM experiment (Table IV) as an
example, we see that TensorFlowOnline found a setting quite
close to the Best, especially on the server-worker ratio and
on the use of parallelism, which justifies TensorFlowOnline
near-optimal performance in SVM. When we look at the
settings reported in the CNN ImageNet8 experiment (Table
XI), we observe TensorFlowOnline and Best really chose
quite different system settings, in which TensorFlowOnline
has chosen a more hardware efficient one but Best has chosen
a more statistical efficient one. Nonetheless, the setting chosen
by TensorFlowOnline is good enough, and outperforms the
one chosen by Average in terms of end-to-end completion
time.

C. Reconfiguration

In order to evaluate our proposed reconfiguration scheme,
especially ODMR, we carried out a set of experiments on Ten-
sorFlowOnline whose reconfiguration is implemented using
the baseline method (i.e., checkpointing and recovery). Table
V shows the details about the reconfiguration costs between
the two implementations. Column (a) shows that our recon-

Worst Average TFOnline Best

C
om

pl
et

io
n

tim
e

(m
in

)
210

52

35
25

(a) LogR

Worst Average TFOnline Best

C
om

pl
et

io
n

tim
e

(m
in

)

1225

123

50 39

(b) SVM

Worst Average TFOnline Best

C
om

pl
et

io
n

tim
e

(m
in

)

92

14

9

3

(c) CNN on CIFAR

Worst Average TFOnline Best

C
om

pl
et

io
n

tim
e

(m
in

)

1651

130

90

43

(d) CNN on Imagenet8

Fig. 5. End-to-end completion time comparison

0.2

0.4

0.6

 0 1000 2000 3000 4000

Lo
ss

Execution time (sec)

TFOnline
Average

Best
Worst

(a) LogR

0.980

0.990

1.000

1.010

 0 1000 2000 3000 4000 5000 6000 7000

Lo
ss

Execution time (sec)

TFOnline
Average

Best
Worst

(b) SVM

0.5

1.0

1.5

2.0

2.5

 0 500 1000 1500

Lo
ss

Execution time (sec)

TFOnline
Average

Best
Worst

(c) CNN on CIFAR

1.5

2.0

2.5

3.0

3.5

 0 1000 2000 3000 4000 5000 6000 7000

Lo
ss

Execution time (sec)

TFOnline
Average

Best
Worst

(d) CNN on ImageNet8

Fig. 6. Loss vs. Job training time

0.2

0.4

0.6

 0 5000 10000 15000 20000

Lo
ss

of iterations

TFOnline
Average

Best
Worst

(a) LogR

0.980

0.985

0.990

0.995

1.000

1.005

0 105 2*105

Lo
ss

of iterations

TFOnline
Average

Best
Worst

(b) SVM

0.5

1.0

1.5

2.0

 0 10000 20000 30000 40000

Lo
ss

of iterations

TFOnline
Average

Best
Worst

(c) CNN on CIFAR

1.5

2.0

2.5

3.0

3.5

 0 500 1000 1500 2000

Lo
ss

of iterations

TFOnline
Average

Best
Worst

(d) CNN on ImageNet8

Fig. 7. Loss vs. Iterations

TABLE III
HARDWARE EFFICIENCY VS. STATISTICAL EFFICIENCY

Worst Average TensorFlowOnline Best
of time per # of time per # of time per # of time per

iterations iteration iterations iteration iterations iteration iterations iteration
LogR 14899 0.846s 14795 0.217s 22592 0.093s 21834 0.060s
SVM 106323 0.691s 227125 0.034s 223519 0.013s 225085 0.010s
CNN on CIFAR 35426 0.157s 37520 0.023s 44827 0.011s 43601 0.005s
CNN on ImageNet 3975 24.921s 1163 6.132s 1555 3.463s 691 3.747s

TABLE IV
SYSTEM SETTING IN SVM EXPERIMENTS

Knob (names simplified) Worst Average TFOnline Best
ps 35 25 5 2
worker 1 11 31 34
intra op parallelism threads 3 9 1 6
inter op parallelism threads 13 7 15 10
do common subexpression elimination False True False True
max folded constant in bytes 35500001 62500000 10485760 70500000
do function inlining False False True True
global jit level ON 1 ON 1 ON 1 OFF
infer shapes False False False True
place pruned graph True False False False
enable bfloat16 sendrecv True True False False

figuration scheme reduces the reconfiguration overheads by
400% (LogR) to 640% (CNN on CIFAR). Column (b) shows
the average cost of a single reconfiguration. It shows that our
reconfiguration scheme reduces each reconfiguration overhead
by 380% (LogR) to 760% (CNN on CIFAR). The reason of
the reconfiguration cost being higher in LogR than the others
because the model size of LogR is much bigger than the
others (see Table II). That influences both the baseline’s state-
checkpointing-and-recovery cost and ODMR’s relocation cost.
Nonetheless, we observe that the number of reconfigurations
that took place is actually a fairly small number, between 24

and 50. Consequently, those costs are worth and offset by the
use of better system settings in subsequent iterations, which
our overall experimental results confirm that.

D. Estimation Quality

Lastly, we try to understand the quality of our estimation
function. Since our primary goal is not the estimation accuracy
as discussed, we evaluate the rank [49] of our estimation
function instead. Specifically, there is a perfect ranking of 100
system settings obtained in the baseline experiments, where the
one with the best completion time, i.e., Best, is rank 1st, and
Worst, has rank 100-th. This perfect ranking can serve as an
oracle to the evaluation.

Consider a random system setting Xi in our baseline
experiments. We segment its execution metrics for every a
consecutive pairs of 〈j, lji 〉. Then, for each segment we follow
our methodology in Section IV to form a series of estimation
functions {r1, r2, . . . }. Next, we feed the same convergence
threshold to {r1, r2, . . . } to obtain a series of estimated re-
maining completion times {Y1, Y2, ...} with respect to iteration
a-th, 2a-th, so on and so forth. For 100 random settings used in
our baseline experiments, we then obtain a table of estimation
results like this (note: the numbers below are for illustrations
only):

Setting Iteration 60 Iteration 120 ...
Est. Remaining Time Est. Remaining Time ...

X1 5555 3333 ...
X2 4444 4222 ...
...

X100 7777 6666 ...

With a table of estimation results, we can evaluate the
quality of the estimation function directly. Specifically, we can
deduce which setting is the estimated “optimal” according to
the estimation function alone. For example, as of the moment
of iteration 60, our estimation function would regard X2 as the
estimated optimal if its estimated remaining time is the lowest
among the others. Similarly, as of the moment of iteration
120, our estimation function would regard X1 as the estimated
optimal if its estimated remaining time is the lowest. Now,
consider the moment of iteration 60 and assuming X2 is the
estimated optimal setting at that moment, we can quantify
whether the estimation is reliable by cross-checking the rank
of X2 with respect to the oracle. Concretely, if X2 is also rank
1st in the oracle, that means the estimation is perfect enough
to suggest the real optimal. In contrast, if X2 turns out to
rank 100-th in the oracle, that means the estimated “optimal”
setting turns out is the worst one among the 100 settings. The
notion of rank based on an actual oracle has been used in
[49] and it was shown that it is way more informative than
using the notion of error when evaluating the quality of an
estimation function. So now, for each segment (iterations 1 to
60 is segment 1, iterations 61 to 120 is segment 2, etc.), we
can identify the rank of the estimated optimal in that segment.
We report the average rank of those estimated optimals cross
all segments. Semantically, that is the quality of our estimates

across every possible reconfiguration point of the training job
under TensorFlowOnline.

Table VI shows the average ranks of our estimation on the
four different workloads. Our estimation function has excellent
quality in LogR and SVM, in which its estimated optimals
are the third (3.3) and the second (2.0) best settings in real.
As a heuristic for non-convex CNN, our estimation function,
though not as promising as on LogR and SVM, is still able to
return good but not excellent settings that rank within the top-
22 percentile. As an initial prototype, we regard that as good
enough as we can see from the previous experiments (Figure
5) that TensorFlowOnline can successfully avoid disastrous
settings that would have been about 6 times (LogR), 25 times
(SVM), 10 times (CIFAR) and 18 times (ImageNet8) slower.
Nonetheless, we are aware of new convergence bounds for
two layers neural networks have just been released [15]. We
will try those new bounds as heuristics estimation function in
TensorFlowOnline for CNN problems in the future.

VII. RELATED WORK

The (short) history of PS architecture began with systems
that were specifically designed for LDA topic modeling [50]
and deep network [5], [1]. Afterwards, general-purpose ML
systems also adopt the PS architecture [3], [2]. Compared
with auto-tuning database systems, auto-tuning ML systems
is in infancy. In [25], an offline tuner specifically designed
for Adam [5], a close-source ML system, was presented. The
work manually established an analytical cost-model based on
Adam’s architecture and design. Similarly, in [51], an offline
resource tuner for ML systems was discussed. That work,
however, focused only on hardware efficiency. Latest works
[41] and [52] discusses the automatic selection of different
GD algorithms by manually creating an analytical cost-model
and the automatic placement of operators on CPU/GPU using
reinforcement learning, respectively. Our scope is way broader
than only those. More importantly, we target online tuning,
i.e., a job is executed using better and better system settings
as it proceeds. In contrast, [41] targets offline tuning — first
decide on which GD algorithm to use and never change that
even though a job may last for hours or weeks. In [53], exper-
iments show that changing the cluster resources online could
influence the completion time of ML jobs, which supports the
arguments of this paper. FlexPS [26] shares the same vision
as us. However, FlexPS only supports only one knob – the
worker-server ratio. Furthermore, it requires users to learn a
completely new programming model and API. In contrast, our
techniques in this paper are general. We have shown that we
can apply our techniques to the popular Tensorflow and users
can enjoy better efficiency with no pain.

There are distributed systems specialized for deep learn-
ing, for example, SINGA [54], MXNET [4], FireCaffe [55],
SparkNet [56], Omnivore [46], and Project Adam [5]. Decou-
pling hardware and statistical efficiency is not new there. For
example, MXNet reported hardware efficiency and statistical
efficiency separately, SINGA studied their tradeoff, and Om-
nivore leveraged that tradeoff to improve end-to-end running

TABLE V
RECONFIGURATION COST

Workload # of Reconfig (a) Total Overhead (b) Overhead per reconfiguration
Baseline TensorFlowOnline Baseline TensorFlowOnline

LogR 37 1739s 444s 47s 12s
SVM 50 650s 100s 13s 2s

CNN on CIFAR 26 416s 52s 16s 2s
CNN on ImageNet8 24 960s 144s 40s 6s

TABLE VI
ESTIMATION FUNCTION RELIABILITY

Workload LogR SVM CNN on CIFAR CNN on ImageNet8
Rank 3.3 2.0 22.0 13.0

time. However, they have not studied the issues of online
tuning and system reconfigurations as we do.

In machine learning, auto hyper-parameter tuning (e.g., tun-
ing the number of the hidden layers in a deep neural network)
that finds the best model is an automated machine learning
(AutoML) problem [57]. State-of-the-art hyper-parameter tun-
ing systems [58], [59], [60], [16], [17], [18], [19], [20], [21],
[11] however have not addressed online tuning that includes
system parameters.

Performance modeling and progress estimation are inter-
esting problems in their own right. For example, Ernest [61]
trains a performance model for machine learning applications.
However, Ernest and more recent work [62] have only put the
estimation of statistical efficiency as a future work. Progress
indicator is a useful add-on in analytical systems because
that lets users know when will they obtain the results [63],
[64], [65], [66], [67]. In this paper, we have pioneered the
first progress indicator for ML systems through giving initial
solutions to the statistical progress estimation problem.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we make a case for building a parameter-
server system prototype that supports self-tuning. We show
that the performances of machine learning (ML) systems, like
database systems, are also subjected to the values of system
parameter. However, unlike database systems, ML systems can
afford online on-job training and tuning because of the long-
running nature of ML iterative programs. To this end, we have
developed an online optimization framework that is suitable to
all ML systems. We have also developed initial solutions to
approach the online statistical progress estimation problem.
Furthermore, we have developed new techniques to carry
out online reconfiguration in a lightweight and non-quiescent
mode. As an initial effort to showcase our techniques, we have
implemented a prototype on top of TensorFlow. Experiments
show that various ML tasks gain speedup by a factor of 1.4×
to 18×.

As a prototype, TensorFlowOnline has included only one
specific statistic progress estimation function. Although em-
pirical results show that it works well even on workloads
that violate its assumption, we are going to devise specific

estimation functions for each kind of ML problems and
algorithms. From the system perspective, we plan to extend
our idea to other system architecture (e.g,. the peer to peer
architecture on a scale-up machine [68]), and to platforms with
heterogenous machines (e.g., [69]). We are also in the process
of using transfer learning [35] to eliminate the initialization
phase. Specifically, when the framework receives a new ML
job J , it shall search the repository and locate a previous job
Ĵ that is most similar to J . Then it shall transfer all candidate
settings XĴ that Ĵ had ever picked to be J’s candidate settings.
In this case, determining the value for b, the number of initial
settings to try during the initialization phase, is no longer
a question. OtterTune [30] has also leveraged a similar idea
when facing new DB workloads. We believe the formal use of
transfer learning on ML system tuning would be promising.

REFERENCES

[1] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. Ranzato, A. W. Senior, P. A. Tucker, K. Yang, and A. Y. Ng,
“Large scale distributed deep networks,” in NIPS, 2012, pp. 1232–1240.

[2] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie,
A. Kumar, and Y. Yu, “Petuum: A new platform for distributed machine
learning on big data,” in SIGKDD, 2015, pp. 1335–1344.

[3] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B. Su, “Scaling distributed machine learning
with the parameter server,” in OSDI, 2014, pp. 583–598.

[4] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv preprint
arXiv:1512.01274, 2015.

[5] T. M. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project
adam: Building an efficient and scalable deep learning training system,”
in OSDI, 2014, pp. 571–582.

[6] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. A. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system
for large-scale machine learning,” in OSDI, 2016, pp. 265–283.

[7] C. Zhang and C. Ré, “Dimmwitted: A study of main-memory statistical
analytics,” PVLDB, vol. 7, no. 12, pp. 1283–1294, 2014.

[8] E. Brochu, V. M. Cora, and N. de Freitas, “A tutorial on bayesian
optimization of expensive cost functions, with application to active user
modeling and hierarchical reinforcement learning,” CoRR, 2010.

[9] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” in NIPS, 2012, pp. 2960–2968.

[10] J. Mockus, Bayesian approach to global optimization: theory and
applications. Springer Science & Business Media, 2012.

[11] T. Li, J. Zhong, J. Liu, W. Wu, and C. Zhang, “Ease.ml: Towards
multi-tenant resource sharing for machine learning workloads,” PVLDB,
vol. 11, no. 5, pp. 607–620, 2018.

[12] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “Cherrypick: Adaptively unearthing the best cloud config-
urations for big data analytics,” in NSDI, 2017, pp. 469–482.

[13] B. Recht, C. Re, S. J. Wright, and F. Niu, “Hogwild: A lock-free
approach to parallelizing stochastic gradient descent,” in NIPS, 2011,
pp. 693–701.

[14] C. D. Sa, C. Zhang, K. Olukotun, and C. Ré, “Taming the wild: A unified
analysis of hogwild-style algorithms,” in NIPS, 2015, pp. 2674–2682.

[15] Y. Li and Y. Yuan, “Convergence analysis of two-layer neural networks
with relu activation,” in NIPS, 2017, pp. 597–607.

[16] E. R. Sparks, A. Talwalkar, M. J. Franklin, M. I. Jordan, and T. Kraska,
“Tupaq: An efficient planner for large-scale predictive analytic queries,”
arXiv preprint arXiv:1502.00068, 2015.

[17] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-Brown,
“Auto-weka 2.0: Automatic model selection and hyperparameter opti-
mization in WEKA,” Journal of Machine Learning Research, vol. 18,
pp. 25:1–25:5, 2017.

[18] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley,
“Google vizier: A service for black-box optimization,” in SIGKDD,
2017, pp. 1487–1495.

[19] U. Becker-Kornstaedt, L. Scott, and J. Zettel, “Process engineering with
spearminttm/epg,” in ICSE, 2000, p. 791.

[20] T. G. authors, “GPyOpt: A bayesian optimization framework in python,”
http://github.com/SheffieldML/GPyOpt, 2016.

[21] T. auto-sklearn authors, “auto-sklearn,” https://github.com/automl/
auto-sklearn, 2014.

[22] Z. Allen Zhu and Y. Yuan, “Improved SVRG for non-strongly-convex
or sum-of-non-convex objectives,” in ICML, 2016, pp. 1080–1089.

[23] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal value
function approximators,” in ICML, 2015, pp. 1312–1320.

[24] O. Meshi, M. Mahdavi, and A. Schwing, “Smooth and strong: Map
inference with linear convergence,” in NIPS, 2015, pp. 298–306.

[25] F. Yan, O. Ruwase, Y. He, and T. Chilimbi, “Performance modeling
and scalability optimization of distributed deep learning systems,” in
SIGKDD, 2015, pp. 1355–1364.

[26] Y. Huang, T. Jin, Y. Wu, Z. Cai, X. Yan, F. Yang, J. Li, Y. Guo,
and J. Cheng, “Flexps: Flexible parallelism control in parameter server
architecture,” Proceedings of the VLDB Endowment, vol. 11, no. 5, pp.
566–579, 2018.

[27] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT
Press, 2005.

[28] E. Contal, D. Buffoni, A. Robicquet, and N. Vayatis, “Parallel gaussian
process optimization with upper confidence bound and pure exploration,”
in ECML PKDD, 2013, pp. 225–240.

[29] S. Duan, V. Thummala, and S. Babu, “Tuning database configuration
parameters with ituned,” PVLDB, vol. 2, no. 1, pp. 1246–1257, 2009.

[30] D. V. Aken, A. Pavlo, G. J. Gordon, and B. Zhang, “Automatic database
management system tuning through large-scale machine learning,” in
SIGMOD, 2017, pp. 1009–1024.

[31] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” J. Artif. Intell. Res., vol. 4, pp. 237–285, 1996.

[32] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using
predictive variance reduction,” in NIPS, 2013, pp. 315–323.

[33] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction
to Statistical Learning: With Applications in R. Springer Publishing
Company, Incorporated, 2014.

[34] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[35] S. J. Pan and Q. Yang, “A survey on transfer learning,” TKDE, vol. 22,
no. 10, pp. 1345–1359, 2010.

[36] H. Harmouch and F. Naumann, “Cardinality estimation: An experimental
survey,” PVLDB, vol. 11, no. 4, pp. 499–512, 2017. [Online]. Available:
http://www.vldb.org/pvldb/vol11/p499-harmouch.pdf

[37] G. Lohman, “Is query optimization a solved problem?” http://wp.
sigmod.org/?p=1075, 2014.

[38] Q. Meng, W. Chen, Y. Wang, Z.-M. Ma, and T.-Y. Liu, “Convergence
analysis of distributed stochastic gradient descent with shuffling,” NIPS,
2017.

[39] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning:
From theory to algorithms. Cambridge university press, 2014.

[40] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, “Robust stochastic
approximation approach to stochastic programming,” SIAM Journal on
optimization, vol. 19, no. 4, pp. 1574–1609, 2009.

[41] Z. Kaoudi, J.-A. Quiane-Ruiz, S. Thirumuruganathan, S. Chawla, and
D. Agrawal, “A cost-based optimizer for gradient descent optimization,”
in SIGMOD, 2017, pp. 977–992.

[42] C. D. Sa, “Non-convex optimization,” http://www.cs.cornell.edu/courses/
cs6787/2017fa/Lecture7.pdf, 2017.

[43] K. Dataset, “Kdd cup 2012, track 1,” https://www.kaggle.com/c/
kddcup2012-track1, 2012.

[44] C. Labs, “Criteo releases industrys largest-ever dataset for machine
learning to academic community,” https://www.criteo.com/news/
press-releases/2015/07/criteo-releases-industrys-largest-ever-dataset/,
2015.

[45] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech. Rep., 2009.

[46] S. Hadjis, C. Zhang, I. Mitliagkas, and C. Ré, “Omnivore: An optimizer
for multi-device deep learning on cpus and gpus,” arXiv preprint
arXiv:1606.04487, 2016.

[47] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012, pp. 1106–
1114.

[48] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[49] W. Xu, Z. Feng, and E. Lo, “Fast multi-column sorting in main-memory
column-stores,” in SIGMOD, 2016, pp. 1263–1278.

[50] A. J. Smola and S. M. Narayanamurthy, “An architecture for parallel
topic models,” PVLDB, vol. 3, no. 1, pp. 703–710, 2010.

[51] B. Huang, M. Boehm, Y. Tian, B. Reinwald, S. Tatikonda, and F. R.
Reiss, “Resource elasticity for large-scale machine learning,” in Pro-
ceedings of the 2015 ACM SIGMOD International Conference on
Management of Data. ACM, 2015, pp. 137–152.

[52] K. Nguyen, H. Daumé III, and J. Boyd-Graber, “Reinforcement learning
for bandit neural machine translation with simulated human feedback,”
arXiv, 2017.

[53] X. Pan, S. Venkataraman, Z. Tai, and J. Gonzalez, “Hemingway:
Modeling distributed optimization algorithms,” CoRR, 2017.

[54] B. C. Ooi, K.-L. Tan, S. Wang, W. Wang, Q. Cai, G. Chen, J. Gao,
Z. Luo, A. K. Tung, Y. Wang, and Z. Xie, “Singa: A distributed deep
learning platform,” in ACM Multimedia, 2015, pp. 685–688.

[55] F. N. Iandola, M. W. Moskewicz, K. Ashraf, and K. Keutzer, “Firecaffe:
Near-linear acceleration of deep neural network training on compute
clusters,” in CVPR, 2016, pp. 2592–2600.

[56] P. Moritz, R. Nishihara, I. Stoica, and M. I. Jordan, “Sparknet: Training
deep networks in spark,” arXiv preprint arXiv:1511.06051, 2015.

[57] I. Guyon, I. Chaabane, H. J. Escalante, S. Escalera, D. Jajetic, J. R.
Lloyd, N. Macià, B. Ray, L. Romaszko, M. Sebag, A. R. Statnikov,
S. Treguer, and E. Viegas, “A brief Review of the ChaLearn AutoML
Challenge: Any-time Any-dataset Learning without Human Interven-
tion,” in Workshop on Automatic Machine Learning, 2016, pp. 21–30.

[58] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter opti-
mization,” The Journal of Machine Learning Research, vol. 18, no. 1,
pp. 6765–6816, 2017.

[59] S. Falkner, A. Klein, and F. Hutter, “Bohb: Robust and efficient
hyperparameter optimization at scale,” arXiv preprint arXiv:1807.01774,
2018.

[60] L. Li, K. G. Jamieson, A. Rostamizadeh, E. Gonina, J. Ben-tzur,
M. Hardt, B. Recht, and A. Talwalkar, “A system for massively
parallel hyperparameter tuning,” in Proceedings of Machine Learning
and Systems 2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020,
I. S. Dhillon, D. S. Papailiopoulos, and V. Sze, Eds. mlsys.org, 2020.
[Online]. Available: https://proceedings.mlsys.org/book/303.pdf

[61] S. Venkataraman, Z. Yang, M. J. Franklin, B. Recht, and I. Stoica,
“Ernest: Efficient performance prediction for large-scale advanced ana-
lytics,” in USENIX, 2016, pp. 363–378.

[62] D. Justus, J. Brennan, S. Bonner, and A. S. McGough, “Predicting the
computational cost of deep learning models,” in IEEE International
Conference on Big Data, Big Data 2018, Seattle, WA, USA, December
10-13, 2018, N. Abe, H. Liu, C. Pu, X. Hu, N. K. Ahmed, M. Qiao,
Y. Song, D. Kossmann, B. Liu, K. Lee, J. Tang, J. He, and
J. S. Saltz, Eds. IEEE, 2018, pp. 3873–3882. [Online]. Available:
https://doi.org/10.1109/BigData.2018.8622396

[63] J. Li, A. C. König, V. R. Narasayya, and S. Chaudhuri, “Robust
estimation of resource consumption for SQL queries using statistical
techniques,” PVLDB, vol. 5, no. 11, pp. 1555–1566, 2012.

[64] J. Li, R. V. Nehme, and J. F. Naughton, “Toward progress indicators on
steroids for big data systems,” in CIDR, 2013.

[65] S. Chaudhuri, V. R. Narasayya, and R. Ramamurthy, “Estimating
progress of long running SQL queries,” in SIGMOD, 2004, pp. 803–
814.

http://github.com/SheffieldML/GPyOpt
https://github.com/automl/auto-sklearn
https://github.com/automl/auto-sklearn
http://www.deeplearningbook.org
http://www.vldb.org/pvldb/vol11/p499-harmouch.pdf
http://wp.sigmod.org/?p=1075
http://wp.sigmod.org/?p=1075
http://www.cs.cornell.edu/courses/cs6787/2017fa/Lecture7.pdf
http://www.cs.cornell.edu/courses/cs6787/2017fa/Lecture7.pdf
https://www.kaggle.com/c/kddcup2012-track1
https://www.kaggle.com/c/kddcup2012-track1
https://www.criteo.com/news/press-releases/2015/07/ criteo-releases-industrys-largest-ever-dataset/
https://www.criteo.com/news/press-releases/2015/07/ criteo-releases-industrys-largest-ever-dataset/
https://proceedings.mlsys.org/book/303.pdf
https://doi.org/10.1109/BigData.2018.8622396

[66] G. Luo, J. F. Naughton, C. J. Ellmann, and M. W. Watzke, “Toward a
progress indicator for database queries,” in SIGMOD, 2004, pp. 791–
802.

[67] K. Morton, A. L. Friesen, M. Balazinska, and D. Grossman, “Estimating
the progress of mapreduce pipelines,” in ICDE, 2010, pp. 681–684.

[68] D. Grubic, L. Tam, D. Alistarh, and C. Zhang, “Synchronous multi-
gpu training for deep learning with low-precision communications: An
empirical study,” in EBDT, 2018, pp. 145–156.

[69] J. Jiang, B. Cui, C. Zhang, and L. Yu, “Heterogeneity-aware distributed
parameter servers,” in SIGMOD, 2017, pp. 463–478.

APPENDIX A
NOTATIONS

We summarized all used notations in Table VII.

TABLE VII
NOTATION TABLE

Notation Meaning
X system setting
X∗ optimal or near-optimal system setting
li the loss of the first iteration of using setting Xi

〈X, l〉 (d+ 1)-dimensional vector that includes both the
system setting values and the loss of the model

T (〈X, l〉) the remaining completion time of the job if we
switch to setting X where the model has reached
a loss down to l

tji the execution time of j-th iteration
lji the loss of iteration j under setting Xi

Yi the estimated remaining completion time at setting
Xi

〈j,Xi, t
j
i , l

j
i 〉 collected execution metrics

〈Xi, li, Yi〉 training data for the Bayesian Optimization (BO)
wj model parameters after j-th iteration
w∗ the optimal model parameters

APPENDIX B
IMPLEMENTING TensorFlowOnline

We have implemented our techniques on top of TensorFlow
and name our prototype TensorFlowOnline.

A. User-Program

Currently TensorFlow exposes all system settings through
the class constructors and class attributes of the core classes.
Table VIII (left) shows how ML users specify those set-
tings within the program. We have implemented a Python
module for TensorFlowOnline so that users no longer need
to specify the system settings anymore. Table VIII (right)
shows the corresponding program with TensorFlowOnline
installed. We can see that a ML user no longer needs to
bother for those system settings, except she is required to
implement her TensorFlow program by extending a new class
MLJobFramework provided by TensorFlowOnline. That class
is implemented in the front-end to collect runtime statistics.

B. Front-end

TensorFlow existing implementation already has explicit
facilities to implement CKP, MDR, and TDR. Specifically,
CKP can be invoked by Saver.save(), MDR can be invoked
by Saver.restore(), and TDR can be invoked by reading

training data through TensorFlow tf.ReaderBase with HDFS
filesystem plugin.

Now, we discuss how we implement ODMR (On-Demand-
Model-Relocation) in TensorFlow. The placement of pa-
rameters is controlled by the execution graph generated
by TensorFlow front-end. When data reallocation (e.g.,
changing the number of parameter server) occurs, attribute
tf.Variable::device, which controls the location of the parame-
ters, is updated according to the parameter mapping generated
by TensorFlowOnline. To push also the original data value
under ODMR, we added an extra operation to the front-end
to do so.

C. Back-End

We modify the back-end of TensorFlow in order to reduce
the overhead of SSR. Currently, if we want to carry out SSR
(e.g., changing of the number of intra op parallelism threads)
in TensorFlow, the whole TensorFlow program has to com-
pletely restart since the back-end of TensorFlow cannot
change the system knobs on-fly. In TensorFlowOnline, we
modify TensorFlow back-end and expose a new function called
Reconfig() in the API. It allows the back-end to accept new
knob values from the front-end without restarting the whole
job.

TABLE VIII
EXAMPLE OF TensorFlowOnline MODULE

TensorFlow TFTuner

Manually define the configuration of the
TensorFlow training server

cluster = tf.train.ClusterSpec({"ps":
parameter_servers_list, "worker":
workers_list})

TensorflowOnline
server_config = tf.ConfigProto(

inter_op_parallelism_threads=8,
intra_op_parallelism_threads=8,
....

)

server = tf.train.Server(
cluster,
job_name=FLAGS.job_name,
task_index=FLAGS.task_index,
config=server_config)

Configuration is managed by
TensorFlowOnline

server =
TFTuner.create_training_server())

Variables placement by TensorFlow
with tf.device(tf.train.

replica_device_setter(
worker_device="/job:worker/

task:%d" % FLAGS.
task_index,

cluster=cluster)):

Variables placement by TensorFlowOnline
with tf.device(

TFTuner.variable_placement()):

APPENDIX C
ADDITIONAL EXPERIMENT RESULTS

TABLE IX
SYSTEM SETTING IN LOGR EXPERIMENT

Knob (names simplified) Worst Average TFOnline Best
ps 34 28 20 18
worker 2 8 16 18
intra op parallelism threads 12 10 6 11
inter op parallelism threads 11 6 10 5
do common subexpression elimination False True True True
max folded constant in bytes 86954782 10485760 25092366 28952477
do function inlining False True False True
global jit level ON 2 OFF ON 1 ON 2
infer shapes True True True True
place pruned graph True False True False
enable bfloat16 sendrecv False False True True

TABLE X
SYSTEM SETTING IN CNN ON CIFAR EXPERIMENTS

Knob (names simplified) Worst Average TFOnline Best
ps 33 16 6 5
worker 3 20 30 31
intra op parallelism threads 2 2 3 12
inter op parallelism threads 14 14 13 4
do common subexpression elimination False True False False
max folded constant in bytes 5125478 10485760 65136941 50785965
do function inlining False True False True
global jit level ON 2 OFF ON 1 OFF
infer shapes True True True True
place pruned graph False False True True
enable bfloat16 sendrecv True False True False

TABLE XI
SYSTEM SETTING IN CNN ON IMAGENET8 EXPERIMENT

Knob (names simplified) Worst Average TFOnline Best
ps 31 25 27 13
worker 5 11 9 23
intra op parallelism threads 12 1 1 12
inter op parallelism threads 4 15 15 4
do common subexpression elimination False True False True
max folded constant in bytes 96500000 10485760 10485760 10485760
do function inlining True True False True
global jit level ON 2 OFF ON 2 OFF
infer shapes False True False True
place pruned graph False False False False
enable bfloat16 sendrecv False False False False

	I Introduction
	II Background and Preliminary
	II-A Iterative-Convergent ML Algorithms
	II-B Parameter Server Architecture

	III Online Optimization Framework
	III-A Bayesian Optimization
	III-B Initialization Phase
	III-C Online Tuning Phase
	III-D Miscellaneous

	IV Online Progress Estimation
	IV-A From Bounds to Legitimate Estimation
	IV-B Limitations and Opportunities

	V Online Reconfiguration
	VI Experiments
	VI-A Performance Evaluation
	VI-B Statistical Efficiency versus Hardware Efficiency
	VI-C Reconfiguration
	VI-D Estimation Quality

	VII Related Work
	VIII Conclusion and Future Work
	References
	Appendix A: Notations
	Appendix B: Implementing TensorFlowOnline
	B-A User-Program
	B-B Front-end
	B-C Back-End

	Appendix C: Additional Experiment Results

