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Abstract

In this paper, we explore techniques centered around
periodic sampling of model weights that provide conver-
gence improvements on gradient update methods (vanilla
SGD, Momentum, Adam) for a variety of vision problems
(classification, detection, segmentation). Importantly, our
algorithms provide better, faster and more robust conver-
gence and training performance with only a slight increase
in computation time. Our techniques are independent of
the neural network model, gradient optimization methods
or existing optimal training policies and converge in a less
volatile fashion with performance improvements that are
approximately monotonic. We conduct a variety of experi-
ments to quantify these improvements and identify scenarios
where these techniques could be more useful.

1. Introduction

Optimizing Deep Neural Networks (DNN5s) is especially
challenging due to the nonconvex nature of their loss func-
tion. Hence, the development of gradient-based methods
that use back-propagation to approximate optimal solutions
has been crucial for neural network adoption. Optimization
techniques over gradient updates like Stochastic Gradient
Descent (SGD) or gradient-based adaptive optimizers have
made the training process more effective. However, optimal
convergence of the loss function is still time-consuming,
volatile, and needs many finely tuned hyperparameters. In
this paper we show that by manipulating the model weights
directly using their distributions over batchwise updates, we
can achieve significant improvements in the training pro-
cess, and add more robustness to optimization with negli-
gible cost of additional training time. Since our technique
modifies the model weights directly using their distribution
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over gradient updates, it remains independent of gradient
optimization methods and the model architecture.

Using the model weight distribution to achieve improve-
ments on either the training process or a trained model has
been widely studied by extending the Polyak-Ruppert Av-
eraging (PRA) method. [10] explored many techniques to
speed up convergence of convex functions using the pro-
jected stochastic subgradient method. Their work explored
gradient-based averaging, weighted averaging, and other
variations, as well as the theoretical justifications for such
an approach. [I1] explored how PRA on SGD has better
convergence guarantees, especially when the initial condi-
tion on the weights are carefully removed from the averages
and the learning rate is decayed correctly. However, most
of this earlier research was focused on a theoretical under-
standing of weight-averaging methods and lacks analysis of
their practicality especially on applications to highly non-
linear DNN models.

Recently, similar techniques have been applied over
model weight distributions, but mostly on pretrained mod-
els, ([20] and [14]). The techniques show better general-
ization and achieves a wider local minima post sampling.
However, when such PRA based methods are directly ap-
plied to train a DNN from scratch, they fail to produce op-
timal performance. Meanwhile, these approaches also in-
crease the computation load leading to increased training
time. We investigate the reasons for the sub-optimal con-
vergence for such methods, and address it by introducing
PSWA. PSWA retains the robustness from regularization al-
lowed by the PRA techniques while mitigating their conver-
gence problems. We further improve PSWA’s shortcomings
with PSWM and PWALKS, while also reducing the compu-
tational overhead substantially. These proposed techniques
provide improvements to the training process of neural net-
works without compromising on optimal convergence.



The paper is organized as follows: we first present Re-
lated Works and highlight the problem common to previous
research in the domain - the inability to converge optimally
when training a DNN model from scratch. In the following
Methods section we propose three new techniques: PSWA,
PWALKS, and PSWM which address the major flaws with
previous works. The Experiments section explores the ap-
plication of our techniques with an empirical study using
an adaptive optimizer in Adam and a more extensive Image
dataset in ImageNet. In the Results section we analyze and
quantify the improvement of our techniques followed by a
Discussion section which explores the significance of our
work and ends with the Conclusion.

2. Related Work
2.1. Methods

Given a DNN model with a loss function, I(w,d;), on
a training sample d;, the mini-batch SGD method aims to
minimize the expected loss Eg,:np[l(W, d;)] of the training
data (D) by updating the model weights w iteratively as:

wtt) = w® v, Z I(w d;). )]

i€batch t

The partial derivatives of the loss correspond to the di-
rection of the gradient ascent of a batch of training data.
The hyperparameter 7 is the learning rate that controls the
step size of the update. Most research in this area focus
on the effects of different learning rate schedules, gradient
update techniques algorithms, optimal batch sizes, etc. and
how improvements in these areas can provide better conver-
gence and add robustness [3, 13, 8, 12, as examples]. These
works are mainly dominated by the modified versions of the
update nVyl.

In comparison, the weight averaging approach aims to
reassign the final value of weights as

1 n
Wina = — > wl) )
t=1

from a sample of weights after n batch updates. Varia-
tions on the application of this technique have been stud-
ied previously. [20] proposed the Stochastic Weight Aver-
aging (SWA) method, which uses PRA over model distri-
bution when retraining pretrained models to achieve flatter
minimas and better generalization. This technique provides
better generalization when finetuning a model. [10] pre-
sented the Projected Stochastic Subgradient method where
an iteration-based weighed averaging approach to model
training and its variations are explored. They presented the-
oretical analysis of the technique and discuss the finite vari-
ance bounds of their approach for SVM models.

2.2. Challenges

Rather than simply discuss their short-comings, we show
empirically the failings of two salient previous works using
the well-adopted ResNet18 [4] on Cifarl0 dataset [9]. We
used the publicly available implementation ' using SGD up-
dates (with momentum and L2 weight penalty) and stepwise
learning rate decay presented in Experiments section. Fol-
lowing the SWA algorithm, we initialized a running mean
for all model parameters and after training it for ‘c’ epochs
(‘c’is a pre-defined hyperparameter), we replaced the model
weights with their respective running means. Note that the
running mean is initialized only once. It is then kept up-
dated after each epoch and reassigned after ‘c’ epochs, con-
sistent with the original algorithm. We emphasize that the
SWA technique we implement for baseline comparisons is
a modification of the original implementation, to accom-
modate training models from scratch. We investigated two
variations of [10] weighed averaging techniques on same
experimental configurations. In the first approach ‘BachEp-
och’ we update the mean estimation after each epoch, with
a weight of the epoch value, and then reassign the mean
values to those weights. In the second approach ‘Bach-
Batch’ we update the mean estimation after each batch,
with a weight of cumulative batch total, and reassign model
weights at the end of the epoch. Hence ‘BachEpoch’ pro-
vides a linear weighed averaging approach and ‘BachBatch’
provides an exponential weighed averaging approach. We
also calibrate the Batch Normalization (BN) layers as men-
tioned in [20], by performing a forward pass over the train-
ing data after each reassignment, for all approaches.
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Figure 1. Performance of aforementioned algorithms [20, 10].

From Figure 1, we see that none of the approaches
can replicate the SGD accuracy. This trend is consistent
across different models under optimal hyperparameter set-

IRefer https://github.com/kuangliu/pytorch-cifar/
blob/master/main.py
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tings. When using the SWA technique in [20], the ap-
proaches deteriorate performance and hinder convergence.
The performance improves with higher values of ‘c’ be-
cause of fewer reassignments of the SWA technique. [10]
approach of using weighed averaging with more signifi-
cance to later epochs in a linear (BachEpoch) and expo-
nential (BachBatch) fashion also fail to converge optimally.
All approaches add an increased computational load in pro-
cessing of PRA for each model parameter while training,
reassignment of the computed values, followed by recal-
ibration of BN layers. These loads add up because all
three tasks are performed for each epoch while training.
Hence the techniques of [20] and [10] which work im-
pressively over improving generalization of pretrained neu-
ral networks and optimizing convex learning models respec-
tively, when translated to DNN training, increase the com-
putational load and training time without providing optimal
convergence.

3. Methods
3.1. PSWA

The analysis of the performance of the two methods
shows that both SWA and weighed averaging do provide
better generalization at the early stages of the training pro-
cess, typically in the underfitting regime. However, as the
mean is biased by the model weights at the early stages
of the training process, it cannot converge properly at the
later stages of the training, even when one allows weighted
averaging in favor of models at later training stages. We
address this problem by removing the dependency of any
prior weight distribution estimations for the general PRA
approach.

We call this technique Periodically Sampled Weight Av-
eraging (PSWA), as we sample the model weights over
the batchwise updates, and repeat it periodically over each
epoch. Figure 2 depicts the application of PSWA on
ResNet18 for Cifar10 Accuracy and Cross Entropy Loss on
the test dataset. We keep the experimental settings consis-
tent with the prior experiments as well as for the experi-
ments in following section, where we simply use SGD to
refer to SGD with momentum and L2 weight penalty and
consistent learning rate schedules unless otherwise men-
tioned. The details of our implementation can be found in
the Experiments section. The approach allows the model
to train effectively for one epoch, while keeping running
means for all model parameters over the weight distribution
after batchwise gradient updates, followed by reassigning
the running mean to the parameter weights, and then reini-
tializing the mean at the end of the epoch. This additional
step allows for SGD to gradually converge the model to the
optimum by making gradient updates. Meanwhile, averag-
ing over the batchwise distribution provides for a stabling
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Figure 2. Performance of PSWA on test data during training.

effect on the model.

An important challenge for applying general weight av-
eraging techniques for DNN models is the added computa-
tional load, which leads to longer training times. The time
complexity of model training with weight averaging typi-
cally contains three parts:

Ttotal = Tbackprop + aTweight update + BTcalibrate BN, (3)

where Tbackpropa Tweighl update>» Tcalibrale BN> mark the time
spend on back-propagation, weight sampling, and Batch-
Norm calibration using the full training dataset. Using the
plain PSWA for the same number of epochs clearly leads to
a longer training time.



Algorithm 1 Periodically Sampled Weight Averaging
Require:
Initialize DNN model w(®)
Initialize Learning rate schedule 7(e)
Initialize training data batches D, ... Dy
Initialize total epochs epochs
Initialize running mean w for w(°) parameters
Determine sampling strategy and «, 8

Ensure:
1: for ein 1 ... epochs do
2: randomize(D1 ... Dy)
3 reset (w, 0)
4 for iin1 ... bdo
5 w) = w1 — v 1(w D)
6 update (W, w® g, «)
7 w(®) | assign(W)
8 BN recalibration (3)

To remedy this additional computational load, we im-
prove the plain-vanilla PSWA such that we update the run-
ning mean for only a few percent («) of the randomly se-
lected batches spread evenly over the training data; Simi-
larly, we recalibrate the global mean and variance of each
BN layer with 3 percent of the training data using a fast
forward pass. We demonstrate later on that by reducing the
number of updates in this fashion, the added computational
cost becomes negligible for large datasets.

Algorithm 1 presents the general workflow of the PSWA
method for training a DNN. After initializing the model
parameters and data for training, we repeatedly update the
model weights by SGD or other gradient-based optimiza-
tions. Then we update the mean estimation of each weight.
The update is carried out in an online fashion. For o =
100% where we use the full dataset, it is:

R i—1 w®
W —— W+ —
2 1

“4)

To reduce the computational time, we only select « percent
of batches to be used for mean estimation, and we change
the count ¢ correspondingly. Before each epoch, we always
reset the w to 0, and after the epoch, we reassign the mean
weights to model weights. After reassigning, the BN layers
are not best suitable for the new set of weights, so we re-
calibrate the BN layers using 3 percent of the training data
to perform a forward pass and recompute global mean and
variance statistics for each BN layer.

3.2. PWALKS and PSWM

Although the PSWA method achieves optimal test accu-
racy using shallow ResNet18 model and other lightweight
models, we found that for deeper networks PSWA still does
not converge properly to the optimum. Figure 3 shows the
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Figure 3. PSWA on ResNet50 convergence problem.

effect on ResNet50. This problem is pervasive across sim-
ilar deep networks like Inception and DenseNet, and also
on datasets like ImageNet. However, it is important to note
that the learning rate schedule decreases by a factor of 10
at epochs 80 and 120, and that it is only after the 120th
epoch that the SGD method converges to a better result than
PSWA.

To investigate why this happens, we analyze PSWA in
more detail. In essence, for PSWA, we modify the algo-
rithm of [10] which works over the entire training process,
to run over only one epoch without any prior. This approach
does not burden the running mean with the weights distri-
bution of the earlier epochs while still providing regulariz-
ing effect from PRA over batchwise weight distribution. It
however becomes cumbersome when the learning rate has
decreased significantly as the batchwise descent of the SGD
loss function is able to reach a deeper minima for more com-
plex models. We believe that by performing PRA over the
SGD walk at this stage, the regularization counteracts the
optimal convergence to the minima at the latter part of the
batch-wise training. To address this problem we return to
the conclusions presented by [ 1], who show that there is a
need to carefully remove from the running mean, the initial
weights which bias the mean towards the local minima.

We solve the suboptimal convergence problem for
deeper networks by proposing two different modifications
to PSWA. In both approaches we allocate more importance
to the model weights during the final batches while still
maintaining the regularization afforded by using the weight
distribution.

In the first approach, Periodic Weight Averaging over
Last K Samples (PWALKS), instead of sampling weights
evenly from all batches (for the mean weight distribution),
we sample only the last ‘’k’% of the samples, ‘k’ being a
hyperparameter of size of the dataset and batches, ranging
between 0O (last batch only, standard SGD) and 100 (PSWA
with @« = 1). Empirically a small k value between 2-5
provides a consistently good performance by providing im-
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Figure 4. PWALKS comparisons.
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Figure 5. PSWM comparisons.

provement over plain SGD during early training (though not
as much as PSWA), and consistently converges to the opti-
mum as demonstrated in Figure 4. Parallels can be drawn
between the PWALKS technique and constructing an en-
semble of models over the last few batches, however, we
incorporate the modified weights as part of the training pro-
cess iteratively, unlike ensemble models. To convert PSWA
to PWALKS, the update (line 7) of Algorithm 1 is applied
only when

i>bx (1-k%). (5)

Moreover, the parameter k is equivalent to « in the PSWA
method in terms of controlling computational cost.

A second approach to solving the PSWA convergence
problem is to approach it from the perspective of a cumula-
tive adjustment to weights. We propose a momentum-based
modification to PSWA called Periodically Sampled Weight
Momentum (PSWM) where instead of keeping a running
mean, we keep the running weights updated using momen-
tum. For the model’s parameters we keep a running mo-
mentum term, which we update at the end of each batch
and reassign at the end of the epoch. Empirically momen-
tum values between (0.5,0.9) yield good performance with
m = 1 being standard SGD. To convert PSWA to PSWM,

the update (line 7) of Algorithm 1 is changed to:

i— 1 (@)
W (1—m) x "+ mx o (6)
1 1

And since the PSWM is built on the PSWA, the sampling
technique developed for PSWA can be applied to also re-
duce the time complexity of PSWM.

We next compare the computational performances of
plain-vanilla SGD, PSWA with « = § = 1 and PWALKS
with & = 10 and 8 = 10%. The code is based on the fastest
Cifar10 training code listed in the DAWN project ([1]); and
the original implementation” is changed from half-precision
to full precision. We repeated the training process 10 times
for each technique and report the corresponding mean and
standard deviations. Figure 6 shows that the PSWA leads
to a 34% overhead when using the full training dataset for
weight update and recalibration of BN layers; and by adopt-
ing PWALKS, we achieve the same prediction accuracy on
the testing dataset without sacrificing the speed significantly
without code-level optimizations, resulting in a 6% over-
head on training time. In addition, we also observe that
the variations of the training process is much smaller when
weight averaging techniques have been applied, which we
discuss in results section.

Top 1 Accuracy
=

& —- sGD
PSWA
50 == PWALKS k=10
a 5 0 15 .l 5
Epoch
175
150
135
(=]
5, 100
E
g B
50
5
[i]
a 5 10 15 20 5
Epoch

Figure 6. Comparison of computation time for plain-vanilla SGD,
PSWA with o = 1 and PWALKS.

2Refer https://github.com/davidcpage/cifarl0-fast
for details (commit d31ad8d).
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Figure 7. ResNet50 on ImageNet with PWALKS.
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Figure 8. ResNet50 on ImageNet with PSWM.

4. Experiments

We have already covered experiments on Cifarl0 with
Resnet18 and Resnet50 using our techniques with SGD.
The experimental settings of the previous experiments use
Momentum values of 0.9, L2 weight penalty of Se-4, learn-
ing rate decays of 0.1 at epochs of 80 and 120, for a total of
150 epochs. These experiments were performed with tuned
hyperparameters and learning rate schedules to ensure opti-
mal convergence. We now explore how our methods trans-
late to other datasets, models and optimizers.

4.1. Dataset: ImageNet

ImageNet [2] is another standard image classification
dataset, it has 1.2 million high resolution images from 1000
classes. Our implementations use ResNet50 as the under-
lying network, and SGD with momentum as the optimizer.
We use learning rate with 0.1, which changes by a factor of
0.1 every 30 epochs, for a total of 150 epochs. Our results
on ImageNet top-1 accuracy follow similar trends as on Ci-
far10 presented in Figure 7 and Figure 8 for PWALKS and
PSWM respectively.
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Figure 9. ResNet50 with Cifar10 using Adam.
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Figure 10. ResNet50 on Cifar10 with Adam and high learning rate.

4.2. Optimizer: Adam

To show our techniques can be effectively used on adap-
tive optimizers as well, we present experiments on Adam
[8], which performs first-order gradient-based optimization
of stochastic objective functions, based on adaptive esti-
mates of lower-order moments. Figure 9 shows the imple-
mentation of ResNet50 on Cifarl0 consistent with prior im-
plementations except we use Adam instead of SGD, with
a starting learning rate of 0.001. As we can see PSWA,
PWALKS and PSWM all offer marginal but consistent im-
provement on Adam, across epochs over multiple runs. The
improvement is not as significant and dramatic as SGD, be-
cause Adam itself alleviates the common problems of SGD
like large fluctuations, and slow convergence. Since Adam
modulates the learning rate of each weight based on the
magnitudes of its gradients, instead of the complete raw
and noisy gradient vector, the distribution of the parameter
weights remains small compared to SGD.

Adam and other adaptive optimizers suffer from some
important documented problems. Though Adam converges
faster, it does not generalize well ([7]). From our ex-
periments PSWA over Adam also provided for reduced
CrossEntropy loss over training. Another problem for adap-



tive optimizers like RMSPROP and Adam is they become
unstable at high learning rates near convergence. This hap-
pens as the squares of rolling mean of gradients are used to
divide the current gradient, in which case very small gra-
dients can introduce instability. In Figure 10 we present
such a scenario where we use a [ of 0.01 (instead of 0.001)
which causes Adam to become unstable. However, Adam
with PSWA remains stable and converges better.

4.3. Other Experiments

We perform more experiments using different model ar-
chitectures like MobileNet [23], Inception [24], Densenet
[19] which are presented in the supplementary paper along
with experiments on Human Pose detection and Scene seg-
mentation to cover a broad array of Computer Vision ap-
plications. We perform extensive experiments on Cifarl0
under different configurations such as suboptimal learning
rates and retraining from checkpoints, since these experi-
ments are faster and their results generalize well to larger
datasets like Imagenet. These experiments help analyze the
strengths of our algorithms discussed in Results section.

5. Results

In this section we analyze the performance of our al-
gorithms and try to quantify the improvements afforded
by them. We use performance statistics of Resnetl8 and
Resnet50 on Cifar10 and Imagenet respectively, and com-
pare PSWA, PWALKS (k=2), PSWM (m=0.5) against the
baseline implementations which use SGD. We see for both
Cifar10 and Imagenet, PSWA converges much faster during
early training, but does not converge optimally. PWALKS
provides better generalization than PSWM, while both the
techniques provide improvement over SGD. Hence in this
section we focus more on PWALKS, owing to its superior
empirical performance. We show how our methods can pro-
vide faster, better and more robust performance empirically
across different datasets, models and experimental settings.
We note that since these terms have an overlap in their defi-
nitions, it is important how we interpret them in the the con-
text of non-convex optimization and deep learning. More-
over, it is non-trivial to quantify this improvement as both
the accuracy and loss functions form a non-stationary and
volatile time-series.

5.1. Faster

We can interpret an algorithm being faster than a base-
line approach if it achieves a performance threshold before
the baseline. For our results we use validation thresholds
of 90%, 95% for Cifar10; 92%, 93% [ 1] for top-5 and 75%
for top-1 for Imagenet. These thresholds represent perfor-
mance at near convergence and at convergence for the cor-
responding models and datasets, we present the results in
Table 1. It is important to note that for Imagenet, PSWM

Table 1. Epochs to achieve various accuracy thresholds.

Baseline PSWA PSWM PWALKS
Cifar10, 90% 81 22 22 64
Cifar10, 95% 137 N.A. 128 140
Imagenet (top 1) 75% 91 N.A. 72 80
Imagenet (top 5) 92% 69 83 66 65
Imagenet (top 5) 93% 129 N.A. 103 93

Table 2. Accuracy when training Resnet18 on Cifar10 with initial
suboptimal learning rates. Optimal learning rate is 0.1

Algorithm LR=1 LR=05 LR=005 LR=0.01

SGD 85.2 91.2 94.9 94.1
PWALKS 86.6 91.6 94.9 94.1
PSWM 88.0 91.6 95.2 94.1

and PWALKS cross the at convergence thresholds not only
with fewer epochs compared to the baseline approach but
with larger learning rates. SGD needs learning rate to de-
crease by a factor 0.1, under the same experimental settings
to cross the thresholds.

Another interpretation of faster can be in terms of con-
vergence of the optimization algorithm for various stages
and learning rates of the training process. We train Resnet18
on Cifar10 using the baseline SGD implementation and save
checkpoints at epochs 0, 80, 120. We then retrain the check-
points under different learning rates for 10 epochs and com-
pare the results in Figure 11. As we can see, for all start-
ing checkpoints, our algorithms converge much faster than
baseline SGD at high and optimal learning rates. When the
learning rate is very small, variances of the weight distribu-
tions are correspondingly small as well and hence our algo-
rithms match the SGD performance.

5.2. Better

We emphasize that in all our presented examples, the op-
timizer, learning rate (and its schedule), and training hyper-
parameters, have all been finetuned for convergence for the
original baseline implementations, and we do not modify
them when using our techniques to ensure fair comparisons.
But for most machine learning applications we are unaware
of these optimal hyperparameters and learning rate sched-
ules which can introduce volatility in the training process
and uncertainty regarding the final convergence. We simu-
late these conditions on Cifar10 with Resnet18, while keep-
ing the same experimental setting as before but with initial
learning rates which are suboptimal. The results are pre-
sented in Table 2. As we can see when we have suboptimal
training routines, we can still expect better performance and
generalization from PSWM and PWALKS.

Since the baseline models are tuned to reach conver-
gence, we can also analyze the intermediate performance
during the training process under optimal experiment set-
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Figure 11. Faster convergence from different checkpoints and learning rates on Cifar10

Table 3. Intermediate accuracy improvement when training
ResNet50 on ImageNet.

Average Improvement
over SGD accuracy

Average Improvement
over SGD accuracy

for all epochs for first 30 epochs
PSWA 2.75 12.52
PWALKS 3.50 12.37
PSWM 2.01 7.81

tings. We focus on intermediate performance both over the
entire training process and during the early stages at high
learning rates, presented in Table 3. These scenarios have
direct applications in online learning and learning on re-
source constrained devices respectively, as presented in Dis-
cussions section. From these results it is clear that when we
are dealing with suboptimal training settings our algorithms
can provide better performance, and under optimal training
settings we still provide better intermediate performance.
We can also interpret Figure 11 in terms of better perfor-
mance under different initial settings and learning rates.

5.3. Robust

We analyze the test accuracy distribution with ResNet50
over ImageNet and discover all three of our techniques pro-
vide consistent and significantly lower Standard Deviation
(SD), both at convergence and over the saturation phases
at constant learning rates as shown in Table 4. The lower
variance at early saturation phase (epoch 20-30) points to a
less volatile training process and the lower variance at the
final 20 epochs point to a more stable convergence. Another
important observation is that PWALKS and PSWA perfor-
mance on the test set monotonically increases or remains
stable over epochs until convergence. This is especially im-
portant since it indicates that with a high probability the
model is consistently improving and the performance does
not sporadically fluctuate like the baseline model. Again an-
alyzing test accuracy distribution with ResNet50 over Ima-
geNet, we find that for almost 70% consecutive epochs with
PSWA the accuracy is improving, or 99% of them are stable
within 0.2 percentage decrement, unlike SGD-based train-
ing which only shows 57% and 86% respectively (shown in
Table 5). We also compare performance improvements be-

Table 4. Volatility analysis of training ResNet50 on ImageNet.

Standard Deviation ~ Standard Deviation Mean

last 20 epochs epochs 20-30 last 20 epochs
SGD 0.080 1.06 76.16
PSWA 0.058 0.39 74.77
PWALKS 0.047 0.21 76.50
PSWM 0.056 0.24 76.16

Table 5. Monotonic improvement demonstrating stability when
training ResNet50 on ImageNet. (% of epochs )

improvement  stable improvement stable improvement
over previous over previous over max previous

SGD 57% 86% 77%
PSWA 70% 99% 99%
PWALKS 65% 98% 97%
PSWM 65% 96% 90%

tween current epoch and best overall performance over pre-
vious epochs and present the stability within 0.2 percentage
decrement. As we can see PSWA improves upon best pre-
vious performance or remains stable for 99% of the epochs.

6. Discussions and Additional Details

Following the Results section we see these advantages
can significantly improve several computer vision based ap-
plications. Since PWALKS performs better at high learn-
ing rates (which offers training speed-up) and plateaus over
shorter time, it can be especially useful when training on
large datasets with constrained computational resources that
require training at high learning rates for short time periods.
These conditions arise for deep learning on Edge Devices
where the models cannot realistically be trained to conver-
gence. Moreover, PWALKS’ stability and monotonic im-
provements during training can uniquely benefit deployed
models learning in an online fashion or over continuous
streaming data, since PWALKS ensures models will not
sporadically deteriorate during different phases of the train-
ing process.

Our analysis of the loss surface (presented in the supple-
mentary paper) shows that these techniques produce min-
ima that are deeper and wider than those found by SGD.
The details of the implementations and system information



necessary for reproducibility are also provided in supple-
mentary paper along with other experiments. Also, while
both PWALKS and PSWM offer optimal convergence, they
depend on hyperparameters ‘k’ and ‘m’ respectively. Em-
pirically we find that both techniques converge optimally
to within a small margin to each other across a wide range
of their respective hyperparameter values, and there isnt an
explicit need for researchers to tune them.

7. Conclusion

In this paper, we introduced a trio of techniques (PSWA,
PWALKS, and PSWM) based on sampling over model
weights that solve issues with previous weight averaging
approaches. Our proposed techniques provide increased ro-
bustness and stability to the training process (Table 5) of
neural networks as well as substantial intermediate perfor-
mance improvements (Table 3) without compromising on
optimal convergence (Table 4). PWALKS almost mono-
tonic and stable performance (Table 5) ensures performance
does not fluctuate depending on the current batch. As (Ta-
ble 1) reflects, our techniques can provide faster conver-
gence for thresholds and for different checkpoints under di-
verse experimental settings (Figure 11). In the light of the
advantages offered by these techniques, they provide a good
starting point for training DNNs especially in those cases
where no optimal training regime exists.

Supplementary Material

8. Motivation

Our motivation for intermediate averaging stems from
the stability induced into the standard SGD updates through
various averaging schemes [27]. We illustrate this by com-
paring the standard SGD with the periodically sampled
weight averaging (PSWA). The layout of the updates for F
epochs (with T iterations per epoch) for the algorithms is
provided in Table 6. Here we define, w®? = model weights
during the e’ epoch and #!" iteration within an epoch, with
t=0...Tand, e = 0...E . For simplicity we fix the
batch size for SGD updates to 1. Further, 7 is the constant
learning rate, and at each step an oracle provides with the
vector E(g®") € df(w®"), where [ is the expectation op-
erator. Finally, we use w* as the model weights at conver-
gence.

Next, we define a notion of stability which simply cap-
tures the variance of the expected function values at the end
of each epoch from convergence.

Definition 1. Stability of an algorithm A is defined as

Sa=ls3

30 stands for the initial values

where

and
st = E(f(wl) — f(w"))

From this definition it is clear that it is desirable to have
smaller S 4 for more stable algorithms.

Next, to analyze the stability of the standard SGD and
the PSWA method, we use the Theorems 1 and 2 respec-
tively, presented next. Theorem | provide the best provable
convergence rate for standard SGD with the following as-
sumptions,

Assumption 1. We make the minimal assumptions,
(Al) The function f is convex in w with convex domain WV.

(A2) Bounded difference i.e. there exists a constant D =

sup |Jw —w'||3 with D < oo.
w,w’ eW

(A3) Bounded gradients i.e. E(||g®")||3 < G2

Note that here although our analysis assumes a convex
function, we make mild assumptions on the nature (stabil-
ity) of the functions. Under Assumption 1 we have the fol-
lowing,

Theorem 1. Under Assumption 1 the standard SGD algo-
rithm after e epochs (with T iterations per epoch) with a
step size ny = 1/+/t, t =1...Te provides,

24 log(T(e —1))

E[f(wZ§P) — f(w*)] < (D* +G?)

T(e—1)
log(Te)
~ O )
vTe
Proof: The proof follows by direct application of Theorem
2 in [27] for T(e-1) iterations. O

In fact, under the similar assumptions we see that the PSWA
algorithm follows,

Theorem 2. Under Assumption I the PSWA algorithm after
FE epochs (with T iterations per epoch) and a constant step

. 2 .
sizen = TD—GQ provides,

PSWA * (DG) ~ 1
E[flweg™ ") — flw)] < N O( ﬁ)
Proof: The proof follows through applying Theorem 14.8
in [28] for the final epoch E — 1 of PSWA and bounding
w0~ w*|3 < D2, O
Remark A straight-forward comparison from Theorems
1 & 2 and using the Definition 1 shows that, for suffi-
ciently large T > e, the PSWA has better stability i.e.



Stochastic Gradient Descent PSWA (with SGD)
Initialize: w™® « 0 wl0 0
- wh! — wl0 — N x g0 wh! w0 — N x g0
= 1,2 1,1 1,1 1,2 1,1 1,1
2 W —w —nXg W —w —nXg
=%
=
whT b T-1 _ 1 X g1,T71 whT bt T-1 _ 0 X g1,T71
. =T
Initialize: w0 + wh7T w0« 3 wht
- wrl — w0 — ) x g0 wr! — w20 _ g x g0
= 2,2 2,1 2,1 2,2 2,1 2,1
2 W —w —nxg W —w —nxg
2
=
w?T w2 T-1 _ n % g>T-1 w?T — w2T-1 _ N x g>T-1
1 =T
Initialize: w0 « w17 w0 T wP bt
= wE ! wBO _ )« gB0 t=1
= nxg wB ! B0 n ><gE,o
g wE’Q%wEﬁlangEJ E2 E1 E1
) w” —w —nxg”
wBT B T-1 _ 0 X gE,Tfl
BT  4yBET-1 w gBT-1
Final BT | W w nxg
w —w
t=T
Final Et
w — E w
T
t=1

Table 6. Standard SGD and PSWA algorithm updates for E epochs (with T iterations per epoch).

sPSWA ~ O ﬁ) < O( %) ~ $36P  This indicates
through periodically sampling we can improve the stability
of the algorithm at least in the initial stages of the algorithm
where T' > e. This intuition is further validated through

our Experiments in Section 3 of the main paper.

9. Additional Experiments
9.1. Dataset: Cifar10

We have already discussed in detail the results of
our techniques on ResNetl8 and ResNet50 over CifarlO.
ResNet18 is trained for 150 epochs and ResNet50 is trained
for 180 epochs. Both use SGD with momentum of 0.9, L2
penalty of 0.0005, and have a learning rate schedule which
decreases by factor of 10 at epochs 80,120 and 150. We use
Standard CrossEntropy loss and batch size of 128.

In our experiments on shallow networks like MobileNet-
v2 [23] and ResNetl8, we find PSWA not only provides
faster and more robust convergence, but also converges to
a more optimal minima, as evident in Figure 12. Another
interesting comparison is between PWALKS and PSWM
with PSWA on shallow networks, where PSWA converges
to deeper minima, which PWALKS and PSWM are un-
able to. However, for deeper networks like Inception [24]

Mobilenet-v2 on Cifar10

= SGD = PSWA PWALKS k=2 = PSWM m=0.9

Accuracy

Epochs

Figure 12. MobileNet trained on Cifar10.

, DenseNet-121 [19] and ResNet50, as discussed before,
PSWA does not converge properly, while both PWALKS
and PSWM do. Figure 13 shows Inception network trained
using the same implementation as above. We observe that
PSWA and its variations reach 90% and 94% thresholds
much faster consistently and while training on larger learn-
ing rate, while SGD needs a learning rate change by a factor
of 10, to cross the thresholds.



Inception on Cifar10

= SGD = PSWA PWALKS k=2 = PSWM m=0.9

100

Accuracy

25 50 75 100 125 150
Epochs

Figure 13. Inception trained on Cifar10.

9.2. Task: Human-Pose Detection

We apply our techniques on the work of [30], where they
perform Human-keypoint detection on MS-COCO [29] and
Human-pose detection on MPII dataset [31] 4. Both tasks
use ResNet50 pretrained on ImageNet, and perform transfer
learning on the new dataset. Both experiments use Adam
as the optimizer with a learning rate of 0.001. Consistent
with our prior experiments, PWALKS and PSWM provide
consistent improvement over Adam in the early stages of
training.

Resnet50 on COCO with ADAM

— Adam - PSWA PSWM m=0.9 = PWALKS k=5

08

0.7175
0715

07125 ~/ 1 e~ =

Average Precision

0.7075

0.705
10 120 130

25 50 75 100 125
Epochs

Figure 14. COCO-Keypoint detection on ResNet50 and Adam

9.3. Task: Segmentation

We also apply our techniques on the works of [33],
where they perform scene segmentation on MIT ADE20K
Dataset [35], the largest open source dataset for semantic
segmentation and scene parsing. The implementation uses
an encoder-decoder architecture with ResNet50 pretrained
on ImageNet as the encoder and Pyramid Pooling Module
with Bilinear Upsampling as decoder with deep supervision
[32]. The implementation uses per-pixel cross-entropy loss,

4An aberrant drop in PSWA accuracy in Figure 15, seems a result of
biased subset of data points during BN recaliberation.

Resnet50 on MPII with ADAM

100 — Adam - PSWA -~ PSWMm=0.9 — PWALKS k=5

Mean Average Precision

15 20 25 30 3! 120 125 130 135

25 50 75 100 125
Epochs

Figure 15. MPII Human-Pose detection on ResNet50 and Adam

SGD as the optimizer and a "poly’ learning rate policy.

For our implementation we initialize two distributions
one each for the encoder and decoder. We update both the
distributions together and reassign at the end of the epoch.
We do not need to recalibrate the BN layers, since the im-
plementation uses Synchronized Batch Normalization [34].
Figure 16 shows Pixel wise accuracy of the Segmentation
models on test set and Figure 17 shows Mean IOU of the
predicted segmentation on test data, where PSWA provides
significant improvement over SGD based training.

Pixel Accuracy on ADE20K with Resnet50

=8GD = PSWA - PSWMm=0.5 = PWALKSk=5
85

80

~
a

Accuracy
~
o

N

65

60
5 10 15 20
Epochs

Figure 16. Pixel accuracy of segmentation on ADE20K.

10. Reproducibility

We provide details of hyperparameter values and addi-
tional implementation details about Experiments section.

For the experiments on Cifarl0 We adopted the im-
plementation in (https://github.com/kuangliu/
pytorch—-cifar/blob/master/main.py) with the
exception of a custom learning rate schedule as the orig-
inal was sub-optimal. Data augmentation on the training
set was performed using random crop (padding 4) and hor-
izontal flip while both train and test were normalized. The
dataloaders perform random shuffle on data batches, with
2 concurrent workers for each test and train data queue.


 https://github.com/kuangliu/pytorch-cifar/blob/master/main.py
 https://github.com/kuangliu/pytorch-cifar/blob/master/main.py

Mean |OU on ADE20K with Resnet50

05 = SGD = PSWA ~ PSWMm=05 = PWALKSk=5

0.4 —
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Figure 17. Mean IOU of segmentation on ADE20K.

The code runs on Pytorch 1.0, Python 3.6, CUDA 9.0 with
cuDNN. We use 1 Tesla V100 with 16 GB GPU memory
and 8vCPU Intel Skylake.

For experiments on ImageNet We used the im-
plementation in (https://github.com/pytorch/
examples/tree/master/imagenet). We used a
batch size of 32, L2 penalty of 0.0001, momentum of 0.9,
and perform standard data augmentation like cropping, hor-
izontal flipping and input data normalization. The code runs
on Pytorch 1.0, Python 3.6, CUDA 9.0 with cuDNN. We use
4 Tesla V100 with 64 GB GPU memory and 32vCPU Intel
Skylake.

For experiments on human pose estimation We adopted
the implementation in
(https://github.com/Microsoft/human-
pose—estimation.pytorch) . The code runs on
Pytorch 1.0, Python 3.6, CUDA 9.0 with CudNN. We use
4 Tesla V100 with 64 GB GPU memory and 32vCPU Intel
Skylake.

For semantic segmentation experiments We used
(https://github.com/CSAILVision/
semantic—-segmentation—-pytorch) for  im-
plementation details. The code runs on Pytorch 1.0, Python
3.6, CUDA 9.0 with cuDNN. We use 4 Tesla V100 with 64
GB GPU memory and 32vCPU Intel Skylake.

11. Loss Surface Analysis

To better understand the results of our approach, we in-
vestigate the effect of PSWA on the loss surface of the
model during training when compared to SGD. Training
neural networks requires minimizing a high-dimensional
non-convex loss function, with a deeper minima correlat-
ing with better performance. An important characteristic of
the minima is its ‘flatness’ or the measure of size of the con-
nected region around the minimum where the training loss
remains low. There exist strong claims that “flat” minima
generalize better, while increased sharpness of a minima
could indicate low generalization ([18, 21]). [20] shows

their technique, SWA (based on averaging multiple points
along the trajectory of SGD) leads to solutions correspond-
ing to wider optima than SGD. We draw similar conclusions
for PSWA.

We follow [22] approach, which presents a technique
that calculates and visualizes the loss surface along random
direction(s) near the weight space. They use a novel “filter
normalization” scheme that enables side-by-side compar-
isons of different minima, which addresses problems with
1-Dimensional Linear Interpolation. Figure 18 presents loss
surface comparison at different stages of training- begin-
ning, near convergence, and at convergence on ResNetl8
for Cifar10 trained by SGD and SGD with PSWA. The hori-
zontal axis represents the displacement of the random Gaus-
sian direction vector; the red lines indicate accuracy and the
blue lines indicate the loss values; the dashed lines represent
the values on the test dataset while the solid lines represent
the training set. As is clearly evident, the model trained by
PSWA has much flatter and deeper minima, for both train-
ing and testing set, at the early training stage. The trend
continues for near convergence stage and at convergence,
though it becomes less pronounced. We can see that with
similar test and train accuracies, PSWA still retains wider
minima. Figure 19 presents a different representation of the
loss surface at early training stage (epoch 50), before and af-
ter reassigning the model weights. The PSWA-based model
is located at index O on the horizontal axis, and SGD model
at index 1, while variables between them represent the dis-
placement in the “filter normalized” direction between the
weights (since we use the same model). We notice steady
improvements in performance in the direction of weights
after PSWA is applied.
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