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Abstract—Data stream processing frameworks provide reliable
and efficient mechanisms for executing complex workflows over
large datasets. A common challenge for the majority of cur-
rently available streaming frameworks is efficient utilization of
resources. Most frameworks use static or semi-static settings for
resource utilization that work well for established use cases but
lead to marginal improvements for unseen scenarios. Another
pressing issue is the efficient processing of large individual
objects such as images and matrices typical for scientific datasets.
HarmonicIO has proven to be a good solution for streams
of relatively large individual objects, as demonstrated in a
benchmark comparison with the Spark and Kafka streaming
frameworks. We here present an extension of the HarmonicIO
framework based on the online bin-packing algorithm, to allow
for efficient utilization of resources. Based on a real world use
case from large-scale microscopy pipelines, we compare results
of the new system to Spark’s auto-scaling mechanism.

Index Terms—Data Streaming, Resource Management, Cloud
Infrastructures, Scheduling, Big Data, Scientific Data analysis,
Online Bin-packing, Profiling

I. INTRODUCTION

Production-grade data stream processing frameworks such
as Spark1, Kafka2 and Storm3 have enabled efficient, complex
analysis on large datasets. These frameworks feature reliable
transfer of the data, efficient execution based on multiple pro-
cessing units, in- or out-of-order processing, and recovery from
failures. These features are fundamental to develop production-
grade streaming applications, but are not themselves sufficient
to guarantee efficient utilization of resources. Indeed, with
the popularity of public cloud infrastructures based on a
pay-as-you-go model, the extended list of requirements both
for the streaming frameworks and for the applications that
run using these frameworks include efficient utilization of
resources to reduce the cost of running applications, and rapid
deployment of frameworks on different platforms. To achieve
this, streaming frameworks need to be resource-aware in order
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1https://spark.apache.org/
2https://kafka.apache.org/
3https://storm.apache.org/

to achieve the best possible resource utilization based on
different scaling mechanisms.

Moreover, frameworks need to be flexible enough in terms
of management of in-homogeneous compute and storage re-
sources since this allows for scaling processing units based
on the best possible prices available on the public platforms.
On the application side, one requirement is to design self-
contained applications that can be deployed seamlessly on
a variety of resources. To that end, different efforts have
been made. The most popular self-contained application design
scheme is the containerization approach. Based on Docker4,
LXD5 or Singularity6 container software, applications can
easily be deployed on a variety of resources.

For intelligent resource management, different machine
learning approaches both from supervised and unsupervised
learning have been extensively studied [1]. However, it has
been observed that in order to make supervised learning
approaches effective, regular re-training is required to cope
with evolving scenarios [2], [3]. Unsupervised learning on the
other hand needs longer time to provide reasonable estimates
[4]. Additionally, a large quantity of the published work in
this area is based on synthetic datasets where real environment
challenges are not very well covered.

Another challenge which is not well covered in the data
streaming framework domain is the efficient processing of
large individual objects. Most of the currently available
streaming frameworks focus on processing very large datasets
composed of many small individual data objects [5]. This maps
well to the major use case of analysis of massive social media
datastreams in which each individual object is a text message
or a picture of small size (from tens of bytes to kilobytes). On
the other hand, for typical scientific datasets composed of e.g.
matrices, images or large text files, the individual objects are
often relatively large (ranging from kilo- to gigabytes).

Motivated by applications in large-scale processing of mi-
croscopy images, we recently developed HarmonicIO, a data

4https://www.docker.com/
5https://linuxcontainers.org/
6https://singularity.lbl.gov/
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streaming framework geared towards efficient processing of
streams composed of large individual objects [6]. Recent
performance benchmark comparisons of HarmonicIO with the
Spark and Kafka streaming frameworks illustrate the increased
throughput that can be expected from HarmonicIO in that
scenario [7]. The architecture and the features of HarmonicIO
are further discussed in Section III.

In this article, we extend the HarmonicIO framework with
features for efficient and intelligent resource utilization by in-
troducing an Intelligent Resource Manager (IRM) component.
Our approach is based on online bin-packing, a lightweight
and extremely efficient algorithm that lets us optimally utilize
available compute resources. In contrast to solutions based on
machine learning, the online bin-packing algorithm does not
require training data and model fitting. Instead, we employ a
run-time learning process that profiles the characteristics of the
running workloads. The proposed IRM extension thus relies
on bin-packing in order to schedule the workloads based on
their run-time resource usage.

To test the IRM extension we evaluate the system in an
environment hosted in the SNIC science cloud, with tests
based on both synthetic and use-case based workloads. We
show a high degree of efficiency in resource scheduling from
the bin-packing algorithm, and we highlight the noise from
running the system in real environments as the error between
scheduled versus measured resource utilization.

Specifically, we make the following key contributions:
• Extend the HarmonicIO framework with efficient re-

source utilization using online bin-packing algorithm.
• Provide an extensive evaluation of the proposed IRM

component.
• Thoroughly compare the here proposed resource alloca-

tion mechanism and HarmonicIO with Spark streaming
for a real-world scientific workload.

The article highlights the underlying challenges and proposes
a well-designed solution for efficient resource utilization in
the highly dynamic environment of streaming frameworks.
Our experiments are based on real environment settings and
the presented comparison with the Spark streaming shows the
strength of proposed solution.

The remainder of the article is organized as follows. Sec-
tion II reviews state-of-the-art approaches for the efficient
resource utilization in streaming frameworks. Section III
explains the architecture and the features of HarmonicIO.
The online bin-packing algorithm is covered in Section IV.
Section V explains the integration details of the proposed
IRM component and the HarmonicIO framework. Results are
presented in the Section VI and Section VII summarize the
article and outlines future research directions.

II. RELATED WORK

Various approaches have been explored to address the chal-
lenge of efficient resource utilization. For example, a popular
domain has been control theory, with previous work inves-
tigating how to use Kalman filters to minimize operational
resource costs [8], or to track CPU usage and accordingly

update resource allocations for workloads as they vary [9].
The interesting feature of Kalman filters is the predictive
estimations of future behaviour, allowing the workloads to be
captured increasingly accurately. The difficulty in applying the
filters to resource scheduling lies in modeling the cost func-
tions to minimize and the control system, in order to achieve
their full potential. In contrast to these works that targets bare-
metal and VM environments, the solution proposed in this
article targets resource scheduling based on containers under
a data streaming setting. The main goal of adaptive resource
utilization optimization remains the same.

Another interesting approach is to use overbooking, as pro-
posed by [10]. They designed a model based on overbooking
combined with risk assessment to maintain tolerable perfor-
mance levels and at the same time keep a minimum level of
resource utilization across multiple resources (CPU, memory,
network I/O etc.). This reduced overestimation of resource
requirements and helped server application collocation. In
comparison our approach assigns the scheduling of computing
resources to the streaming framework rather than the user
having to provide information about the workloads.

Bin-packing has previously been used for scheduling work-
loads in cloud computing contexts. In [11], a resource manager
for cloud centres was proposed, featuring dynamic application
reallocation with bin-packing based on run-time workloads.
With the help of the resource manager, the number of VMs
required to host the applications could be reduced. Based on
these promising results, the work on our proposal was inspired
by the use of bin-packing for optimizing resource utilization.
However, we opted to use the bin-packing on a container
level, gearing towards the very popular containerized approach
today.

Furthermore, reinforcement learning (RL) is another appeal-
ing domain for exploring optimal auto-scaling policies. The
methods rely on an exploration and exploitation approach. The
idea is to get a reward or penalty based on the decision and
a policy will be designed by maximizing the rewards. The
method works very well in many dynamic systems. However,
the challenge is to calibrate a trade-off between exploration
and exploitation. With a strict exploitation approach the system
will be reluctant to try new polices. On the other hand, too
much exploration leads to longer time to set a policy. The pa-
per [12] discusses the marginal performance of the Q-learning
RL method for auto-scaling scenarios. Furthermore, papers
[13], [14] present advanced RL approaches for auto-scaling
scenarios. Our proposed approach based on bin-packing is not
limited by the incentive based strategies, yet it is still flexible
enough to adapt according to the dynamic requirements.

III. THE HARMONICIO STREAMING FRAMEWORK

One of the components of the HASTE platform is the
stream processing framework HarmonicIO (HIO), introduced
in [6]. HIO uses Docker containers as processing engines
(PEs) to process the streamed messages; these are designed
and provided by the client based on a template. A deployment
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Fig. 1: The HarmonicIO architecture. The system consists of
a master node, worker nodes and stream connectors, where
solid lines indicate communication and dotted lines P2P data
transfer. Image from [6, Fig. 1].

of the framework consists of a single master node, and several
worker nodes hosting PE containers.

To work with HIO, a user will first need to design their
desired data processing task as a Docker container image and
publish this to Docker Hub; examples and a template are avail-
able at our GitHub repository7. With this in place the user can
start querying a HIO server to host PEs based on this container
image and the stream data to process, using the HarmonicIO
Stream Connector, a Python client API. From here HIO takes
care of directing the data streams to the intended PE endpoint.
Figure 1 is an illustration of the architecture. A key feature is
smart P2P behaviour, where messages are forwarded directly
to available PEs for processing, falling back to a backlog queue
on the master node as needed.

One of the strengths of HIO lies in the throughput for larger
object sizes. Since one of the goals of the HASTE project
is to analyze microscopy images, the target object size is
much different to the typical workloads often consisting of
streaming text files or JSON objects. [7] compared HIO to
similar common streaming frameworks, namely Apache Spark
Streaming and Kafka, and found that HIO could achieve higher
throughput for relevant object sizes, under some configura-
tions.

In [15], several changes were made to HIO in order to
add support for dynamic workload scheduling and improve
resource management. The main contribution was to add the
possibility for the master node to autonomously decide where
to host containers and remove any user-to-worker communi-
cation, making way for an algorithm that could optimize this
decision. The outcome of the work led to the extension of HIO
proposed in this article which adds intelligent resource man-
agement based on bin-packing, presented briefly in Section V.

A. Architecture

HIO’s peer-to-peer (P2P) architecture allows messages to
be transferred directly from source nodes to workers for
processing, falling back to a queue at the master node if
processing capacity exceeds message ingress. Messages in this
queue are processed with higher priority than new messages.

HarmonicIO has the following overall architecture (see
Figure 1):

7https://github.com/HASTE-project/HarmonicPE

• Stream connector The stream connector acts as the client
to the HIO platform, handling communication with the
REST APIs of the other nodes, so that the user can
stream a message. Internally, it requests the address of
an available PE, so the message can be sent directly if
possible. A stream request message consists of both the
data to be processed, and the docker container and tag
that a PE needs to run to process the data.

• Master The master node of HIO is responsible for
maintaining the state of the system, tracking worker
nodes, and the availability of their containers, connects
stream requests to workers that are available and starting
containers, or Processing Engines (PEs) as per user
requests. It also maintains a backlog queue of messages,
if message influx exceeds available processing capacity.

• Worker The workers host PEs which contain the user’s
code to process data that is streamed to the PE via P2P
from the stream connectors. The workers nodes report to
the Master node, and can be seen as a pool or set of
available streaming endpoints.

IV. ONLINE BIN-PACKING

In [16] bin-packing algorithms are described as algorithms
aimed at solving the optimization problem of assigning a
sequence of items of fixed size into a number of bins using
as few of these as possible. Furthermore, [17] describes
online bin-packing as the case where each item in the input
sequence is assigned one by one without knowledge about
the following items, meaning that information about future
items is not contributing to the placement. [16] also mentions
the asymptotic performance ratio, denoted R, which indicates
the number of bins an algorithm needs as a factor of the
number of bins in the optimal solution. Denoting the optimal
number as O, online bin-packing algorithms will thus use
RO containers. Several studies [18]–[21] have analyzed the
performance of these algorithms, and generally they perform
well when comparing the cheap cost in time and memory to
the approximation results.

A. The First-Fit algorithm

Several online bin-packing algorithms were studied in [18].
In particular, they looked at a group of such algorithms that
they call the Any-Fit group. Relatively simple, they share a
common approach for finding the bins in which to put the
next item, and the best performance ratio in the group is
proven to be R = 1.7. The common approach is detailed
in Algorithm 1, where the input is a sequence of items,
L = (a1, a2, . . . , an), ai ∈ (0, 1]. The items are packed in
order and ai corresponds to the item size. The list of currently
active bins is denoted as B = (b1, b2, . . . , bm), and m is
the number of bins needed at the end of the algorithm. As
indicated, new bins are only generated when no currently
active bin can fit the next item.

Of particular interest is the First-Fit algorithm, with a ratio
of R = 1.7 as well as O(n log n)-time and O(n)-space
complexities, and is the algorithm that we based our resource
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management optimization upon. The search criterion in First-
Fit is to find the first (lowest index) available bin in the list
in which the current item fits.

for i := 1 to n do
begin

find available bin ba in B according to criterion
if ai fits in ba then

place ai in bin ba
else

allocate new bin bnew and add to B
place ai in bin bnew

end
end

end
Algorithm 1: General Any-Fit approach

V. FRAMEWORK ARCHITECTURE

In previous work [15], the Intelligent Resource Manager
(IRM) system was designed as an extension of HIO based
on the First-Fit bin-packing algorithm described above. Here,
an overview of the bin-packing implementation and of the
architecture of the extension components is presented.

A. Resource management with bin-packing

In order to improve the resource utilization, the PE con-
tainers are scheduled with the help of bin-packing. Modelling
PEs as bin items, workers as bins and the workload resource
usage as the item size, in theory the algorithm can provide
the optimal way to schedule the containers in order to keep
the number of workers needed down while not congesting
resources. Thus the IRM continuously performs a bin-packing
run on the currently waiting PEs.

Based on the bin-packing result, HIO can determine where
to host the containers and in addition whether more or
fewer worker nodes are needed for the current workload
autonomously. This way auto-scaling of worker nodes is
achieved. As for auto-scaling of the PE containers, the IRM
looks at the rate of change in the streaming message queue
length to evaluate whether HIO is consuming stream requests
at a high enough rate. If not, the IRM will queue more PEs
in order to drive down the waiting time for stream requests.
After a time of being idle, a PE will self-terminate gracefully
in order to free the resources.

In [15] the main metric for resource usage is the average
CPU usage, which is measured as a sliding time window
average. The average usage is directly used as the item size
for the bin-packing algorithm. Furthermore, in order to not
block the system when the workload pressure increases, a
small buffer of idle workers are kept ready to accept stream
requests. This buffer is logarithmically proportional to the
number of currently active workers, providing more headroom
for fluctuations when the workload is not as high.

B. IRM architecture

In Figure 2, the architecture of the IRM extension is
illustrated, showing the four main components of the system;
the container queue, container allocator, load predictor and
worker profiler. The following sections detail these compo-
nents further. As described in further detail in [15], particularly
in Section 4.3 and Table 1, there are many configurable
parameters that control the behaviour of the IRM extension,
which are briefly mentioned where relevant here.

Worker Profiler

Container
Image
Data 

Load Predictor

Container Queue

Container Queue

Container Allocator 

Bin Packing
Manager

Allocation Queue

S

Container Scaling

Fig. 2: Architecture overview of the IRM subcomponents.
In particular the communication is drawn with dashed lines,
showing the direction of data and communication. Figure from
[15, Fig. 2].

1) Container queue: Whenever a PE is to be created, it
must first enter the container queue, a FIFO queue of container
hosting requests. Each request contains the container image
name, a time-to-live (TTL) counter, any metrics related to that
image etc. The TTL counter is used in case the request is re-
queued following a failed hosting attempt.

While waiting in the queue, requests are periodically up-
dated with metric changes and finally consumed and processed
by the periodic bin-packing algorithm. The queue holds re-
quests both from auto-scaling decisions and manual hosting
requests from users.

2) Container allocator: The container allocator includes
the bin-packing manager, responsible for performing the cho-
sen bin-packing algorithm, and the allocation queue. As men-
tioned in Section V-A, in this model a worker VM represents a
bin and the container hosting requests represent items. Active
VMs indicate open bins, i.e. the VM is enabled as a host for
PEs, with a capacity of 1.0. The container requests have item
sizes in the range (0, 1], indicating the CPU usage of that PE
from 0− 100%.

The bin-packing manager performs a bin-packing run at a
configurable rate based on this representation, resulting in a
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mapping of where to host the queued PEs and how many
worker WMs are needed to host these. The destination worker
is attached to each container host request which is forwarded to
the allocation queue. As requests are consumed the allocator
attempts to start the PEs on the destination worker. In case
a PE could not be started, for example if the target worker
is a new VM still initializing, any information related to the
target worker is removed from the request and it is sent to the
container queue.

3) Worker profiler: To understand the resource utilization
characteristics, the worker profiler gathers runtime statistics
from the workloads and is designed in two parts; the first part
lies within the worker VMs, periodically measuring the current
CPU usage for each running PE. The average per container
image is calculated and sent to the master VM. The second
part in turn aggregates the information from all active workers
and keeps a moving average of the CPU utilization based on
the last N measurements, N being arbitrarily configurable.
Based on this information, the worker profiler provides an
idea of the CPU utilization for PE container images that have
been hosted on HIO previously. The average CPU is used
by the bin-packing manager as the item size and the updated
averages are propagated to container requests in the container
and allocation queues.

4) Load predictor: The load predictor is responsible for
tracking the pressure of the streaming requests to HIO.
Looking at the length of the message queue and its rate of
change (ROC), the load predictor can determine if the rate
of processing data streams is too slow and there is a need to
add more PEs. The ROC provides predictions for the need to
scale up, and scheduling PEs this way gives HIO time to set
up additional workers and reduces the congestion.

The decision of scaling up is based on various thresholds
of the message queue length and ROC. These thresholds are
configurable, and there are four cases, resulting in either a
large or small increase in PEs. In short, if the ROC is very large
or the queue is very long, this indicates that data streams are
not processed fast enough. Reading the queue metrics is done
periodically, and there is a timeout period after scheduling
more PEs before the load predictor can do this again.

VI. RESULTS AND DISCUSSION

Experiments on the IRM-extended HIO system has shown
promising results. As part of the thesis project [15], tests
based on synthetic workloads were performed to evaluate the
performance of the bin-packing implementation and the effect
on resource utilization in HIO. The main outcome of these
experiments are summarized in Section VI-A. Furthermore,
new experiments have been conducted for a real world image-
analysis use-case in collaboration with AstraZeneca. The re-
sults of these experiments are presented in Section VI-B.

A. IRM evaluation experiments on synthetic workloads

The IRM was tasked with profiling and scheduling work-
loads based on busying the CPU for specified usage levels

Fig. 3: The CPU usage from 0− 100% per worker over time
in 3D. Image reused from [15, Fig. 8].

Fig. 4: Scheduled CPU usage per worker over time from the
bin-packing manager. Plot data from [15, Fig. 9].

and durations, mimicking a scenario where the bin-packing
manager deals with items of various sizes and durations.

The main scenario that was experimented with included four
different workloads all targeting 100% CPU utilization for
various amounts of time. These were streamed in regular small
batches of jobs and two peaks of large batches to introduce
different levels of intensity in pressure to the IRM. Some of the
results from these experiments are shown and briefly discussed
here.

1) Efficient Resource Utilization: The results of the experi-
ments indicate that the resource utilization may indeed benefit
from the bin-packing approach. In Figure 3, the CPU usage
per worker over time is shown in 3D-plots, giving an overview
of the distribution of the jobs over the workers throughout
the experiment. It is clear the workload is focused toward the
lower index workers, leaving windows of time during which
the higher index bins could be deactivated and the resources
freed.

Figure 4 shows the CPU utilization over time per worker
as a 2D-plot, giving a better view of the utilization levels. In
general, the utilization of the workers peak at between 90 −
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Fig. 5: Error in percentage points between CPU usage sched-
uled by the bin-packing manager vs measured CPU usage over
time per worker. Plot data from [15, Fig. 10].

100% CPU usage. At this point, a worker can not fit further
jobs and any following workloads are scheduled to a higher
index worker, following the expected behaviour of the bin-
packing algorithm.

2) Algorithm’s Accuracy and Performance: Figure 5 shows
a plot of the error between the CPU usage as scheduled by the
bin-packing manager and the measured CPU usage for each
worker over time. The plot has a high amount of noise which
is mainly due to the delay in starting and stopping containers
compared to when they are scheduled to start and stop. This
is discussed further in [15]. Another contributing factor is
the irregularity in how often workloads are streamed, likely
leading to PEs often starting and finishing.

With the error plot in mind, it is hard to judge the real
CPU utilization efficiency that is achieved with the IRM
extension for this experiment. However, the test scenario was
also designed to stream images at varying frequency, which
impacts the ability of the framework to keep a constant high
efficiency.

Nonetheless, the results indicate overall that bin-packing
provides an appealing approach that is able to efficiently
schedule containers in cloud computing contexts. Furthermore,
the impact of the noisy error is hard to determine in a scenario
with synthetic workloads and in heterogeneous distributed
settings. More data from scenarios based on real use cases may
help to better understand and further improve the framework.

B. Image streams from quantitative microscopy

The data provided by AstraZeneca consists of a set of
microscopy images (2 fields of view per well obtained using
a Yokogawa CV7000 robotic confocal microscope fitted with
a 20X Olympus air objective). Huh-7 cells (a hepatocellular
lineage seeded at 6 different densities across a Perkin Elmer
CellCarrier 384 well plate one day prior to imaging) were
stained with nuclear dye prior to imaging (Hoechst 33342,
ThermoFisher), and a CellProfiler analysis pipeline (Windows
release 3.1.9) was created to count the number of nuclei and
measure their areas. Due to variations in the images they take
varying amounts of time to process, and the dataset includes a
total of 767 images. Figure 6 shows an image from the dataset.

Fig. 6: Shown is a representative image of Huh7 liver car-
cinoma cells seeded at a moderate density, stained with the
cell-permeable DNA binding dye Hoechst 33342, and imaged
using a confocal microscope. The dye binds primarily to the
DNA in the cell nucleus resulting in a fluorescence image
that shows only the cell nuclei and not the cytoplasm or cell
membranes. The scale bar shows 100µm.

A central future goal is to develop intelligent workflows that
allows for dynamic and online re-configuration and data priori-
tization for large-scale and long-running imaging experiments.
For that, high-throughput stream analysis of images will be
necessary.

This CellProfiler pipeline was adapted to run within con-
tainers designed to be hosted in both HarmonicIO and Apache
Spark Streaming environments. The next sections describe the
experiments and results of running the image analysis in the
two systems.

1) Apache Spark Streaming: For comparison with the
system discussed, an Apache Spark Streaming application
was developed and benchmarked for an equivalent image
processing task. With the Spark File Streaming source, for
each new image, CellProfiler is invoked as an external process
to analyze the image, using a pre-configured image processing
pipeline.

The use case is perhaps a little ill-suited to Spark: for
one, the file names need to be passed to CellProfiler, but
they are not easily available from the Spark APIs via
the HDFS driver. Since our application is atypical, some
work was needed to achieve satisfactory auto-scaling be-
haviour. There is support for dynamic allocation (that is,
scaling the Spark application within the cluster) specifi-
cally for streaming, since Spark 2.0.0, (configured with the
settings spark.streaming.dynamicAllocation.*),
taking into consideration the batch processing and ad-
dressing other issues (https://issues.apache.org/jira/browse/
SPARK-12133). However, our initial attempts to achieve sat-
isfactory auto-scaling with this approach were problematic,
because it begins to scale up only when a batch is completed.
So, when the system is initially idle (with a single executor),
the initial set of images for a 5 second batch interval (50 or
more), each with having an execution time of 10-20 seconds,
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Fig. 7: Spark executor cores vs. actual CPU usage. Red circles
show where the Spark application was scaled down.

meant that the first batch takes minutes to execute, leaving
the other available cores in the cluster unused. Because the
images are processed by invoking CellProfiler as an external
process, it is the minimum unit of parallelism.

For this reason, we resorted to using the older
dynamic allocation functionality, with an spark
.dynamicAllocation.executorIdleTimeout
of 20 seconds. This begins scaling during the first batch. We
also raised the spark.streaming.concurrentJobs
setting from 1 to 3, so that other cores could begin processing
the next batch while waiting for the ‘tail’ of images within
the job to each finish their 10-20 seconds of processing. This
gave satisfactory auto-scaling performance.

The application was written in Scala, and is available online
(including all the scaling settings)8. The source directory
was mounted as an NFS share on all the machines in the
Spark cluster, because the image sizes (order MB) are too
small to warrant the overhead of HDFS. CellProfiler and its
dependencies were installed on all the machines in the Spark
cluster.

Spark Version 2.3.0 was used. The cluster was deployed
to SNIC, a cloud computing service for Swedish academia.
The cluster consisted of 1xSSC.xlarge (for the spark master),
5xSSC.xlarge (for the workers), and 1xSSC.small for the
virtual machine hosting the images. For the benchmarking, the
elapsed system CPU usage on all the workers was polled with
top (we take the sum of user and kernel CPU time), and the
number of executor cores was polled via the Spark REST API.
The clocks on all machines were initially synchronised with
ntpdate. By combining the log files, Figure 7 was generated
showing the real CPU used (shown number of cores) and the
total cluster executor cores reported by the REST API.

A number of phenomenon are visible in Figure 7. We
clearly see the executor cores scale up and down for the
batch processing. The system scales to use all the available
40 worker cores in the cluster. If we look closely, we can see
that the CPU usage leads the available cores by a few seconds
when scaling up, as the executors get started, which is to be

8github.com/HASTE-project/bin-packing-paper/blob/master/spark/spark-
scala-cellprofiler/src/main/scala/CellProfilerStreaming.scala

expected.
For unknown reasons, the system sat idle with 2 executors

for some time. Secondly, despite increasing the number of
concurrent jobs, we can clearly see each batch in the actual
CPU usage, with idle gaps in between. In some cases, these
gaps are sufficiently long that the system scales down (shown
with red circles). It is unclear why this is so, as only minimal
data was collected back to the client application. The time
could have been spent reading the images from disk. Profiling
of the network usage would confirm this.

2) HarmonicIO with IRM: For testing the image analysis
pipeline in HIO the HIO stream connector was used to stream
the entire collection of images as a single batch. For each
image, CellProfiler is invoked with the single image located
in a folder used as input.

The setup was similar to the Spark experiment. The
VMs for HIO were deployed on the SNIC science cloud
[22], with one master node (SSC.xlarge), five worker nodes
(SSC.xlarge) and one client (SSC.large). The IRM configura-
tion for HIO uses the same default values presented in [15],
with the additional worker parameters report_interval
and container_idle_timeout both at 1 second.

In total, 10 runs of the experiment scenario were conducted,
during which time data was gathered from the HIO system. For
each run, the streaming order of the images was randomized.
HIO was started fresh for the first run and remained running
for all subsequent runs. This allows us to evaluate the process
of profiling the workloads. As expected, the initial run per-
formed slightly worse than subsequent runs. This is because
the initial guess for the new workload gets adjusted as the IRM
gets a better profile of the CPU usage of the workload. From
the second run and onward, the results differ only marginally,
mainly due to the randomized streaming order. All figures
represent the 10th and final run unless otherwise noted.

Fig. 8: Bin-packing scheduled CPU usage per worker over
time.

Starting with the CPU utilization, Figure 8 illustrates how
the bin-packing manager scheduled the CPU usage across the
workers throughout the run. As visible in the plot, the workers
are scheduled to use nearly 100% CPU usage before the auto-
scaling drives workloads to the next worker. The next plot in
Figure 9 shows the error between the scheduled CPU usage as
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Fig. 9: Error between perceived CPU and measured CPU usage
in percentage points.

perceived by the bin-packing manager and the measured CPU
usage per worker.

If we compare the plots in Figure 8 and Figure 9, we can see
that the bumps in the error for each worker coincide with the
periods during which the bin-packing manager increases the
number of PEs on that worker. Building on the hypothesis
from the errors in the synthetic workload tests, this is in
line with the expectations. Since the PEs will take a few
moments to start processing incoming data after having been
scheduled, there will be a difference between scheduled CPU
and measured CPU usage. After this period the error settles
close to 0, indicating that the scheduled workloads are quite
accurate and the CPU utilization is close to ideal in terms of
the bin-packing scheduling. The sudden large decrease in the
error is the inverse, where the containers start shutting down
from being idle in rapid succession.

Thus, we argue that despite the noise in the error plot
due to startup and shutdown time of containers, the bin-
packing algorithm is evidently efficient in the scheduling of
CPU resources. Basing the IRM on bin-packing we manage
to schedule the resources close to 100% utilization levels.

The number of active workers as opposed to the target
number and the ideal number of bins is plotted in Figure 10.
This plot illustrates that the IRM would have scheduled more
workers to handle the workload if they were available. In
order to make a fair comparison of the efficient utilization
of available resources with the Spark streaming framework,
we have restricted both of the frameworks to 5 workers.
The periodic attempts to increase further are due to the IRM
attempting to scale up, scheduling more PEs than can fit on
the available 5 workers. These attempts will fail and the IRM
constantly tries again to scale up until the queued images
are processed. The plot in Figure 10 illustrates the efficient
utilization of the available resources and at the same time
IRM's approach to actively look for more resources if possible.

An interesting observation is that based on the timestamps
(x-axis) available in Figure 7 and Figure 8, it is evident that
HIO outperforms Spark in terms of the overall processing time
for the workload. The execution time of the entire batch of
images is nearly halved, however as noted the images could
not be sent as a single batch in the Spark experiment. This

Fig. 10: Number of target and current workers, and number
of active bins, over time.

reinforces that HarmonicIO's strategy based on online bin-
packing seems well suited for stream processing environments,
and that the framework is better equipped for this kind of
application.

It is also interesting to note that judging by the plots, the
performance of the IRM has been much better during the
experiments with the real usecase compared to the experiments
with synthetic workloads discussed in Section VI-A. The main
difference between the two cases was that all the images were
streamed in a singular large batch as opposed to periodic small
batches. Thus HIO was allowed to really push the CPU usage
to it’s intended level with constant processing.

VII. CONCLUSION AND FUTURE DIRECTIONS

The efficient management of resource utilization in stream-
ing frameworks is a non-trivial task. The current streaming
frameworks already have multiple parameters to tune to pro-
vide reliable processing of large datasets, and efficient resource
utilization further adds to the complexity of the frameworks. It
is nonetheless an important problem and must be addressed.
More effort is needed both from industry and academia to
explore methods of resource utilization optimization that are
simple, effective and capable of handling unexpected scenarios
with minimal underlying assumptions.

The presented approach for efficient resource utilization
based on online bin-packing fulfills these requirements in this
setting. Our results illustrate efficient scheduling of computing
resources based on two very different use cases, where in both
cases the framework has limited a priori knowledge of the
workload. The presented error plots highlights that despite
the noise created by frequently starting and/or stopping the
stream processing engines and varying the workload types,
HarmonicIO with the IRM can handle this and offers a stable
and efficient processing framework. The potential is especially
visible in the real use-case experiment, during which the
images are streamed at a high frequency allowing the resources
to be used consecutively.

As mentioned earlier, HarmonicIO is designed to address
the needs for processing large datasets based on relatively large
individual objects. It is a specialized streaming framework that
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is well suited for scientific workflows. The presented solution
based on online bin-packing fits well with HarmonicIO and
improves the framework to an extent that allows us to compare
the framework with the production-grade Spark streaming
framework with the recent auto-scaling feature.

In the future, we would like further extend our approach
with multi-dimensional online bin-packing. The motivation for
this is to be able to profile and schedule workloads based on
more resources than only CPU, such as RAM, network usage,
or even variations of CPU metrics like average, maximum etc.
This would allow us to handle more challenging use cases
other than the scientific workflows covered so far.
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