
EGAD: Evolving Graph Representation Learning
with Self-Attention and Knowledge Distillation

for Live Video Streaming Events
Stefanos Antaris

KTH Royal Institute of Technology
HiveStreaming AB

Sweden
antaris@kth.se

Dimitrios Rafailidis
Maastricht University

Netherlands
dimitrios.rafailidis@maastrichtuniversity.nl

Sarunas Girdzijauskas
KTH Royal Institute of Technology

Sweden
sarunasg@kth.se

Abstract—In this study, we present a dynamic graph represen-
tation learning model on weighted graphs to accurately predict
the network capacity of connections between viewers in a live
video streaming event. We propose EGAD, a neural network
architecture to capture the graph evolution by introducing a self-
attention mechanism on the weights between consecutive graph
convolutional networks. In addition, we account for the fact that
neural architectures require a huge amount of parameters to
train, thus increasing the online inference latency and negatively
influencing the user experience in a live video streaming event. To
address the problem of the high online inference of a vast number
of parameters, we propose a knowledge distillation strategy. In
particular, we design a distillation loss function, aiming to first
pretrain a teacher model on offline data, and then transfer
the knowledge from the teacher to a smaller student model
with less parameters. We evaluate our proposed model on the
link prediction task on three real-world datasets, generated by
live video streaming events. The events lasted 80 minutes and
each viewer exploited the distribution solution provided by the
company Hive Streaming AB. The experiments demonstrate the
effectiveness of the proposed model in terms of link prediction
accuracy and number of required parameters, when evaluated
against state-of-the-art approaches. In addition, we study the
distillation performance of the proposed model in terms of
compression ratio for different distillation strategies, where we
show that the proposed model can achieve a compression ratio
up to 15:100, preserving high link prediction accuracy. For re-
production purposes, our evaluation datasets and implementation
are publicly available at https://stefanosantaris.github.io/EGAD.

Index Terms—Graph representation learning, live video
streaming, evolving graphs, knowledge distillation

I. INTRODUCTION

Nowadays, live video streaming has emerged as a prominent
communication solution for several companies worldwide.
For example, live video streaming is employed for corporate
internal communications, marketing announcements, and so
on [1], [2]. Delivering a high quality video to enterprise
offices is a challenging task, which stems from the bandwidth
requirement, increasing along with the number of viewers in
each office. To overcome this challenge, distributed live video

Fig. 1. A distributed live video streaming process in enterprise networks.

streaming solutions were proposed (e.g. by Hive Streaming
AB) to deliver high quality video content to several enterprise
offices [3], [4]. As shown in Figure 1, Viewers 1, 4 and 7
download the video content of the presenter directly from the
Content Delivery Network (CDN) server. Thereafter, Viewers
1, 4 and 7 have to distribute the video content to the rest
of the viewers, that is Viewers 2, 3, 5, 6, 8, and 9. To
efficiently distribute the video content, each viewer should
establish connections with other viewers of the same office and
exploit the internal high-bandwidth network of the office (1
GB/s). However, to efficiently establish connections between
viewers, Viewer 1 requires the information that Viewers 2 and
3 share the same office. Without this information, Viewer 3
might erroneously establish a connection to Viewer 5 of a
different office through a low bandwidth network (10 MB/s).
This will negatively impact the video distribution process of
Viewer 5, as the only established connection of Viewer 5
will not satisfy the bandwidth requirements of a high quality
live video streaming event [4]. Nonetheless, this requires the
information of the customers’ network topology during the live
video streaming event, for instance, Viewers 1, 2 and 3 are in
Office 1. However, it is not always feasible to acquire this
information, for example, large enterprises provide limited in-
formation about their network topologies for security reasons,978-1-7281-6251-5/20/$31.00 ©2020 IEEE

ar
X

iv
:2

01
1.

05
70

5v
1

 [
cs

.L
G

]
 1

1
N

ov
 2

02
0

https://stefanosantaris.github.io/EGAD

or enterprises constantly adapt their networks to assure the
desired business outcomes and improve the user experience
[5], [6]. In addition, complying with the recent data protection
regulations (GDPR) [7], live video streaming providers, such
as Hive Streaming AB, are prohibited to retrieve certain
network characteristics, such as private and public internet
protocol (IP) addresses. Therefore, it is important to predict
the network capacity of each connection - bandwidth during a
live video streaming event, based on the limited information
provided by the already established connections. In doing so,
we can infer if the viewers are located in the same office so
as to establish connection through the internal high bandwidth
network.

During a live video streaming event, each viewer has a
limited number of connections. In addition, the viewers adapt
their connections in real-time so as to improve the distribution
of the video content [4]. For example, in Figure 1, Viewer 6
and 8 are connected with a low bandwidth network at time
step t = 1. As a consequence, Viewer 8 drops the connection
with Viewer 6 at time step t = 2 to establish a connection
with Viewer 7 via a high bandwidth network connection. The
effectiveness of a distributed live video streaming solution
depends on the accuracy of each viewers’ predictions, that
is to predict the connections between viewers in the same
office. Moreover, the predictions of the viewers’ connections
have to be performed in a nearly real-time computational time,
otherwise it will negatively impact the user experience during
the live video streaming event. In this study, we model an
enterprise live video streaming event as a dynamic undirected
and weighted graph, where the edges weight correspond to
the throughput of the connection between two nodes/viewers.
The graph nodes/viewers emerge and leave at unexpected rate
and each node/viewer adapts their edges/connections, so as to
identify the nodes/viewers that are located in the same office
and efficiently distribute the video content. Provided that an
enterprise live video streaming event has thousands of viewers,
such graphs are highly dimensional and sparse.

Graph representation learning. Recently, graph represen-
tation learning approaches emerged that compute compact
latent node representations to solve the graph dimensionality
problem [8]–[10]. Calculating the latent node/viewer repre-
sentations has proven a successful means to address the link
prediction problem on graphs [8], [11]–[15]. Baseline graph
representation learning approaches exploit random walks to
learn the latent node/viewer representations [8], [10]. More
recently, several studies design different neural network ar-
chitectures to calculate complex patterns in graph structures
[13], [15]–[19]. However, these neural network architectures
work on static graphs. To capture the graph evolution, recent
approaches employ Recurrent Neural Networks (RNN) [12],
[20] and self-attention mechanisms [11] between consecu-
tive graph snapshots. Although dynamic graph representation
learning approaches achieve high accuracy in link prediction,
the underlying neural networks require to train a large amount
of parameters. Therefore, these approaches incur high latency
during the online inference of the node/viewer representations

due to the large model sizes of the underlying neural network
architectures [21]–[26]. As a consequence, state-of-the-art ap-
proaches are not applicable to real-world live video streaming
solutions, as the high online latency inference increases the
computational time of link prediction during a live video
streaming event, resulting in high complexity when adapting
the viewers’ connections.

Knowledge distillation. Alternatively, to reduce the high
online latency inference, graph representation learning ap-
proaches could employ neural networks of smaller sizes with
less parameters. However, such models might fail to accurately
capture the structure of an evolving graph, resulting in low link
prediction accuracy. Knowledge distillation has been recently
introduced as a model-independent strategy to generate a
small model that exhibits low online latency inference, while
preserving high accuracy [21], [23], [27]. The main idea
of knowledge distillation is to train a large model, namely
teacher, as an offline training process. The teacher model is
a neural network architecture that requires to train a large
number of parameters, so as to learn the structure of offline
data. Having pretrained the teacher model, the knowledge dis-
tillation strategies compute a smaller student model with less
parameters, that is more suitable for deployment in production.
In particular, the student model is trained on online data, and
distills the knowledge of the pretrained teacher model. This
means that the student model mimics the teacher model and
preserves the high prediction accuracy, while at the same time
reduces the online inference of the model parameters due to its
small size [27], [28]. A few attempts have been made on graph
representation learning with knowledge distillation strategies
to reduce the model sizes of the underlying neural network
architectures [29]–[31]. As we will show in Section IV-D,
such approaches fail to achieve a high compression ratio on
the student model, that is the size of the student model remains
high when compared with the size of the teacher model.
This occurs because these approaches learn low dimensional
representations on static graphs, which do not correspond to
the dynamic case of live video streaming events.

Contribution. To overcome the limitations of existing mod-
els, in this work we present a knowledge distillation strategy
for dynamic graph representation learning, namely EGAD, for
the link prediction task during live video streaming events. Our
main contributions are summarized as follows:
• EGAD employs a self-attention mechanism on the

weights of consecutive Graph Convolutional Networks
(GCNs), to capture the graph evolution and learn accurate
latent node/viewer representations, during a live video
streaming event.

• To the best of our knowledge we are the first to study
knowledge distillation for dynamic graph representation
learning. We train the EGAD teacher model in an offline
process and formulate a distillation loss function to trans-
fer the pretrained knowledge to a smaller student model
on online data. In doing so, we significantly reduce the
number of parameters when training the student model on
online data, and achieve high link prediction accuracy.

10 20 30 40 50 60 70 80
Live Streaming Minutes

2.50

2.75

3.00

3.25

3.50

3.75
N

um
be

r
of

 N
od

es
 (

K)

(2.80)

(4.47)

(5.63)

(6.61)
(7.17)

(7.45) (7.21) (7.12)

LiveStream-4K

10 20 30 40 50 60 70 80
Live Streaming Minutes

2

4

6

N
um

be
r

of
 N

od
es

 (
K)

(4.39)

(45.08)

(127.83)
(164.72)

(185.27)(196.52)
(201.77)(201.24)

LiveStream-6K

10 20 30 40 50 60 70 80
Live Streaming Minutes

5

10

15

N
um

be
r

of
 N

od
es

 (
K)

(6.99) (15.51)

(33.85)

(67.91)

(101.56)

(141.23)
(163.94)

(155.92)

LiveStream-16K

Fig. 2. Number of nodes/viewers during the three live video streaming events. In each parenthesis, we denote the respective number of connections/edges
(K) among the viewers at a certain snapshot.

Our experiments on real-world datasets of live video streaming
events demonstrate the superiority of the proposed model
to accurately capture the evolution of the graph and reduce
the online latency inference of the model parameters, when
compared with other state-of-the-art methods.

The remainder of the paper is organized as follows: in
Section II we present the collected live video streaming data in
Hive Streaming AB, and in Section III we detail the proposed
model. Our experimental evaluation is presented in Section
IV, and we conclude the study in Section V.

II. LIVE VIDEO STREAMING DATA

During a live video streaming event in Hive Streaming AB,
various data are collected such as connections per viewer,
throughput per connection, and so on, to provide valuable
insights to customers. Each viewer periodically reports the
data to centralized servers. To evaluate the performance of the
proposed model, we collected real-world datasets based on the
reports of three live video streaming events, that is LiveStream-
4K, LiveStream-6K and LiveStream-16K. All datasets are
anonymized and publicly available. The duration of each live
video streaming event is 80 minutes. Each generated dataset
consists of 8 weighted undirected graph/viewing snapshots,
corresponding to the viewers’ connections every 10 minutes. A
weight of a graph/viewing edge corresponds to the throughput
of the connection among two viewers at each snapshot. The
LiveStream-4K dataset has 3, 813 viewers, distributed to 15
different offices, and 11, 066 connections. In the LiveStream-
6K dataset, 6, 655 viewers attended the live video stream-
ing event from 29 different offices. The viewers established
787, 291 connections. The LiveStream-16K dataset consists of
17, 026 viewers and 482, 185 connections in total. The viewers
participated in the live video streaming event from 46 different
offices.

Figure 2 illustrates the different patterns of how view-
ers emerge during the three live video streaming events.
LiveStream-4K has more viewers than LiveStream-6K and
LiveStream-16K, during the first 10 minutes of the live
video streaming event. This indicates that in LiveStream-
4K the majority of the viewers started to attend the live
video streaming event from the beginning. In LiveStream-
6K, the first 2 graph/viewing snapshots significantly change
in terms of number of viewers, for 0− 20 minutes 2.8K new

viewers emerged, whereas in LiveStream-4K and LiveStream-
16K 0.5K and 1K viewers emerged, respectively. LiveStream-
4K is less informative as the viewers establish the lowest
number of connections. Finally, we can observe that viewers
in LiveStream-16K emerge at the lowest pace during the live
video streaming event. As we will demonstrate in Section
IV-C, the effectiveness of the proposed knowledge distillation
strategy and baseline approaches not only depends on the
graph sizes but also on different patterns that viewers emerge
during the live video streaming events.

III. PROPOSED METHOD

A live video streaming event is represented as a sequence
of K graph/viewing snapshots G = {G1, . . . ,GK}. ∀ k =
1, . . . ,K snapshot we consider the graph Gk = (Vk, Ek,Xk),
where Vk corresponds to the set of nk = |Vk| viewers, Ek is
the set of connections, and Xk ∈ Rnk×m is the matrix of the
m features of each viewer. For each graph Gk, we consider a
weighted adjacency matrix Ak ∈ Rnk×nk , where A(u, v) > 0
for the viewers u ∈ Vk and v ∈ Vk, if ek(u, v) ∈ Ek. The
weight A(u, v) corresponds to the bandwidth measured be-
tween viewers u ∈ Vk and v ∈ Vk at the k-th snapshot. Given
a sequence of l graph/viewing snapshots1 {Gk−l, . . . ,Gk}, the
goal of the proposed model is to compute d-dimensional latent
representations Zk ∈ Rnk×d, with d � m [11], [12], [14].
The constructed latent representations should capture both the
structure of the graph at the graph/viewing snapshot k and the
evolutionary behavior of the viewers up to the k-th minute.

Dynamic graph representation learning models employ deep
neural network architectures, requiring to train a large amount
of parameters [12], [32], [33]. Such models are computation-
ally expensive to deploy to a large number of viewers in
live video streaming events as they incur significant online
latency to calculate the viewers’ representations [22], [23],
[29], [30]. The problem of knowledge distillation is to generate
a smaller online student model S than a pretrained offline large
teacher model T . The goal is to reduce the number of trainable
parameters of the student model S to minimize the online

1The reason for not accounting for all the previous snapshots from the
beginning of the live video streaming event, and consider only a certain time
window l is because we observed in our experiments that large values of l
do not necessarily increase the prediction accuracy, while at the same time
significantly increase the number of the model parameters. The influence of
l on the performance of the proposed model and the baseline approaches is
studied in Table IV.

latency inference [27], [34]. In practice, the teacher model T
is pretrained using a computationally expensive deep neural
network architecture to calculate the latent representations ZTk
of the offline data. Having trained the teacher model offline,
the student model S learns the latent representations ZSk by
minimizing a distillation loss function LD. The distillation
loss function LD calculates the prediction error of the student
model S and the deviation from the latent representations
ZTk generated by the teacher model T . This means that the
student model S is able to mimic the already pretrained teacher
model T with fewer parameters [27], [28]. In Section III-A
we present the offline teacher model EGAD-T , and then in
Section III-B we describe the distillation process of the online
student model EGAD-S.

A. EGAD-T Teacher Model

The teacher model EGAD-T learns the viewer representa-
tions ZTk at the k-th graph/viewing snapshot using l consecu-
tive Graph Convolutional Network (GCN) models [12], [35],
[36], with EGAD-T = {GCNk−l, . . . GCNk}, and l being
the number of previous graph/viewing snapshots. The input
of each GCNk model is the normalized adjacency matrix
Âk ∈ Rnk×nk and the viewers’ features Xk. Provided that
the graphs during the live video streaming events have nodes
with no features, the node feature matrix Xk is replaced by
the identity matrix I ∈ Rn×n, with m = n. Each GCNk
model calculates the viewers representations ZTk by applying
two convolution layers to Âk and Xk, as follows:

ZTk = ÂkReLU(ÂkXkW
1
k)W

2
k (1)

where Wi
k ∈ Rdi−1×di is the weight parameter matrix of the

i-th convolutional layer, with di < di−1 < m. Following [13],
[35] we employ two convolutional layers (i = 1, 2), to learn
the weight parameter matrices W1

k ∈ Rm×d1 and W2
k ∈

Rd1×d2 , with d2 = d, so as to compute the d-dimensional
representations ZTk . The symmetrically normalized adjacency
matrix Âk is calculated as follows:

Âk = D
− 1

2

k ÃkD
− 1

2

k

Ãk = Ak + I
Dk = diag(

∑
j Ak(u, v))

(2)

The l consecutive GCN models are connected in a sequential
manner through the weights W1

k−1 and W1
k of the first

convolutional layers [37]. For each node u ∈ Vk we calculate h
independent self-attention heads, that is vectors zjk(u) ∈ Rd1 ,
with j = 1, . . . , h, based on the d1-dimensional weights
W1

k−1(u) ∈ Rd1 . To compute the weights W1
k of each GCNk

model, we average the h independent self-attention vectors
zjk(u) [16], as follows:

W1
k(u) = ELU

(
1
h

∑h
j=1 z

j
k(u)

)
zjk(u) =

∑
v∈Nu

αu,vHkW
1
k−1(v)

(3)

where ELU is the Exponential Linear Unit activation function
[38]. Variable Hk ∈ Rd1×d1 is the shared weight transfor-
mation matrix applied to the previous weights W1

k−1(u) of
each node u ∈ Vk, Nu is the neighborhood set of the node u.
Variable αu,v is the normalized attention coefficient between
u ∈ Vk and v ∈ Nu, which is calculated based on the softmax
function [11], as follows:

αu,v =
exp
(
σ(Ak(u,v)·aT

k [HkW
1
k−1(u)||HkW

1
k−1(v)])

)∑
w∈Nu

exp
(
σ(Ak(u,w) · aTk [HkW

1
k−1(u)||HkW

1
k−1(w)])

)
(4)

where σ is the sigmoid function, Ak(u, v) is the edge weight
between u and v, aTk ∈ R2d1 is a 2d1-dimensional weight
vector which is applied to the attention process between nodes
u and v [11], [16], and || is the concatenation operation.
The attention coefficient αu,v measures the importance of the
connection between nodes u ∈ Vk and v ∈ Nu. A high
attention coefficient value αu,v corresponds to a connection
ek(u, v) ∈ Ek which is maintained over several consecutive
graph/viewing snapshots and has high edge weight in the ad-
jacency matrix Ak(u, v). This means that the learned weights
W1

k reflect on the importance of the existing connection
between node u and v, processing the convolution accordingly.

To train the teacher model EGAD-T , we initialize l GCN
models and connect the consecutive GCN models using the
self-attention mechanism in Equation 3. As aforementioned,
each of the k-th GCN models takes as an input the normalized
adjacency matrix Ãk and the feature vectors Xk. When train-
ing EGAD-T , each GCNk model computes the weights W1

k

in Equation 3, and then calculates the latent representations
Zk based on Equation 1. Note that the weights W1

0 for the
first GCN model are randomly initialized. To train our teacher
model EGAD-T , we adopt the Root Mean Square Error loss
function with respect to the latent representations Zk generated
by the last GCN model [37], as follows:

min
Zk

LT =

√
1

nk

(
σ(ZTk

> · ZTk)−Ak

)2
(5)

where · represents the inner product operation between all
the possible pairs of latent representations, and the term
σ(ZTk

> · ZTk) − Ak calculates the error of the latent repre-
sentations ZTk to capture the structure of the graph snapshot
Gk. In our implementation, we optimize the parameters Hk

and ak between consecutive GCN models, based on the loss
function in Equation 5 and the backpropagation algorithm.

B. EGAD-S Student Model

We train the student model EGAD-S to compute the online
latent representations ZSk , by exploiting the knowledge of
the pretrained teacher model EGAD-T . As we train the
student model only on online data, the student model EGAD-
S requires significantly less number of trainable parameter
weights, compared with the teacher model EGAD-T . The stu-
dent model EGAD-S consists of l consecutive GCN models,
with EGAD-S = {GCNk−l, . . . , GCNk}. We calculate the

weights W1
k (Equation 4), and compute the latent representa-

tions based on Equation 1.
The knowledge acquired by the teacher model EGAD-T is

transferred to the student model EGAD-S via the distillation
loss function LD, adopted by the student model during the
online training process. We formulate the distillation loss
function as a minimization problem for the student model
EGAD-S as follows:

min
ZSk

LD = (1− γ)LT + γLS (6)

where LT is the inference error of the teacher model in
Equation 5, and LS is the root mean squared error with
the latent representations ZSk generated by the student model.
Hyper-parameter γ ∈ [0, 1] balances the training of the student
model EGAD-S when inferring the knowledge of the teacher
model EGAD-T . A higher value of γ emphasizes more on the
student model EGAD-S and distillates less knowledge from
the teacher model EGAD-T . The distillation loss function LD

in Equation 6 allows the student model EGAD-S to overcome
any bias introduced by the teacher model EGAD-T [21],
[23], [27], [28]. This means that EGAD-S can achieve similar
or better accuracy than the teacher model EGAD-T . As we
will show later in Section IV-D, the student model EGAD-
S consistently outperforms the teacher model EGAD-T in
terms of accuracy, by significantly downsizing the number of
parameters.

IV. EXPERIMENTAL EVALUATION

A. Evaluation Setup

In our experiments we evaluate the performance of the pro-
posed model on the link prediction task. To examine the two
different components of our model, we train the teacher and
student models EGAD-T and EGAD-S , using l consecutive
graph/viewing snapshots up to the k-th graph Gk. The task
of link prediction is to forecast the unobserved connections,
denoted by Ok+1 = Ek+1\{Ek−l, . . . , Ek}, that will occur in
the next graph/viewing snapshot Gk+1. Following the evalu-
ation protocol of [11], [12], [14], we concatenate the latent
representations Zk(u) and Zk(v) based on the Hadamard
operator, for the unobserved connection o(u, v) ∈ Ok+1 of
the viewers u and v ∈ Vk. The concatenated latent representa-
tions are then applied to a Multi-Layer Perceptron (MLP),
to calculate the weight of the connection. To measure the
online inference efficiency, we report the number of parameters
that each model requires to train. Moreover, regarding the
prediction accuracy we evaluate the examined models based
on the metrics Root Mean Squared Error (RMSE) and Mean
Absolute Error (MAE):

MAE =

∑
o(u,v)∈Ok+1

∣∣Ak+1(u, v)− ZTk (u)Zk(v)
∣∣

|Ok+1|

RMSE =

√
(1
|Ok+1|)

∑
o(u,v)∈Ok+1

(ZTk (u)Zk(v)−Ak+1(u, v))
2

(7)
Following [11], [12], [37], for each snapshot k we train
each examined model on l previous graph/viewing snapshots
Gk−l, . . . ,Gk, which are considered the offline data for each
time step. We randomly select 20% of the unobserved links
Ok+1 for validation set to tune the model hyper-parameters.
The remaining 80% of the unobserved links are considered as
the test set, which are the online data for each time step. We
repeated our experiments five times, and we report the average
RMSE and MAE over the five trials.

B. Examined Models

We compare the performance of the proposed EGAD-T and
EGAD-S models with the following baseline strategies:
• DynVGAE [14] is a dynamic joint learning model

that shares the trainable parameters between consecutive
variational graph auto-encoders [35]. We implemented
DynVGAE from scratch and publish our code2, as there
is no publicly available implementation.

• EvolveGCN3 [12] is a dynamic graph representation
learning model with Gated Recurrent Units (GRUs) be-
tween the convolutional weights of consecutive GCNs.

• DySAT4 [11] is a dynamic self-attention model that
captures the evolution of the graph using multi-head self-
attention between consecutive graph snapshots.

• DMTKG-T [29] is the teacher model of the DMTKG
knowledge distillation strategy. DMTKG-T employs
Heat Kernel Signature (HKS) on static graph/viewing
snapshots and uses Convolutional Neural Network layers
to calculate the latent representations based on Deep-
Graph [39]. To ensure fair comparison, we train DMTKG-
T per snapshot, with each snapshot containing aggregated
graph history up to k-th snapshot. As the source code
of the DMKTG distillation strategy is not available, we
made our implementation publicly available5.

• DMTKG-S [29] is the student model of the DMTKG
strategy, where the goal is to minimize a distillation loss
function based on the weighted cross entropy.

Settings. In Tables III-V we report the performance of each
examined model in terms of RMSE when calibrating the
hyper-parameters of the examined models, following a cross-
validation strategy. For each model, we tuned the hyper-
parameters based on a grid selection strategy and select the
best configuration. In particular, in DynVGAE we set the

2https://github.com/stefanosantaris/DynVGAE
3https://github.com/IBM/EvolveGCN
4https://github.com/aravindsankar28/DySAT
5https://github.com/stefanosantaris/DMTKG

https://github.com/stefanosantaris/DynVGAE
https://github.com/IBM/EvolveGCN
https://github.com/aravindsankar28/DySAT
https://github.com/stefanosantaris/DMTKG

10 30 50 70
Live Streaming Minutes

0.10

0.15

0.20

0.25

0.30
RM

SE
LiveStream-4K

DynVGAE
EvolveGCN

DySAT
EGAD-S

10 30 50 70
Live Streaming Minutes

0.35

0.40

0.45

RM
SE

LiveStream-6K

DynVGAE
EvolveGCN

DySAT
EGAD-S

10 30 50 70
Live Streaming Minutes

0.23

0.25

0.28

0.30

0.33

RM
SE

LiveStream-16K

DynVGAE
EvolveGCN

DySAT
EGAD-S

10 30 50 70
Live Streaming Minutes

0.10

0.15

0.20

0.25

M
AE

LiveStream-4K

DynVGAE
EvolveGCN

DySAT
EGAD-S

10 30 50 70
Live Streaming Minutes

0.32

0.34

0.36

0.38

0.40

M
AE

LiveStream-6K

DynVGAE
EvolveGCN

DySAT
EGAD-S

10 30 50 70
Live Streaming Minutes

0.18

0.20

0.22

0.24

M
AE

LiveStream-16K

DynVGAE
EvolveGCN

DySAT
EGAD-S

Fig. 3. Performance evaluation of EGAD-S against the non-distillation strategies in terms of RMSE and MAE in LiveStream-4K, LiveStream-6K and
LiveStream-16K.

TABLE I
MODEL PARAMETERS IN MILLIONS FOR THE LIVE STREAMING MINUTES, WHEN COMPARING THE PROPOSED EGAD-S MODEL WITH THE

NON-DISTILLATION STRATEGIES.
LiveStream-4K LiveStream-6K LiveStream-16K

Stream. Min. DynVGAE EvolveGCN DySAT EGAD-S DynVGAE EvolveGCN DySAT EGAD-S DynVGAE EvolveGCN DySAT EGAD-S
10 0.332 37.034 0.845 0.081 0.092 2.288 0.367 0.022 0.152 6.994 0.485 0.036
20 0.830 117.829 1.227 0.105 0.902 70.021 1.299 0.114 0.626 65.472 1.023 0.079
30 0.903 140.150 1.515 0.117 1.312 151.137 1.924 0.168 1.220 260.283 1.832 0.156
40 0.974 154.609 1.774 0.125 1.458 187.345 2.285 0.189 1.907 646.523 2.734 0.245
50 0.973 163.519 1.800 0.128 1.567 216.853 2.394 0.202 2.678 1285.467 3.510 0.341
60 0.988 168.607 1.815 0.130 1.641 238.277 2.468 0.212 3.503 2211.020 4.330 0.445
70 0.100 172.770 1.827 0.132 1.670 255.987 2.527 0.219 3.986 2867.735 3.813 0.505
80 1.001 176.247 1.836 0.133 1.737 267.638 2.564 0.224 4.392 3486.341 5.219 0.556

representation size to d = 64 and the window size l = 2 for
all datasets. In EvolveGCN, the representation size is set to
d = 32, with l = 2 previous graph/viewing snapshots. DySAT
uses l = 2 consecutive graph/viewing snapshots and employs
h = 3 attention heads for the LiveStream-4K and LiveStream-
6K datasets. For the LiveStream-16K dataset, we use h = 4
attention heads. The representation size is fixed to d = 64
in all datasets. In DMTKG-T , the representation size is fixed
to d = 64 for LiveStream-4K and LiveStream-6K, while in
LiveStream-16K we use d = 128. In DMTKG-S, we reduce
the model size by setting the size of latent representations to
d = 32 for LiveStream-4K and LiveStream-6K, and d = 64
for LiveStream-16K. Regarding the proposed model, we train
EGAD-T on l = 3 consecutive graph/viewing snapshots and
set the number of head attentions to h = 3 in Equation 3,
with d = 64-dimensional latent representations. In the student
model EGAD-S , we reduce the number of heads h = 1 and
fix the latent representation size to d = 16 for all datasets. The
influence of γ on the distillation loss function (Equation 6) is
further studied in Section IV-D. We initialize the learning rate
to 1e−03 based on the Adam Optimizer with 200 epochs. All

experiments were performed on an Intel(R) Xeon(R) Bronze
3106 CPU 1.70GHz machine and GPU accelerated with the
GEFORCE RTX 2080 Ti graph card.

C. Performance Evaluation

In Figure 3, we evaluate the performance of the student
model EGAD-S against the non-distillation strategies, that is
DynVGAE, EvolveGCN and DySAT, in terms of RMSE and
MAE. We observe that all models have a higher prediction
error in terms of RMSE and MAE in LiveStream-6K than
the other datasets. This occurs because the viewers in the
LiveStream-6K dataset attended the live video streaming event
in a completely different pattern (Section II) than LiveStream-
4K and LiveStream-16K. More precisely, in LiveStream-6K
the number of viewers that emerge in 0-20 minutes is signifi-
cantly higher than the other events, which negatively impacts
the prediction accuracy of the examined models.

The student model EGAD-S significantly outperforms the
baseline approaches in all datasets. This suggests that the
proposed student model EGAD-S can efficiently capture the
evolution of the graph in the learned latent representations

ZSk . The second best approach is DySAT, demonstrating the
ability of self-attention mechanisms to generate accurate latent
representations. DySAT calculates the latent representations
Zk by applying self-attentional aggregations to the local
node neighborhoods. Instead, the proposed EGAD-S model
performs self-attention to the convolutional weights between
consecutive GCNs. Thus, our model is able to efficiently
capture the different graph evolution patterns of the live
video streaming events. Compared to the second best method
DySAT, the proposed EGAD-S model achieves relative drops
9.8 and 13.5% in terms of RMSE and MAE in the LiveStream-
4K dataset. Similarly, EGAD-S achieves relative drops 10.2
and 3.5% in LiveStream-6K, and 17.3 and 6.2% relative drops
in LiveStream-16K.

In Table I, we present the numbers of parameters in millions
that are required to train the examined models. As afore-
mentioned in Section II, the majority of the viewers in the
LiveStream-4K dataset started to attend the live video stream-
ing event from the first 10 minutes. Therefore, all models
have fewer trainable parameters on the first graph snapshots
k = 0 − 30 minutes in LiveStream-6K and LiveStream-16K
than in the LiveStream-4K dataset. We observe that EGAD-S
clearly outperforms the baseline approaches in terms of the re-
quired parameters. Evaluated against DynVGAE, EvolveGCN
and DySAT, the average compress ratios of the student model
EGAD-S are 12:100, 7:1000, and 7:100, respectively. Pro-
vided that EGAD-S constantly outperforms all the baseline
approaches in terms of RMSE and MAE, the high compression
ratios demonstrate the ability of the proposed knowledge
distillation strategy to significantly reduce the model size
in terms of required parameters. Moreover, it is clear that
EvolveGCN model requires a significant amount of trainable
parameters to generate the latent representations. This means
that EvolveGCN does not scale well when increasing the
number of viewers in live video streaming events. As DySAT
employs multi-head attention on consecutive graph/viewing
snapshots, and not on consecutive GCNs as the proposed
EGAD- model does, DySAT requires a much a higher number
of parameters by following a non-distillation strategy.

D. Distillation Evaluation

In Figure 4, we study the impact of the proposed knowledge
distillation strategy on the student model EGAD-S in terms
of RMSE, when compared with the teacher model EGAD-
T . In addition, in this set of experiments we evaluate our
model against DMTKG [29], a baseline graph representation
approach with knowledge distillation, comparing with both the
teacher model DMTKG-T and student model DMTKG-S.

On inspection of Figure 4, we observe that the EGAD-T and
EGAD-S models outperform DMTKG-T and DMTKG-S in
all datasets. This occurs because DMTKG applies knowledge
distillation on top of DeepGraph [39], which is a static
graph representation learning approach. Therefore, DMTKG
ignores the graphs’ evolution when learning the latent rep-
resentations. An interesting observation is that the student
models EGAD-S and DMTKG-S achieve higher performance

than the respective teacher models EGAD-T and DMTKG-T .
This indicates the effectiveness of the examined distillation
strategies to correctly transfer the knowledge of the teacher
models to the respective student models. This occurs because
the student models remove the bias of the teacher models to the
offline data, and achieve high prediction accuracy, complying
with similar observations that have been made in relevant
studies [21], [40]. Compared to the EGAD-T model, EGAD-
S achieves 6.5, 3.6 and 5.7% relative drops in terms of
RMSE for LiveStream-4K, LiveStream-6K and LiveStream-
16K, respectively.

In Table II, we present the maximum number of parameters
in millions that are required to train the examined models
during the live video streaming events. EGAD-S significantly
reduces the number of required parameters, achieving com-
pression ratios 15:100, 17:100 and 21:100, on average, in
LiveStream-4K, LiveStream-6K and LiveStream-16K, respec-
tively. This occurs because the student model EGAD-S uses
a lower number of attention heads h and representation size d
than the teacher model EGAD-T (Section IV-C). Therefore,
EGAD-S has lower online inference latency, compared with
the teacher model EGAD-T . Instead, the DMTKG distillation
strategy achieves an average 1:2 compression ratio for the
student model DMTKG-S. The DMTKG distillation strategy
is not able to further reduce the student model size, because
DMTKG is designed for static graphs. This indicates that the
DMTKG-S model requires more trainable parameters to learn
accurate latent representations than the proposed EGAD-S
model.

TABLE II
THE MAXIMUM NUMBERS OF REQUIRED PARAMETERS IN MILLIONS OF
THE EXAMINED KNOWLEDGE DISTILLATION STRATEGIES DURING THE

LIVE VIDEO STREAMING EVENTS. IN THE PARENTHESES, WE DENOTE THE
AVERAGE COMPRESSION RATIOS OF THE STUDENT MODELS, WHEN

COMPARED WITH THE RESPECTIVE TEACHER MODELS.
Model LiveStream-4K LiveStream-6K LiveStream-16K

DMTKG-T 3.673 5.129 10.437
DMTKG-S 1.836 (1:2) 2.564 (1:2) 5.219 (1:2)
EGAD-T 0.918 1.282 2.609
EGAD-S 0.133 (15:100) 0.224 (17:100) 0.556 (21:100)

In Figure 5, we evaluate the influence on the hyper-
parameter γ of Equation 6 on the student model EGAD-S.
We vary the hyper-parameter γ from 0.1 to 0.9 by a step of
0.1, to balance the impact of the student LS and teacher LT

losses on the distillation loss function LD. For each parameter
γ, we report the averaged RMSE over all the graph snapshots
of the live video streaming events. In all datasets, the student
model EGAD-S achieves the highest performance when we
equally balance the influence of the student and teacher models
(γ = 0.5). For larger values of parameter γ, the student
model EGAD-S emphasizes more on the loss LS than the loss
LT . As a consequence, the student model EGAD-S distills
less knowledge from the teacher model EGAD-T , which
negatively impacts the performance of the EGAD-S model
in terms of RMSE. Instead, decreasing the hyper-parameter
γ prevents the student model EGAD-S from training on the

10 30 50 70
Live Streaming Minutes

0.15

0.20

0.25
RM

SE
LiveStream-4K

EGAD-T
EGAD-S

DMTKG-T
DMTKG-S

10 30 50 70
Live Streaming Minutes

0.33

0.35

0.38

0.40

0.43

RM
SE

LiveStream-6K

EGAD-T
EGAD-S

DMTKG-T
DMTKG-S

10 30 50 70
Live Streaming Minutes

0.25

0.30

0.35

RM
SE

LiveStream-16K

EGAD-T
EGAD-S

DMTKG-T
DMTKG-S

Fig. 4. Comparison of student and teacher models for the examined knowledge distillation strategies.

0.1 0.3 0.5 0.7 0.9
0.11

0.12

0.13

0.14

0.15

0.16

RM
SE

LiveStream-4K

0.1 0.3 0.5 0.7 0.9
0.35

0.36

0.37

0.38

0.39

RM
SE

LiveStream-6K

0.1 0.3 0.5 0.7 0.9

0.24

0.24

0.24

0.25

RM
SE

LiveStream-16K

Fig. 5. Impact of γ on the prediction accuracy of student model EGAD-S.

online graph data and at the same time introduces the bias to
the offline data of EGAD-T . This means that for small values
of γ EGAD-S mainly distills the knowledge of the teacher
model EGAD-T , resulting in limited prediction accuracy.

V. CONCLUSION

In this paper, we presented a knowledge distillation strat-
egy, to overcome the problem of online latency inference
of dynamic graph representation learning approaches in live
video streaming events. Evaluated against several baseline
approaches on three real-world live video streaming events, the
proposed model achieves 7:100 compression ratio on average.
Moreover, the proposed student model preserves high predic-
tion accuracy, achieving average relative drops 12.4 and 7.7%
in terms of RMSE and MAE in all events, when compared
with the second best approach. Distributed live video stream-
ing providers, such as Hive Streaming AB, can significantly
benefit from our model by significantly reducing the required
parameters/computational time in the link prediction task. In
doing so, viewers can exploit the offices’ internal high band-
width network from the beginning of the live video streaming
event, by avoiding to establish low bandwidth connections.
Provided that several offices have limited network capacity, our
model can significantly reduce the generated network traffic.
Therefore, enterprises can distribute high quality video content
to their offices without any network limitations, improving user
experience. Moreover, the proposed model allows enterprises
to distribute video content of high resolution, such as 4K.

There are several interesting future directions to graph
representation learning for live video streaming events.
• For instance, as future work we plan to evaluate the

performance of the proposed model on evolving graphs

of social networks. In particular, provided the limited
duration of live video stream events the main challenge
resides on identifying the differences of how viewers
emerge during live video streaming events and at what
pace users establish connections in social networks over
time.

• Another interesting future direction is to study the per-
formance of our model on graph snapshots over time
steps with different duration. For example, in a live
video streaming event the duration of time steps between
two consecutive snapshots might vary, depending on the
network demand. This means that different time steps
might require an adaptive learning strategy of the time
window w when training our model.

• In our model, training is performed on the graph data of a
single live video streaming event. In practice though there
are several live video streaming events that take place on a
daily basis. The question that we have to answer is how to
exploit the knowledge acquired from different live video
streaming events, when training our model on a new
event. More precisely, we plan to study various transfer
learning strategies to exploit the knowledge from different
events, when training our model. This is a challenging
task, because not only the internal network topologies
of several companies vary, but also viewers emerge at
various paces during different live video streaming events.

REFERENCES

[1] Q. Fan, H. Yin, G. Min, P. Yang, Y. Luo, Y. Lyu, H. Huang, and L. Jiao,
“Video delivery networks: Challenges, solutions and future directions,”
Comput. Electr. Eng., vol. 66, pp. 332–341, 2018.

[2] M. F. Majeed, S. H. Ahmed, S. Muhammad, H. Song, and D. B. Rawat,
“Multimedia streaming in information-centric networking: A survey and
future perspectives,” Comput. Networks, vol. 125, pp. 103–121, 2017.

TABLE III
EFFECT ON RMSE WHEN VARYING THE REPRESENTATION SIZE d OF THE EXAMINED MODELS. WE REPORT AVERAGE RMSE OVER THE GRAPH

SNAPSHOTS DURING THE LIVE VIDEO STREAMING EVENT. BOLD VALUES DENOTE THE BEST CONFIGURATION FOR EACH MODEL.

LiveStream-4K
Representation size d DynVGAE EvolveGCN DySAT DMTKG-T DMTKG-S EGAD-T EGAD-S

16 0.23± 0.14 0.27± 0.09 0.18± 0.07 0.28± 0.14 0.27± 0.15 0.17± 0.09 0.13± 0.09
32 0.21± 0.12 0.25± 0.12 0.16± 0.10 0.26± 0.13 0.23± 0.17 0.16± 0.05 0.15± 0.10
64 0.19± 0.13 0.26± 0.18 0.15± 0.09 0.25± 0.16 0.24± 0.12 0.14± 0.08 0.16± 0.06
128 0.20± 0.17 0.26± 0.12 0.17± 0.08 0.26± 0.17 0.25± 0.16 0.15± 0.06 0.16± 0.08
256 0.21± 0.15 0.27± 0.15 0.18± 0.05 0.27± 0.19 0.26± 0.14 0.16± 0.07 0.17± 0.06

LiveStream-6K
16 0.48± 0.16 0.47± 0.12 0.41± 0.15 0.48± 0.18 0.48± 0.14 0.41± 0.12 0.36± 0.06
32 0.46± 0.16 0.44± 0.11 0.40± 0.17 0.47± 0.18 0.41± 0.12 0.39± 0.09 0.37± 0.09
64 0.45± 0.18 0.45± 0.13 0.39± 0.18 0.43± 0.16 0.43± 0.15 0.37± 0.10 0.39± 0.10
128 0.46± 0.17 0.45± 0.14 0.41± 0.16 0.45± 0.14 0.44± 0.16 0.38± 0.11 0.40± 0.08
256 0.46± 0.18 0.46± 0.18 0.42± 0.14 0.46± 0.12 0.46± 0.18 0.38± 0.11 0.42± 0.07

LiveStream-16K
16 0.36± 0.13 0.35± 0.18 0.29± 0.16 0.39± 0.15 0.39± 0.12 0.27± 0.10 0.23± 0.07
32 0.35± 0.14 0.33± 0.19 0.29± 0.14 0.37± 0.14 0.36± 0.11 0.26± 0.09 0.25± 0.09
64 0.33± 0.12 0.34± 0.11 0.27± 0.14 0.36± 0.15 0.33± 0.11 0.24± 0.09 0.26± 0.06
128 0.34± 0.11 0.35± 0.13 0.28± 0.13 0.35± 0.12 0.35± 0.15 0.25± 0.10 0.26± 0.08
256 0.34± 0.17 0.36± 0.11 0.29± 0.12 0.38± 0.13 0.36± 0.18 0.26± 0.10 0.27± 0.10

TABLE IV
IMPACT OF THE WINDOW SIZE l ON THE PERFORMANCE OF EACH EXAMINED MODEL IN TERMS OF RMSE.

LiveStream-4K
Window size l DynVGAE EvolveGCN DySAT DMTKG-T DMTKG-S EGAD-T EGAD-S

1 0.32± 0.16 0.35± 0.19 0.21± 0.12 N/A N/A 0.18± 0.06 0.16± 0.05
2 0.19± 0.13 0.25± 0.12 0.15± 0.09 N/A N/A 0.16± 0.09 0.14± 0.06
3 0.24± 0.18 0.28± 0.14 0.19± 0.14 N/A N/A 0.14± 0.08 0.13± 0.09
4 0.29± 0.12 0.32± 0.16 0.20± 0.12 N/A N/A 0.17± 0.10 0.16± 0.04
5 0.36± 0.17 0.42± 0.19 0.24± 0.14 N/A N/A 0.20± 0.09 0.19± 0.06

LiveStream-6K
1 0.48± 0.16 0.56± 0.11 0.42± 0.14 N/A N/A 0.41± 0.11 0.39± 0.07
2 0.45± 0.18 0.44± 0.11 0.39± 0.18 N/A N/A 0.38± 0.08 0.37± 0.09
3 0.46± 0.14 0.49± 0.13 0.41± 0.16 N/A N/A 0.37± 0.10 0.36± 0.06
4 0.52± 0.19 0.51± 0.12 0.43± 0.12 N/A N/A 0.40± 0.09 0.39± 0.04
5 0.54± 0.12 0.54± 0.18 0.49± 0.15 N/A N/A 0.43± 0.12 0.40± 0.05

LiveStream-16K
1 0.42± 0.12 0.38± 0.16 0.33± 0.16 N/A N/A 0.31± 0.10 0.29± 0.06
2 0.33± 0.12 0.33± 0.19 0.27± 0.14 N/A N/A 0.29± 0.11 0.27± 0.08
3 0.37± 0.11 0.36± 0.17 0.29± 0.12 N/A N/A 0.24± 0.09 0.23± 0.07
4 0.39± 0.18 0.39± 0.19 0.31± 0.16 N/A N/A 0.30± 0.07 0.29± 0.09
5 0.46± 0.14 0.41± 0.15 0.39± 0.14 N/A N/A 0.38± 0.10 0.24± 0.10

[3] R. Roverso, R. Reale, S. El-Ansary, and S. Haridi, “Smoothcache 2.0:
Cdn-quality adaptive http live streaming on peer-to-peer overlays,” in
MMSys, 2015, p. 61–72.

[4] R. Roverso, S. El-Ansary, and M. Högqvist, “On http live streaming in
large enterprises,” in SIGCOMM, 2013, p. 489–490.

[5] T. V. Phan, M. Hajizadeh, N. T. Khai, and T. Bauschert, “Destination-
aware adaptive traffic flow rule aggregation in software-defined net-
works,” in NetSys, 2019, pp. 1–6.

[6] P. S. Rivera, J. Griffioen, Z. Fei, and J. H. Hayes, “Expressing and
managing network policies for emerging HPC systems,” in PEARC,
2019, pp. 36:1–36:7.

[7] “GDPR Regulation Europe,” https://eur-lex.europa.eu/legal-content/EN/
TXT/PDF/?uri=CELEX:32016R0679, 2016, [Online; accessed 01-April-
2020].

[8] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in KDD, 2016, pp. 855–864.

[9] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” IEEE Data Eng. Bull., vol. 40, no. 3,
pp. 52–74, 2017.

[10] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in KDD, 2014, pp. 701–710.

[11] A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang, “Dysat: Deep neural
representation learning on dynamic graphs via self-attention networks,”
in WSDM, 2020, pp. 519–527.

[12] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi,
T. Kaler, T. B. Schardl, and C. E. Leiserson, “EvolveGCN: Evolving
graph convolutional networks for dynamic graphs,” in AAAI, 2020.

[13] A. Hasanzadeh, E. Hajiramezanali, K. R. Narayanan, N. Duffield,
M. Zhou, and X. Qian, “Semi-implicit graph variational auto-encoders,”
in NeurIPS, 2019, pp. 10 711–10 722.

[14] S. Mahdavi, S. Khoshraftar, and A. An, “Dynamic joint variational graph
autoencoders,” in ECML, 2019, pp. 385–401.

[15] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in NIPS, 2017, pp. 1024–1034.

[16] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in ICLR, 2018.

[17] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations with
global structural information,” in CIKM, 2015, p. 891–900.

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679

TABLE V
EFFECT ON RMSE WHEN VARYING THE NUMBER OF HEADS h OF THE SELF-ATTENTION MECHANISMS OF DYSAT, EGAD-T AND EGAD-S .

LiveStream-4K
Number of heads h DynVGAE EvolveGCN DySAT DMTKG-T DMTKG-S EGAD-T EGAD-S

1 N/A N/A 0.19± 0.06 N/A N/A 0.16± 0.05 0.13± 0.09
2 N/A N/A 0.17± 0.07 N/A N/A 0.15± 0.04 0.14± 0.10
3 N/A N/A 0.15± 0.09 N/A N/A 0.14± 0.08 0.16± 0.08
4 N/A N/A 0.16± 0.08 N/A N/A 0.16± 0.07 0.17± 0.09
5 N/A N/A 0.18± 0.08 N/A N/A 0.17± 0.09 0.20± 0.03

LiveStream-6K
1 N/A N/A 0.47± 0.12 N/A N/A 0.42± 0.07 0.36± 0.06
2 N/A N/A 0.45± 0.15 N/A N/A 0.40± 0.12 0.38± 0.06
3 N/A N/A 0.39± 0.18 N/A N/A 0.37± 0.10 0.41± 0.04
4 N/A N/A 0.41± 0.14 N/A N/A 0.38± 0.10 0.43± 0.09
5 N/A N/A 0.46± 0.17 N/A N/A 0.39± 0.11 0.43± 0.08

LiveStream-16K
1 N/A N/A 0.32± 0.17 N/A N/A 0.28± 0.08 0.23± 0.07
2 N/A N/A 0.29± 0.18 N/A N/A 0.26± 0.10 0.25± 0.05
3 N/A N/A 0.28± 0.15 N/A N/A 0.24± 0.09 0.26± 0.09
4 N/A N/A 0.27± 0.14 N/A N/A 0.25± 0.06 0.26± 0.10
5 N/A N/A 0.29± 0.12 N/A N/A 0.27± 0.07 0.27± 0.08

[18] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in
KDD, 2016, pp. 1225–1234.

[19] Z. T. Kefato and S. Girdzijauskas, “Gossip and attend: Context-sensitive
graph representation learning,” in ICWSM, 2020.

[20] P. Goyal, S. R. Chhetri, and A. Canedo, “dyngraph2vec: Capturing
network dynamics using dynamic graph representation learning,” Knowl.
Based Syst., vol. 187, 2020.

[21] J. Tang and K. Wang, “Ranking distillation: Learning compact ranking
models with high performance for recommender system,” in KDD, 2018,
p. 2289–2298.

[22] J. Ba and R. Caruana, “Do deep nets really need to be deep?” in NIPS,
2014, pp. 2654–2662.

[23] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” in NIPS, 2015.

[24] Y. Liu, J. Cao, B. Li, C. Yuan, W. Hu, Y. Li, and Y. Duan, “Knowledge
distillation via instance relationship graph,” in CVPR, 2019, pp. 7096–
7104.

[25] J. Wang, L. Gou, W. Zhang, H. Yang, and H. Shen, “Deepvid: Deep
visual interpretation and diagnosis for image classifiers via knowledge
distillation,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 6, pp. 2168–
2180, 2019.

[26] J. Yim, D. Joo, J. Bae, and J. Kim, “A gift from knowledge distillation:
Fast optimization, network minimization and transfer learning,” in
CVPR, 2017, pp. 7130–7138.

[27] C. Bucila, R. Caruana, and A. Niculescu-Mizil, “Model compression,”
in KDD, 2006, pp. 535–541.

[28] M. Phuong and C. Lampert, “Towards understanding knowledge distil-
lation,” in ICML, 2019, pp. 5142–5151.

[29] J. Ma and Q. Mei, “Graph representation learning via multi-task knowl-
edge distillation,” in NeurIPS, 2019.

[30] C. Lassance, M. Bontonou, G. B. Hacene, V. Gripon, J. Tang, and
A. Ortega, “Deep geometric knowledge distillation with graphs,” in
ICASSP, 2020, pp. 8484–8488.

[31] S. Lee and B. C. Song, “Graph-based knowledge distillation by multi-
head attention network,” in BMVC, 2019, p. 141.

[32] L. Zhou, Y. Yang, X. Ren, F. Wu, and Y. Zhuang, “Dynamic network
embedding by modeling triadic closure process,” in AAAI, 2018, pp.
571–578.

[33] P. Goyal, N. Kamra, X. He, and Y. Liu, “Dyngem: Deep embedding
method for dynamic graphs,” vol. abs/1805.11273, 2018.

[34] R. Anil, G. Pereyra, A. Passos, R. Ormándi, G. E. Dahl, and G. E.
Hinton, “Large scale distributed neural network training through online
distillation,” in ICLR, 2018.

[35] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in ICLR, 2017.

[36] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson, “Structured
sequence modeling with graph convolutional recurrent networks,” in
ICONIP, 2018, pp. 362–373.

[37] S. Antaris and D. Rafailidis, “VStreamDRLS: Dynamic graph rep-
resentationlearning with self-attention for enterprisedistributed video
streaming solutions,” in ASONAM, 2020.

[38] D. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep
network learning by exponential linear units (elus),” in ICLR, 2016.

[39] C. Li, X. Guo, and Q. Mei, “Deepgraph: Graph structure predicts
network growth,” 2016.

[40] Y. Kim and A. M. Rush, “Sequence-level knowledge distillation,” in
EMNLP, 2016, pp. 1317–1327.

	I Introduction
	II Live Video Streaming Data
	III Proposed Method
	III-A EGAD-T Teacher Model
	III-B EGAD-S Student Model

	IV Experimental Evaluation
	IV-A Evaluation Setup
	IV-B Examined Models
	IV-C Performance Evaluation
	IV-D Distillation Evaluation

	V Conclusion
	References

