
Bridging BAD Islands:
Declarative Data Sharing at Scale

Xikui Wang, Michael J. Carey
Donald Bren School of Information and Computer Sciences

University of California Irvine
Irvine, United States

{xikuiw, mjcarey}@ics.uci.edu

Vassilis J. Tsotras
Department of Computer Science and Engineering

University of California Riverside
Riverside, United States

tsotras@cs.ucr.edu

Abstract—In many Big Data applications today, information
needs to be actively shared between systems managed by different
organizations. To enable sharing Big Data at scale, developers
would have to create dedicated server programs and glue together
multiple Big Data systems for scalability. Developing and manag-
ing such glued data sharing services requires a significant amount
of work from developers. In our prior work, we developed a Big
Active Data (BAD) system for enabling Big Data subscriptions
and analytics with millions of subscribers. Based on that, we
introduce a new mechanism for enabling the sharing of Big
Data at scale declaratively so that developers can easily create
and provide data sharing services using declarative statements
and can benefit from an underlying scalable infrastructure. We
show our implementation on top of the BAD system, explain the
data sharing data flow among multiple systems, and present a
prototype system with experimental results.

Index Terms—data warehouses, database systems, distributed
information systems

I. INTRODUCTION

Advances in information technology have created large
collections of data [1]. Such large volumes of data - Big Data
- also come with big challenges. In order to transmit, process,
and persist Big Data, researchers and experts from academia
and industry have developed a plethora of systems [2]–[5].
However, most of them are passive in nature - passively
answering users’ requests to process and return data rather
than actively processing and delivering data of interest to
users. In many applications, users not only want to analyze
data, but also to subscribe to and actively receive data of
interest. Their interests may include the data’s content as well
as its relationships to other data. For example, in-field officers
may want to receive nearby threatening tweets whenever they
are posted. There can be millions of users having similar
requests. We refer to the enabling of Big Data subscriptions
and analytics as Big Active Data (BAD). Traditional pub/sub
systems [6] often lack the capability of data processing and
handling complex subscription requests that involve data’s re-
lationships (such as send me tweets near my current location).
More recent stream processing engines [7], [8] usually don’t
persist data for historical data analytics (such as show me the
average threatening rating of tweets in the past five months

grouped by their location). In order to accommodate BAD
challenges, we have created a BAD system that supports Big
Data subscriptions and analytics at scale [9]–[13].

In a big BAD world, the data to be analyzed and delivered
often needs to be processed and enriched with additional
information so that interested users can obtain more insights
from the data. Such additional information may be managed
by different organizations. Developers often need to share
data between different systems for supporting BAD appli-
cations (e.g., threatening tweets detected at the Department
of Homeland Security need to be shared with local police
departments). Data sharing can be difficult, besides the ethical
and legal issues, because of the challenges in management,
interoperability, security, and infrastructure [14]. Researchers
from academia have developed projects that unify institutional
repositories from different organizations for sharing research
datasets [15], [16]. Companies have also created platforms
based on Big Data projects to improve business efficiency and
consolidate resources for better services [17]. Nevertheless,
providing efficient, reliable, and scalable data sharing services
require dedicated infrastructures and collaborative efforts from
developers and organizations. In this work, we focus on
enabling the active sharing of Big Data declaratively in a
BAD world. In particular, we characterize a BAD world as
a group of BAD islands, where each organization runs an
independent BAD system as an island. We discuss how to
“bridge” different BAD islands using scalable data sharing
services without additional programming from developers.

II. BIG ACTIVE DATA IN A NUTSHELL

Our BAD system has been built as an extension of Apache
AsterixDB, a Big Data Management System (BDMS) that
provides distributed data management for large-scale, semi-
structured data [18]. The BAD system [10], [13] can enable
millions of users to subscribe to data of interest and receive
updates continuously, and it also supports Big Data analytics
with a declarative language, SQL++ (a SQL-inspired query
language for semi-structured data) [19]. An overview of the
BAD system is shown in Figure 1. Due to space limits, here we
focus on two key components: Data Feeds and Data Channels.
For more details about our project we refer to [9]–[13].978-1-7281-6251-5/20/$31.00 ©2020 IEEE

ar
X

iv
:2

10
1.

01
85

2v
1

 [
cs

.D
B

]
 6

 J
an

 2
02

1

Developers

Subscribers Analysts

Incoming
Data

Additional
Information

A BAD System

Persistent Storage

Data Channels
Analytical

Engine
Data

Feeds

Broker Network

BAD Applications

Fig. 1. An overview of the BAD system

A. Data Feeds

Data feeds help the BAD system to ingest rapidly incoming
data from various external data sources in different formats.
Users can create a data feed using SQL++ statements. As
an example, in Figure 2, we define a data type Tweet to
describe the incoming data’s minimum required attributes and
an active dataset Tweets to persist the incoming data. Active
datasets, different from normal datasets, enable continuous
query semantics [20] in channels (discussed next) [10], [12].
Here we create a TweetFeed using a socket adapter and specify
the incoming data’s format as JSON. This allows the BAD
system to use a socket server to intake incoming JSON data.
The TweetFeed is connected to the dataset Tweets so that the
ingested data can be persisted in storage (partitioned across
all nodes of a cluster) directly for later use. There are two
types of data feeds: static feeds, which maximize ingestion
throughput, and dynamic feeds, which allow users to enrich
incoming data using user-defined functions (UDFs) [21]–[24].
CREATE TYPE Tweet AS { tid: bigint, uid: bigint, text: string };
CREATE ACTIVE DATASET Tweets(Tweet) PRIMARY KEY tid;
CREATE FEED TweetFeed WITH {
"type-name" : "TweetType",
"adapter-name": "socket_adapter",
"format" : "JSON",
"sockets": "FEED_HOST:FEED_PORT",
"address-type": "IP",
"dynamic": false };

CONNECT FEED TweetFeed TO DATASET Tweets;
START FEED TweetFeed;

Fig. 2. A sample data feed connected to an active dataset

B. Data Channels

Data channels allow developers to activate parameterized
queries as services for millions of users to subscribe to and
continuously receive their data of interest. When creating a
channel, developers can construct a channel query to describe
the data of interest for subscribers and specify a channel
period to indicate how often should the channel query be
evaluated for subscribed users. All subscriptions of a channel
are evaluated together to allow the system to exploit shared
computations among them (e.g., many subscribers could be
interested in tweets from Orange County), and increasing the
channel period could lead to a bigger batch size and thus allow
computing complex data of interest for more subscribers at
scale. For example, we can create a NearbyThreateningTweets
channel, as shown in Figure 3, to allow in-field officers to
subscribe to nearby threatening tweets. In the channel query,

we use the is new function to look for new threatening
tweets near a subscribed officer’s location and return those
tweets to subscribers every 10 seconds.1 The active dataset
Tweets provides continuous query semantics to make sure
every qualified new tweet will be delivered to subscribed
officers. The threatening tweets for subscribers are sent to
brokers registered as HTTP endpoints in the BAD system.
A user can subscribe to a data channel on a broker and thus
receive updates from it. As shown in Figure 4, we can register
a broker and make two separate subscriptions (on behalf of
in-field officers) on this broker so that the threatening tweets
near these two in-field officers are sent to this broker and
then delivered to them. Data channels provide two modes for
delivering data: push and pull. In the push mode, the data of
interest is pushed to brokers directly. In the pull mode, a broker
having new data of interest for its subscribers will receive a
notification from the channel, and then the broker can pull that
data from BAD storage later.
// Similar to TweetFeed and Tweets, we have a LocationFeed connected
// to an OfficerLocations dataset to receive and store the live
// location updates from in-field officers
// CREATE TYPE OfficerLocation AS { oid: int, location: point };
// CREATE ACTIVE DATASET OfficerLocations(OfficerLocation)
// PRIMARY KEY oid;

CREATE CONTINUOUS CHANNEL NearbyThreateningTweets(oid)
PERIOD duration("PT10S") {
SELECT t FROM OfficerLocations o, Tweets t
WHERE spatial_distance(t.location, o.location) < 5

AND o.oid = oid AND t.threatening_rating > 0 AND is_new(t) };

Fig. 3. A sample continuous channel for nearby hateful tweets

CREATE BROKER BROKER_A AT "http://BROKER_A_HOST:BROKER_A_PORT/API";
SUBSCRIBE TO NearbyThreateningTweets("0907") ON BROKER_A;
SUBSCRIBE TO NearbyThreateningTweets("1226") ON BROKER_A;

Fig. 4. Registering a broker and making subscriptions

III. BAD ISLANDS

In the following sections, we discuss how we can connect
BAD systems managed by different organizations (islands) in
a BAD world together to enable data sharing among them. We
use a three-island example with the following organizations for
illustration: the Department of Homeland Security, the Orange
County Sheriff’s Department, and the University of California-
Irvine. Each organization hosts an independent BAD system
and serves its own BAD users with localized information.

A. BAD Island 1: Department of Homeland Security

The Department of Homeland Security (DHS) is a federal
agency responsible for ensuring public security. In our ex-
ample, DHS has access to all tweets posted in the United
States. These tweets cannot be shared with other organizations
directly due to licensing and privacy concerns, except for the
tweets that are related to potential threats. The BAD system at
DHS needs to provide data analytics on collected tweets and
serve tweets to its agents through data channels.

Since raw tweets from Twitter may not contain all necessary
information, DHS might need to enrich them with other

1One could also apply the is new function on OfficerLocations to look for
nearby threatening tweets only for officers actively updating their locations.
Interested readers may refer to [13] for more continuous channel examples.

relevant data. As an example, DHS could collect weapon
registration information for some sensitive twitter account
holders and attach that to tweets to provide important addi-
tional information for interested subscribers. In addition, DHS
could also utilize Machine Learning algorithms to estimate
the threatening rating of the tweets’ text and use that for later
analysis. An overview of the DHS island is shown in Figure 5.

Weapon Registration
Information

Enriched Threatening Tweets

Processing

Data AnalyticsTweets

Threatening
Tweets

Threatening Rating
Detection
Algorithm

Fig. 5. An overview of the DHS Island

B. BAD Island 2: Orange County Sheriff’s Department

The Orange County Sheriff’s Department (OCSD) is the
local law enforcement agency that ensures safety and responds
to potential crimes in Orange County, CA. In our use case,
OCSD wants to monitor major local events and ensure the
safety of the event and its participants. In-field officers who
patrol around the county, continuously report their locations
back to OCSD so that OCSD can send them instructions based
on their locations (e.g., when an emergency happens, send
nearby officers for help).

To prevent potential threats to local events, OCSD would
like to obtain the threatening tweets posted in Orange County.
When a local threatening tweet is detected, OCSD can find
important events close to the tweet and then notify the nearby
in-field officers about the event and the tweet so they can
further investigate it. Additionally, OCSD wants to support
data analytics on data stored in the system. An overview of
the OCSD island is shown in Figure 6.

Event
Information

Threatening Events

Processing

Threatening
Tweets

In-field Officers’
Locations

Data Analytics

Location
Updates

Event
Notifications

In-field Officers

Fig. 6. An overview of the OCSD island

C. BAD Island 3: University of California-Irvine

The University of California-Irvine (UCI) is a public univer-
sity located in Irvine, a city in Orange County. The university
often hosts various activities and events in different buildings
on campus. To ensure students’ and visitors’ safety, the uni-
versity has its own university police officers placed at various
security stations on campus, and students/visitors can seek help
from when an emergency happens. The buildings on campus
have notice boards for showing important notifications and
alerts. The university also has an alerting service - zotALERT

- which delivers important messages to people (subscribers)
on-campus through text messages and emails.

UCI would like to acquire the threatening tweets posted near
the UCI campus and notify people in the buildings around
those tweets to raise attention. An alert could include the
information about nearby security stations for the tweet so that
people in an emergency situation could quickly seek help. Data
analytics on threatening tweets and other data in the system
for school officials are also to be supported. An overview of
the UCI island is shown in Figure 7.

On-campus
Building Information

On-campus Alerts

Processing

Data Analytics
Threatening

Tweets
On-campus

Security Information

Alert
Notifications

School
Officials
Building
Notice Board

zotALERT

Fig. 7. An overview of the UCI island

IV. ISLAND HOPPING: CONNECTING BAD ISLANDS

In order to support the BAD services at OCSD and UCI
described in Section III, we need to enable the sharing of
threatening tweets detected at DHS with OCSD and UCI.
These tweets can be combined with local information at
Orange County and UCI, respectively, and then be used
for creating localized notifications for subscribers on each
island. Below we consider three options for sharing threatening
tweets among these islands, namely: (1) combining all islands
together into one (a BAD Continent), (2) creating direct
connections between the individual islands as needed (BAD
Ferries) and (3) utilizing the channel idea to allow islands to
subscribe to what they need from one another (BAD Bridges).
Below we discuss the three options in detail.

A. Option 1: A BAD Continent

Instead of sharing threatening tweets between multiple BAD
islands, one could create a big BAD island, namely a BAD
continent, that holds not only the data at DHS but also the
local data from OCSD and UCI, as shown in Figure 8. In this
case, all services at OCSD and UCI could be integrated into
this BAD continent, and all subscribers then would subscribe
to this BAD continent directly. All information is now in the
same system. Developers from different organizations could
easily create BAD services without having to share data.

In principle, a one-for-all BAD continent could be easy to
build, and it avoids the complexity of connecting different
BAD islands. Although the resulting BAD system could be
scaled to support the volume of data and users from multiple
organizations, such global integration would introduce signifi-
cant management and administration overheads, especially for
the service provider (DHS in this case). For the three-island
example, not only would all local information (including local
events, campus building layouts, etc.) need to be stored in
the BAD continent, but all updates (location updates, event
updates, etc.) would need to be forwarded to the system.
Managing all local data at DHS could be very complex

Weapon Registration
Information

Threatening Rating
Detection
Algorithm

Event
Information

In-field Officers’
Locations

On-campus
Building Info.

On-campus
Security Info.

School
Officials

Building
Notice Board zotALERT

Location
Updates

Event
Notifications

In-field
Officers

…

Processing

Tweets

…
…

Fig. 8. An illustration of a BAD continent

and would require sophisticated access control. When more
organizations join, such a database would have to manage all
kinds of additional local information while receiving updates
from multiple parties; this system would quickly become
impractical to maintain by one organization. Additionally, such
global information sharing may not be permitted (by law)
between different agencies in all cases.

B. Option 2: BAD Ferries

A different way of supporting the required BAD services
at OCSD and UCI, without combining everything together,
would be to programmatically send the requested data from
DHS to OCSD and UCI, as shown in Figure 9. DHS could
send the threatening tweets detected in Orange County and
near UCI campus to OCSD and UCI, respectively, and OCSD
BAD and UCI BAD could then combine those tweets with
their local information to produce localized notifications for
their subscribers.

BAD@DHS

BAD@UCI

BAD@OCSD

Dedicated Server
Programs with Glue

Dedicated
Client Program

Dedicated
Client Program

Fig. 9. An illustration of BAD ferries

In order to share the data cleanly and efficiently, DHS
would need to create a dedicated server program that allows
other organizations to access the shared data in DHS. Also,
OCSD and UCI would need to develop corresponding client
programs connected to the DHS server program and obtain
shared data. Data exchanges between the server and clients
could be frequent, and there could be many more clients
who would like to access the shared data. Thus, the server
program would need to be efficient, reliable, and scalable for
handling a large number of clients and a large volume of data.
Implementing and extending the server and client programs
would require significant efforts from these organizations.

C. Option 3: BAD Bridges

An important observation is that this data exchange pattern,
where we have an island serving data and multiple islands
constantly requesting data of interest, resonates well with the
original BAD user model, where subscribers subscribe to data
and constantly receive updates. Inspired by this, we could
characterize a BAD island as being a BAD subscriber of
another island and connect these islands using BAD bridges
built on data channels and data feeds to share data at scale, as
shown in Figure 10. One might characterize this architecture
as: “One man’s channel is another man’s feed.”

BAD@DHS

BAD@UCI

BAD@OCSD

threateningTweetsAt Channel localThreateningTweet Feed

localThreateningTweet Feed

Threatening Tweet @ OCSD

Threatening Tweet @ UCI

Fig. 10. An illustration of BAD bridges

Following our example, we could first create a data channel
on DHS BAD, which serves threatening tweets by areas,
namely via a threateningTweetsAt channel, and other islands
interested in local threatening tweets from an area could then
subscribe to this channel with the area name of interest. OCSD
BAD, as a subscriber, can subscribe to this channel with the
parameter “OC”, and UCI BAD, as another subscriber, can
also subscribe to this channel with the parameter “UCI”. We
could use a push channel to push threatening tweets to OCSD
and UCI BAD so they can receive local threatening tweets
from the channel at DHS directly, process them with local
information, and then produce localized notifications to their
own subscribers.

On OCSD and UCI BAD, we could utilize data feeds to
receive threatening tweets detected by the threateningTweetsAt
channel on DHS BAD. Taking OCSD BAD as an example,
we could create an HTTP feed and connect it to a local
OCSD dataset for persisting the threatening tweets. We could
register the feed’s HTTP address as a broker in DHS BAD
and then subscribe to the threateningTweetsAt channel with
the parameter “OC”. With this feed, broker, and subscription,
threatening tweets posted at Orange County and detected by
DHS would then be sent to the feed’s endpoint from the
threateningTweetsAt channel. Similarly, we could repeat this
process for other BAD systems to obtain threatening tweets
from their areas of interest. Since the BAD system is scalable
and can support a large number of subscribers with a large
volume of data, bridging BAD systems using data channels
and feeds can be scaled out to support many more islands
connecting to DHS. This allows developers to declaratively
create data sharing services, without additional programming
and gluing together multiple systems, as we will see next.

V. BUILDING BAD BRIDGES

Given the advantages of the BAD Bridges approach, we
now introduce BAD brokers to further simplify and enhance
data exchanges between BAD islands and BAD feeds and thus
help users create bridges and manage their life-cycles.

A. BAD Brokers

The broker sub-system in BAD manages the communication
between the BAD system and its subscribers. A broker regis-
ters itself as an HTTP endpoint in the BAD system. Notifica-
tions containing data of interest produced by the BAD back-
end are delivered to this broker endpoint and then disseminated
to subscribers who subscribed on this broker. In order to
allow general brokers to parse the incoming notifications, data
channels produce notifications as JSON objects, and more
complex data types supported in BAD in the AsterixDB Data
Model (ADM) (such as datetimes, points, etc.) are encoded
as strings, arrays, and other JSON data types. Since BAD
islands are “brokers” that can also directly process ADM data,
we can instead deliver their notifications as ADM records to
maintain the richer data type information and avoid additional
data encoding and decoding overheads.

To allow brokers to process ADM data and to become
extensible for future use cases, we introduce a new notion
of BAD brokers and a simple new syntax for creating brokers
in BAD, as shown in Figure 11. Users can add an optional
WITH statement for providing additional information about
the broker. While we only support “broker-type” for now, this
can be further extended to support other features in the future.
When there is no WITH statement or when the broker-type is
set to “general”, we create a general broker that takes JSON
data. When the broker-type is set to “BAD”, we create a
BAD broker that takes ADM records. In general, a channel
can have subscriptions from both types of brokers. In that
case, channel executions will send JSON formatted data to the
general brokers and ADM formatted data to the BAD brokers.

CREATE BROKER BROKER_NAME AT "http://BROKER_HOST:PORT_NUM" WITH
{ "broker-type" : "BAD" };

Fig. 11. Creating a BAD broker

B. BAD Feeds

Bridging from a BAD island A to another BAD island B
and sharing data to island B requires several steps: create a
data feed on island B; register the feed with island A as a BAD
broker; and create a subscription on island A on the created
broker. Also, removing the bridge between island A and island
B requires unsubscribing from the channel and removing the
BAD broker on island A. In order to simplify the process of
bridging BAD islands and help users manage the life-cycles
of bridges, we also introduce the notion of BAD feeds.

One can create a BAD feed on island B and connect it to a
channel on island A using the statement in Figure 12. Unlike
regular data feeds, users would need to specify several addi-
tional configuration entries for connecting to a data channel
on the other BAD island. In particular, the “bad-host”, “bad-
channel”, and “bad-dataverse” configuration parameters help

the system locate the data channel on the other island, while
“bad-channel-parameters” contains subscription parameters as
a quote-escaped string for subscribing to the channel. When
a channel takes multiple parameters, we use commas to
separate them. If a data feed wants to subscribe to a channel
with several different parameters (e.g., OCSD BAD wants to
subscribe to threatening tweets from both Orange County and
UCI) we can concatenate them using semicolons.

CREATE FEED A_SAMPLE_BAD_FEED_ON_ISLAND_B WITH {
"adapter-name" : "http_adapter",
"address-type" : "IP",
"format" : "ADM",
"addresses" : "ISLAND_B_FEED_HOST:ISLAND_B_FEED_PORT",
"type-name" : "INCOMING_DATA_TYPE",
"bad-host" : "ISLAND_A_HOST",
"bad-channel" : "ISLAND_A_CHANNEL_NAME",
"bad-channel-parameters": "PARAM_1-1,PARAM_1-2;PARAM2-1,PARAM_2-2",
"bad-dataverse": "ISLAND_A_CHANNEL_DATAVERSE" };

Fig. 12. Creating a BAD feed on island B

The bridge’s information is persisted in the BAD system’s
metadata with a feed’s configuration when the feed is created.
When a user starts a BAD feed on a local BAD system (island
B), it registers a broker on the specified remote BAD system
(island A) using island B’s feed endpoint and subscribes to
island A’s channel using the provided parameters automati-
cally. When a user stops the BAD feed, island B unsubscribes
from island A’s channel and then removes the broker from
island A. We tie the start and stop events of a data feed on the
local BAD system (island B) to the subscribe and unsubscribe
actions on the remote BAD system (island A), so when the
feed is not running, the remote BAD system will not need to
compute and deliver data to this BAD feed.

VI. A PROTOTYPE OF BAD ISLANDS

We now describe a complete prototype of BAD islands that
supports the use cases described in Section III. We show how
to create and connect three BAD islands (the BAD trinity)
using declarative statements and show how data flows between
these different islands. The BAD system organizes data and
other entities under dataverses (similar to databases in an
RDBMS). To differentiate organizations, we use different data-
verses for different organizations (using the USE statement).

A. BAD@DHS

DHS BAD intakes tweets from external data sources. We
can create a TweetFeed like the one in Figure 2 and configure
it as dynamic to enrich the incoming tweets with additional
information needed using UDFs. We first enrich an incoming
tweet with the tweet’s user’s weapon registration records (if
any). To hold the weapon registration records of sensitive tweet
users, we create a data type WeaponRegistration and a dataset
WeaponRegistrations, as shown in Figure 13. (A user may have
multiple weapons.)

USE dhs;
CREATE TYPE WeaponRegistration AS
{ wrid: uuid, uid: bigint, weapon_name: string };

CREATE DATASET WeaponRegistrations(WeaponRegistration)
PRIMARY KEY wrid AUTOGENERATED;

Fig. 13. Data type and dataset definition for weapon registration information

Second, we create a Java UDF to detect the threatening
rating of a tweet’s text using a list of threatening words, as
shown in Figure 14. In this UDF, we load an external list of
threatening words and we use the number of threatening words
in the given text as its threatening rating.
...
@Override
public void evaluate(IFunctionHelper functionHelper) throws Exception {

JString input = (JString) functionHelper.getArgument(0);
JInt output = (JInt) functionHelper.getResultObject();
String tweetText = input.getValue();
int threateningRating = 0;
String[] words = tweetText.split(" ");
for (String word : words) {

// The threateningWordList is initialized with a file when function starts
if (threateningWordList.contains(word.replaceAll("[,.]", ""))) {

threateningRating++;
}

}
output.setValue(threateningRating);
functionHelper.setResult(output);

}
...

Fig. 14. A Java UDF for determining the threatening rating

To add the desired set of enrichments to incoming tweets,
we can create a SQL++ UDF EnrichTweet and attach it to the
TweetFeed when connecting to the Tweets dataset, as shown
in Figure 15. In this UDF, we also transform the epoch time
of a tweet’s “created at” attribute into a datetime attribute
“timestamp” and we create a point attribute “location” using
the array of coordinates. These ADM attributes can be useful,
as they do not need to be constructed in computations like
spatial joins every time. Here we use the Java UDF defined
in Figure 14 to extract the threatening rating of the tweet’s
text and attach it as a “threatening rating” attribute. We use
a sub-query to look for the weapon registration information
of the tweet’s user and nest the registered weapons into a
“user registered weapon” attribute. These new attributes are
merged into the tweet and will be persisted for producing
notifications.
USE dhs;
CREATE FUNCTION EnrichTweet(tweet) {
object_merge(tweet, {

"timestamp" : datetime_from_unix_time_in_ms(tweet.created_at),
"location" :

create_point(tweet.coordinates[0],tweet.coordinates[1]),
"threatening_rating" : threateningRating(tweet.text),
"user_registered_weapon": (SELECT VALUE w.weapon_name

FROM WeaponRegistrations w WHERE w.uid = tweet.uid)})
};
CONNECT FEED TweetFeed to DATASET Tweets APPLY FUNCTION EnrichTweet;
START FEED TweetFeed;

Fig. 15. Enriching tweets with additional information

With these enriched threatening tweets, we can serve threat-
ening tweets from areas by creating the continuous data
channel “ThreateningTweetsAt” shown in Figure 16. To put
everything together, a detailed overview of the entire DHS
BAD system is shown in Figure 17.
USE dhs;
CREATE CONTINUOUS PUSH CHANNEL ThreateningTweetsAt(area_name)
PERIOD duration("PERIOD_DURATION") {
SELECT t.area_name, t.text, t.location, t.threatening_rating,

t.user_registered_weapon FROM Tweets t
WHERE t.area_name = area_name
AND t.threatening_rating > 0 AND is_new(t) };

Fig. 16. Definition of the ThreateningTweetsAt channel

B. BAD@OCSD
OCSD BAD in this prototype receives threatening tweets

not only from Orange County but also from UCI to demon-
strate how a BAD feed can connect to a channel with two

Fig. 17. The internal details of the DHS BAD system

sets of parameters. OCSD BAD notifies in-field officers about
nearby threatening tweets that are close to important local
events. To persist event information in OCSD BAD, we can
create a data type “Event” and a dataset “Events” as shown in
Figure 18.

USE ocsd;
CREATE TYPE Event AS { eid: uuid, name: string, location: point,

event_duration: duration, radius_km: double };
CREATE DATASET Events(Event) PRIMARY KEY eid;

Fig. 18. Data type and dataset definition for events

To store threatening tweets coming from DHS BAD, we
create a data type LocalThreateningTweet and an active dataset
LocalThreateningTweets in Figure 19. (We use an active
dataset for threatening tweets to ensure continuous query se-
mantics in later local channel computations.) We create a BAD
feed in Figure 20 to obtain local threatening tweets from DHS.
This BAD feed subscribes to the DHS threateningTweetsAt
channel with parameters “OC” and “UCI”, which correspond
to two separate subscriptions in DHS BAD. Since there is no
further data enrichment during ingestion, we use a static data
feed here and connect it to LocalThreateningTweets directly.

CREATE TYPE LocalThreateningTweet AS
{ channelExecutionEpochTime: bigint,

dataverseName: string, channelName: string };
CREATE ACTIVE DATASET LocalThreateningTweets(LocalThreateningTweet)
PRIMARY KEY channelExecutionEpochTime;

Fig. 19. Data type and dataset definition for local threatening tweets at Orange
County

USE ocsd;
CREATE FEED LocalThreateningTweetFeed WITH {

"adapter-name" : "http_adapter",
"addresses" : "OCSD_HOST:10013",
"address-type" : "IP",
"type-name" : "LocalThreateningTweet",
"format" : "adm",
"bad-host" : "DHS_HOST",
"bad-channel" : "ThreateningTweetsAt",
"bad-channel-parameters": "\"OC\";\"UCI\"",
"bad-dataverse": "dhs",
"dynamic": false };

CONNECT FEED LocalThreateningTweetFeed
TO DATASET LocalThreateningTweets;

START FEED LocalThreateningTweetFeed;

Fig. 20. Definition, connect and start feed statements for LocalThreaten-
ingTweetFeed

In-field officers from OCSD also continuously send their
location updates to the OCSD BAD system so that OCSD
can notify the officers about nearby threatening tweets based
on their current location. We can use the data type, dataset,
and feed described in Figure 3 for intaking and persisting the

location updates. As there is no further enrichment for location
updates, the LocationFeed can be static as well.

With the local threatening tweets, event information, and
officers’ locations, we can now create a continuous channel
for in-field officers to subscribe to nearby threatening tweets
close to local events (a.k.a. threatening events), as shown in
Figure 21. The notifications from DHS contain threatening
tweets as an array in the “results” attribute, so we use the
UNNEST operation to access each independent threatening
tweet. We calculate the distance between the officer and the
tweet, the event and the tweet, and the officer and the event.
If the officer is near a threatening tweet and the threatening
tweet is near an event, we send a notification to the officer. The
notification contains the tweet’s content, the event information,
the distance between the officer and the tweet, and the distance
between the officer and the event in the notification to help the
officer take further actions. A detailed overview of the OCSD
BAD system is shown in Figure 22.

USE ocsd;
CREATE CONTINUOUS PUSH CHANNEL ThreateningEventsNear(oid)
PERIOD duration("PERIOD_DURATION") {
FROM LocalThreateningTweets tn, OfficerLocations o, Events e
UNNEST tn.results threatening_tweet
LET tweet_loc = threatening_tweet.result.location,
officer_tweet_dist = spatial_distance(o.location, tweet_loc),
event_tweet_dist = spatial_distance(e.location, tweet_loc),
officer_event_dist = spatial_distance(o.location, e.location)

WHERE is_new(tn) AND oid = o.oid AND officer_tweet_dist < 0.1
AND event_tweet_dist < e.radius_km / 100

SELECT oid, threatening_tweet.result tweet_content, e event_info,
officer_tweet_dist * 100 as tweet_distance_km,
officer_event_dist * 100 as event_distance_km

};

Fig. 21. Definition of the ThreateningEventsNear channel

Fig. 22. The internal details of the OCSD BAD system

C. BAD@UCI

UCI BAD receives threatening tweets posted at UCI and
checks whether a threatening tweet is near an on-campus
building. If so, it creates a notification about the threatening
tweet together with the nearby security stations’ information.
Like OCSD BAD, to persist threatening tweets at UCI, we
need to create a data type LocalThreateningTweet and a dataset
LocalThreateningTweet on UCI BAD. To receive threatening
tweets at UCI from DHS, we need to create a BAD feed, like
Figure 20, connected to the ThreateningTweetsAt channel but
using the parameter “UCI”.

To provide more information for UCI BAD’s subscribers,
we store on-campus buildings, for checking whether there is
a threatening tweet nearby, and security stations, for students
to seek for help from, in UCI BAD. In Figure 23, we create
the data types and datasets for them respectively.

USE uci;
CREATE TYPE Building AS { bid: uuid, name: string };
CREATE TYPE SecurityStation AS { sid: bigint, location: point };
CREATE DATASET Buildings(Building) PRIMARY KEY bid AUTOGENERATED;
CREATE DATASET SecurityStations(SecurityStation) PRIMARY KEY sid;

Fig. 23. Data type and dataset definition of buildings and security stations

With the local threatening tweets, on-campus building in-
formation, and security station information, we can create a
continuous channel called “AlertsOnCampus” to provide on-
campus alerts about threatening tweets near buildings with
security stations’ information attached using the statement
shown in Figure 24. Like the ThreateningEventsNear channel
in OCSD BAD, we first UNNEST threatening tweets from the
incoming notifications. Then, we check whether a threatening
tweet is posted at an on-campus building. If so, we attach
the security station information to the threatening tweet, with
stations ordered by their distances to the tweet’s location, and
generate an alert. A detailed overview of the UCI BAD system
is shown in Figure 25.

USE uci;
CREATE CONTINUOUS PUSH CHANNEL AlertsOnCampus()
PERIOD duration("PERIOD_DURATION") {
FROM LocalThreateningTweets tn, Buildings b
UNNEST tn.results threatening_tweet
LET tweet_loc = threatening_tweet.result.location,

station_dist = (FROM SecurityStations s
LET dist = spatial_distance(tweet_loc, s.location)
SELECT s stationInfo, dist * 100 dist_km ORDER BY dist)

WHERE is_new(tn) AND spatial_intersect(tweet_loc, b.area)
SELECT threateningTweet.result tweet_content,
b building_info, station_dist

};

Fig. 24. Definition of the AlertsOnCampus channel

Fig. 25. The internal details of the UCI BAD system

D. The Trip of A Threatening Tweet

In order to illustrate how BAD islands interact with BAD
bridges, we pick a sample tweet and show how it flows through
the three islands and their bridges and produces notifications
with local information for the subscribers on each island. An
overview of our three-island prototype is shown in Figure 26.
The circled numerical labels in the figure will be used later for
illustrating the data content at different stages of the workflow.

We will use the raw tweet in Figure 27 (labeled 1 in
Figure 26) as the example. This tweet is posted at UCI,
and it contains the tweet’s geolocation as a JSON array of
coordinates and the epoch timestamp of when the tweet was
created as a JSON number. This raw tweet is ingested by the
TweetFeed defined in Figure 2 and then enriched by the UDF
defined in Figure 15. After that, the enriched tweet is persisted
in the Tweets dataset as shown in Figure 28 (labeled 2 in Fig-
ure 26). Enriched tweets contain a threatening rating detected

Tweet Feed

Tweets

BAD @ DHS

BAD @ OCSD ThreatfulTweetsAt(OC)
ThreatfulTweetsAt(UCI)

BAD @ UCIThreatfulTweetsAt(UCI)

Weapon
Registrations

Threatening
Word List

ThreateningTweetAt(area_name)
Channel

Raw Tweets

Officer
Locations Events

ThreateningEventsNear(officer_id) Channel

Buildings

AlertsOnCampus() Channel

Security
Stations

①

③

④ ⑤

②

LocalThreateningTweetFeed

LocalThreateningTweets

LocalThreateningTweetFeed

LocalThreateningTweets

Fig. 26. An overview of BAD islands

{
"tid": 1593142018123,
"uid": 73,
"area_name": "UCI",
"text": "Saul Goodman builds SKS, and Todd Alquist fires AK47,

but Skyler White sells Cabbage.",
"coordinates": [33.64921228736088, -117.84181977473024],
"created_at": 1593142018123

}

Fig. 27. A sample raw threatening tweet

{
"tid": 1593142018123,
"uid": 73,
"area_name": "UCI",
"text": "Saul Goodman builds SKS, and Todd Alquist fires AK47,

but Skyler White sells Cabbage.",
"coordinates": [33.64921228736088, -117.84181977473024],
"created_at": 1593142018123,
"threatening_rating": 2,
"user_registered_weapon": ["AR10" , "AK47", "GLOCK21"],
"timestamp": datetime("2020-06-26T03:26:58.123Z"),
"location": point("33.64921228736088,-117.84181977473024")

}

Fig. 28. The enriched threatening tweet

by the Java UDF, an array of registered weapons for the tweet’s
user obtained by looking in the WeaponRegistrations dataset
using the “uid” attribute, a timestamp as a datetime attribute,
and a location as a point attribute.

Since both the OCSD and UCI BAD systems subscribe to
threatening tweets at UCI, they will each receive a notification
from DHS BAD about this threatening tweet. Figure 29 shows
the notification sent to OCSD BAD (labeled 3 in Figure 26). If
there was also a threatening tweet posted in Orange County at
the same time, the “results” array would include that tweet but
with a different subscription ID, as OCSD BAD has two sub-
scriptions to the ThreateningTweetAt channel with parameters
“OC” and “UCI”, respectively. Since UCI BAD also subscribes
to the channel, but with a different subscription on another
broker (pointed to UCI’s BAD feed), the notification for UCI
BAD will be produced and sent separately.

In the OCSD BAD ThreateningEventsNear channel, threat-
ening tweets are combined with local event information and
officer location information to produce the nearby threatening
event notifications for in-field officers. There is one local event
“OC Marathon” near the threatening tweet in Figure 28, and
there is an in-field officer 0 nearby, so OCSD BAD produces
one notification about the tweet and the event for this officer.
Figure 30 shows this threatening event notification (labeled
4 in Figure 26). It contains the event information as the
“event info” attribute, the threatening tweet’s information as
the “tweet content” attribute, and the distances from the offi-

{
"dataverseName": "dhs",
"channelName": "ThreateningTweetsAt",
"channelExecutionEpochTime": 1593142019521,
"results": [

{
"result": {

"text": "Saul Goodman builds SKS, and Todd Alquist fires
AK47, but Skyler White sells Cabbage.",

"area_name": "UCI",
"location": point("33.64921228736088,-117.84181977473024"),
"threatening_rating": 2,
"user_registered_weapon": ["AR10" , "AK47", "GLOCK21"]

},
"channelExecutionTime": datetime("2020-06-26T03:26:59.521Z"),
"subscriptionId": uuid("82e61d25-f7ad-0632-3b9a-9c26e681ad84"),
"deliveryTime": datetime("2020-06-26T03:26:59.522Z")

}
]

}

Fig. 29. The generated threatening tweet notification from DHS

{
"dataverseName": "ocsd",
"channelName": "ThreateningEventsNear",
"channelExecutionEpochTime": 1593142020436,
"results": [

{
"result": {

"event_info": {
"eid": uuid("82e61d25-4cad-0632-3d8d-148e71cb50bf"),
"name": "OC Marathon",
"location":

point("33.66100302712824, -117.83950620703125"),
"event_duration": duration("PT10S"),
"radius_km": 3.57746886883645

},
"tweet_distance_km": 4.854786471222485,
"event_distance_km": 5.6839370484947755,
"oid": 0,
"tweet_content": {

"text": "Saul Goodman builds SKS, and Todd Alquist fires
AK47, but Skyler White sells Cabbage.",

"area_name": "UCI",
"location": point("33.64921228736088,-117.84181977473024"),
"threatening_rating": 2,
"user_registered_weapon": ["AR10" , "AK47", "GLOCK21"]

}
},
"channelExecutionTime": datetime("2020-06-26T03:27:00.436Z"),
"subscriptionId": uuid("82e61d25-47ad-0632-3e5c-22b3cb7d7df4"),
"deliveryTime": datetime("2020-06-26T03:27:00.437Z")

}
]

}

Fig. 30. The generated threatening event notification from OCSD

cer 0 to the tweet and to the event as the “event distance km”
and “tweet distance km” attributes respectively.

In the UCI BAD AlertsOnCampus channel, threatening
tweets are combined with on-campus building information and
security station information to produce alerts. The threatening
tweet in Figure 28 is near the building “Student Center”,
so UCI BAD produces a notification to alert people around
this building as shown in Figure 31 (labeled 5 in Figure 26).
The building information is attached to the notification. There
are two security stations nearby, so the system attaches their
information with their distances, ordered by their distances to
the threatening tweet. Everyone subscribing to the AlertsOn-
Campus channel will receive this notification.

VII. BAD ISLANDS TOUR AND EVALUATION

To illustrate how BAD applications can be built with BAD
islands and to visualize the process of data flowing through
multiple systems and becoming notifications for subscribers,
we have created three dashboards for each organization based
on our prototype, as shown in Figure 32.

{
"dataverseName": "uci",
"channelName": "AlertsOnCampus",
"channelExecutionEpochTime": 1593142024344,
"results": [

{
"result": {

"buildingInfo": {
"bid": uuid("82e61d25-43ad-0632-45d0-0ba5366832d9"),
"name": "Student Center",
"area": rectangle("33.64811430275051, -117.84332027249145

33.649382536086605,-117.84153928570557")
},
"stationDist": [

{
"stationInfo": {

"sid": 1,
"location":

point("33.64792551859947, -117.84013290702327"),
"name": "Station # 1"

},
"dist_km": 0.21216259109805177

},
{

"stationInfo": {
"sid": 0,
"location":

point("33.646866723393266, -117.84170161534618"),
"name": "Station # 0"

},
"dist_km": 0.23485382616041114

}
],
"tweetContent": {
"text": "Saul Goodman builds SKS, and Todd Alquist fires

AK47, but Skyler White sells Cabbage.",
"area_name": "UCI",
"location": point("33.64921228736088,-117.84181977473024"),
"threatening_rating": 2,
"user_registered_weapon": ["AR10" , "AK47", "GLOCK21"]

}
},
"channelExecutionTime": datetime("2020-06-26T03:27:04.344Z"),
"subscriptionId": uuid("82e61d25-0ead-0632-4717-e17b6a912fa6"),
"deliveryTime": datetime("2020-06-26T03:27:04.345Z")

}
]

}
Fig. 31. The generated on-campus alert from UCI

Fig. 32. An overview of BAD islands dashboards

Due to space limits, instead of describing the features on
each dashboard in detail, we will focus on the Visualization
Panel of the OCSD Dashboard, shown in Figure 33, to
illustrate how threatening tweets go from DHS BAD to OCSD
BAD and how OCSD BAD combines threatening tweets with
other local information for its subscribers.

The Visualization Panel contains a map that shows the in-
coming threatening tweets, local events, produced threatening
events, and in-field officers’ movements. The map contains a
control bar at the top (highlighted in a blue box) so dashboard
users can navigate the map, add a new event, and add a new
in-field officer. A new event can be added by drawing a circle
on the map indicating the event’s area. An officer can be added
by dropping an officer icon on a preferred location on the map.
Information about the created events and officers is updated
in the underlying OCSD BAD system accordingly. An added
officer moves around the map randomly and continuously
sends its current location to the OCSD BAD system. One can

Fig. 33. Visualization panel of OCSD dashboard

change an officer’s location by dragging the officer’s icon to
a new place on the map.

We use a red tweet icon to mark the threatening tweets
received from DHS BAD and a black tweet icon for the
threatening events detected by OCSD BAD. When an in-field
officer receives a threatening event notification (as highlighted
in the red circles in the figure), the officer randomly decides
whether to go to the threatening event’s location for further
investigation or to stay at his or her current location. The
officer’s decision pops up as a small information window, as
shown in the figure. If the officer decides to go, he or she
moves gradually towards the tweet’s location, as the upper
officer does in the figure.

In addition to the dashboards, we also conducted a simple
experiment to measure the tweet propagation delays in our
prototype system, starting from the posting of new tweets to
the receipt of the localized notifications by subscribers on each
island. We deployed the prototype on a three-node cluster,
one node per island, where each node had a Dual-Core AMD
Opteron Processor 2212 2.0 GHz, 8 GB of RAM, and a 900
GB hard disk drive. We used the statements described in
Section VI to configure the nodes.

The information propagation times for BAD islands depend
on the complexity of the computations in the pipeline (data
enrichment and channel computation) and on the specified
channel period durations. In our experiments, we used the
same channel period for all three channels, testing two dif-
ferent channel periods (1s and 2s). Since channels execute
once per each channel period, for each channel execution, we

measured the average delay for threatening tweets delivered
to subscribers in this channel execution. We let all channels
complete 50 executions and kept track of the average delays
throughout the process. On DHS BAD, tweets were set to
arrive at 10 tweets per second, and half of the tweets con-
tained at least one threatening word. On OCSD BAD, every
threatening tweet had an event nearby. OCSD had 100 in-field
officers constantly updating their locations and subscribing to
nearby threatening events. On UCI BAD, every threatening
tweet was close to an on-campus building. UCI had 5 on-
campus security stations and 100 subscriptions subscribing to
on-campus alerts. The delays are shown in Figure 34.

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

A
ve

rg
ag

e
D

el
ay

 (S
ec

on
ds

)

Channel Execution

OCSD - 2 seconds UCI - 2 seconds
OCSD - 1 second UCI - 1 second

Fig. 34. Delays of threatening tweets for OCSD and UCI BAD subscribers

Clearly, the subscribers at OCSD and UCI are able to
receive localized threatening tweets of interest in a timely
manner, while the delays are relatively stable, especially for
the 1s channel period. When the channel period is increased to
2s, the delays increase since the system batches more incom-
ing tweets per channel execution; while this would increase
the delay for subscribers, it would also increase the system
scalability under higher loads. UCI BAD in general has higher
delays than OCSD BAD due to a more complex computation
and more local information added to local threatening tweets.

VIII. CONCLUSIONS

In this work, we have focused on enabling users to declar-
atively create scalable data sharing services between different
BAD systems. We looked at an example use case in which two
local organizations (OCSD and UCI) would like to get data
from a third organization (DHS) in order to provide BAD
services to their subscribers. We discussed several possible
ways of supporting this use case and proposed using data feeds
and data channels for bridging BAD systems. We extended
the BAD system with BAD brokers to simplify data exchanges
between channels and feeds and BAD feeds to help users create
bridges between different BAD systems. We detailed a three-
island prototype to show how BAD islands can be bridged
together. We demonstrated how users can easily build such
systems with declarative statements, and we used an example
to show how data and events flow within the system. We
built a set of dashboards based on our prototype to concretely
illustrate how BAD islands share data and support BAD
applications with localized information, and we conducted an
experiment to examine the delays in the prototype system.

ACKNOWLEDGMENT
This research was partially supported by NSF grants

IIS-1447826, IIS-1447720, IIS-1838222, IIS-1838248, CNS-
1924694 and CNS-1925610.

REFERENCES

[1] R. Bryant, R. H. Katz, and E. D. Lazowska, “‘Big-Data Computing’:
Creating revolutionary breakthroughs in commerce, science and society,”
2008.

[2] K. Shvachko, H. Kuang, S. Radia et al., “The Hadoop distributed
file system,” in IEEE 26th Symposium on Mass Storage Systems and
Technologies, MSST 2012, Lake Tahoe, Nevada, USA, May 3-7, 2010,
2010, pp. 1–10.

[3] C. Olston, B. Reed, U. Srivastava et al., “Pig latin: a not-so-foreign
language for data processing,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2008, pp. 1099–1110.

[4] A. Thusoo, J. S. Sarma, N. Jain et al., “Hive - A warehousing solution
over a map-reduce framework,” PVLDB, vol. 2, no. 2, pp. 1626–1629,
2009.

[5] M. Zaharia, M. Chowdhury, T. Das et al., “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Pro-
ceedings of the 9th USENIX Symposium on Networked Systems Design
and Implementation, 2012, pp. 15–28.

[6] P. T. Eugster, P. Felber, R. Guerraoui et al., “The many faces of
publish/subscribe,” ACM Comput. Surv., vol. 35, no. 2, pp. 114–131,
2003.

[7] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized streams: fault-tolerant streaming computation at scale,”
in ACM SIGOPS 24th Symposium on Operating Systems Principles,
M. Kaminsky and M. Dahlin, Eds. ACM, 2013, pp. 423–438.

[8] P. Carbone, A. Katsifodimos, S. Ewen et al., “Apache Flink™: Stream
and batch processing in a single engine,” IEEE Data Eng. Bull., vol. 38,
no. 4, pp. 28–38, 2015.

[9] M. J. Carey, S. Jacobs, and V. J. Tsotras, “Breaking BAD: a data serving
vision for big active data,” in Proceedings of the 10th ACM International
Conference on Distributed and Event-based Systems, 2016, pp. 181–186.

[10] S. Jacobs, X. Wang, M. J. Carey, V. J. Tsotras, and M. Y. S. Uddin,
“BAD to the bone: Big active data at its core,” VLDB J., 2020.

[11] S. Jacobs, M. Y. S. Uddin, M. J. Carey et al., “A BAD demonstration:
Towards big active data,” PVLDB, vol. 10, no. 12, pp. 1941–1944, 2017.

[12] X. Wang, “Activating Big Data at Scale,” Ph.D. dissertation, University
of California, Irvine, USA, 2020.

[13] X. Wang, M. J. Carey, and V. J. Tsotras, “Subscribing to Big Data at
scale,” arXiv preprint arXiv:2009.04611, 2020.

[14] S. Wolfert, “Study on data sharing between companies in europe,” 2018,
[Online; accessed Jul-12th-2020].

[15] W. K. Michener, S. Allard, A. E. Budden et al., “Participatory design
of DataONE - enabling cyberinfrastructure for the biological and envi-
ronmental sciences,” Ecol. Informatics, vol. 11, pp. 5–15, 2012.

[16] R. Rice, “DISC-UK datashare project,” in Technology of Data: Collec-
tion, Communication, Access and Preservation. IASSIST, 2008.

[17] E. Scaria, A. Berghmans, M. Pont, C. Arnaut, and S. Leconte, “Study
on data sharing between companies in Europe,” A study prepared for
the European Commission Directorate-General for Communications
Networks, Content and Technology by everis Benelux, vol. 24, 2018.

[18] S. Alsubaiee, Y. Altowim, H. Altwaijry et al., “AsterixDB: A scalable,
open source BDMS,” PVLDB, vol. 7, no. 14, pp. 1905–1916, 2014.

[19] D. Chamberlin, SQL++ For SQL Users: A Tutorial. Couchbase, Inc.,
2018, (Available at Amazon.com).

[20] D. B. Terry, D. Goldberg, D. A. Nichols et al., “Continuous queries
over append-only databases,” in Proceedings of the 1992 ACM SIGMOD
International Conference on Management of Data, 1992, pp. 321–330.

[21] W. Y. Alkowaileet, S. Alsubaiee, M. J. Carey et al., “End-to-end
machine learning with Apache AsterixDB,” in Proceedings of the Second
Workshop on Data Management for End-To-End Machine Learning,
2018, pp. 6:1–6:10.

[22] X. Wang and M. J. Carey, “An IDEA: an ingestion framework for data
enrichment in AsterixDB,” PVLDB, vol. 12, no. 11, pp. 1485–1498,
2019.

[23] R. Grover and M. J. Carey, “Data ingestion in AsterixDB,” in EDBT
Conf., 2015.

[24] W. Y. Alkowaileet, S. Alsubaiee, M. J. Carey et al., “Enhancing
Big Data with semantics: The AsterixDB approach (poster),” in 12th
IEEE International Conference on Semantic Computing, ICSC. IEEE
Computer Society, 2018, pp. 314–315.

	I Introduction
	II Big Active Data in a Nutshell
	II-A Data Feeds
	II-B Data Channels

	III BAD Islands
	III-A BAD Island 1: Department of Homeland Security
	III-B BAD Island 2: Orange County Sheriff's Department
	III-C BAD Island 3: University of California-Irvine

	IV Island Hopping: Connecting BAD Islands
	IV-A Option 1: A BAD Continent
	IV-B Option 2: BAD Ferries
	IV-C Option 3: BAD Bridges

	V Building BAD Bridges
	V-A BAD Brokers
	V-B BAD Feeds

	VI A Prototype of BAD Islands
	VI-A BAD@DHS
	VI-B BAD@OCSD
	VI-C BAD@UCI
	VI-D The Trip of A Threatening Tweet

	VII BAD Islands Tour and Evaluation
	VIII Conclusions
	References

