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Abstract—Forecasting of time series in continuous systems
becomes an increasingly relevant task due to recent developments
in IoT and 5G. The popular forecasting model ARIMA is applied
to a large variety of applications for decades. An online variant
of ARIMA applies the Online Newton Step in order to learn
the underlying process of the time series. This optimization
method has pitfalls concerning the computational complexity and
convergence. Thus, this work focuses on the computational less
expensive Online Gradient Descent optimization method, which
became popular for learning of neural networks in recent years.
For the iterative training of such models, we propose a new
approach combining different Online Gradient Descent learners
(such as Adam, AMSGrad, Adagrad, Nesterov) to achieve fast
convergence. The evaluation on synthetic data and experimental
datasets show that the proposed approach outperforms the
existing methods resulting in an overall lower prediction error.

Index Terms—Online ARIMA, Online Gradient Descent, fore-
casting, combination of optimizers

I. INTRODUCTION

In recent years, the advances in technology enable the broad
collection of data of e.g. continuously streams provided by the
Internet of Things (IoT), Industry 4.0, Social media, etc. Due
to these rapid developments, big data processing and especially
stream processing became relevant. A prominent task is the
forecasting of the stream signal to e.g. foresee trends, future
abnormal behavior in order to benefit from early responses
like in case of predictive maintenance.

In context of forecasting, the algorithm ARIMA [1] is
widely applied including in financial forecasts [2], energy
forecasts [3], and many other applications with underlying
cyclic time series patterns [4], [5]. Past observations are
used to predict the future behaviour by learning or imitating
the underlying process which generates the time series data.
ARIMA assumes that the observed time series relies on a
stationary process learned by the model. ARIMA models are
typically trained statically on a fixed set of data points. In the
context of data streams, the time series may underlay concept
drifts and consequently continuous online training provides
the possibility to adapt to the current time series behavior. Liu
et. al [6] proposed Online ARIMA, which provides optimized
iterative training to the traditional ARIMA model by applying
Online Gradient Descent (OGD) convex optimization.

For any forecasting task the accuracy must be at highest pos-
sible level which means that the error between the forecasted

and observed values shall be minimal (residuals). Liu et. al [6]
did not investigate in detail variants of OGD to achieve low
residuals as quick as possible, while also not ending up in a
local optimum in order to achieve at the long run optimized
low residuals.

OGD convex optimization solver enables this learning in
an online fashion. There are several optimizers for the OGD
approach which enable faster learning with the OGD optimiza-
tion solver. Previous research has shown that these optimizers
have pitfalls [7]–[9] in terms of their convergence properties,
meaning that they sometimes diverge and sometimes do not
converge to the optimal solution.

Therefore, this work focuses on extending the learning
capabilities of Online ARIMA. We propose an optimization
strategy by combining different Online Gradient Descent op-
timizers to achieve a high initial training progress by applying
adaptive methods at the beginning and gradually switching
to non-adaptive methods to benefit from their generalization
ability, resulting in fine-tuned coefficients for the underlying
process. Our paper makes the following key contributions:

• Design and development of a combined optimizer for
learning Online ARIMA models.

• Experimental evaluation of the proposed approach and its
hyperparameters using representative synthetic and real-
world IoT-sensor datasets.

The rest of the paper is structured as follows: Section II
introduces Online ARIMA and further background. Section III
provides the related work concerning optimizers. Afterwards,
the proposed approach of combining the optimizers of the
Online ARIMA model during training is described in Section
IV, which is evaluated and discussed in Section V. Finally,
Section VI concludes the paper.

II. BACKGROUND

A. Online ARIMA

Liu et. al [6] proposed Online ARIMA (AutoRegressive
Integrated Moving Average) by approximating the original
ARIMA(k,d,q) model with an Online ARIMA(mk,d,0) model,
whilst giving estimates on the regret bound while learning
with the proposed online convex optimization solver Online
Gradient Descent (OGD). In order to learn the coefficients of
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the Online ARIMA model these optimization solvers run in a
continuous system and optimize the coefficients of the ARIMA
model to forecast the time series with a smaller error, thus
reflecting the time series more precisely. The Online ARIMA
model uses following formula to forecast the next point X̃t:

X̃t =

mk∑
i=1

γi∇dXt−i +

d−1∑
i=0

∇iXt−1 (1)

The past seen values of X are multiplied with the coefficient
vector γ with respect to the grade of derivation defined by d.
The residual value, also known as the error or the distance
during prediction, is defined as the distance between the
predicted forecasted value X̃t and the real value Xt. The lower
the residual value of a forecasting model, the better the quality
is considered. The model learns the coefficients which weights
the seen points and calculate a prediction for the next point.

B. OGD Optimizers

The OGD optimization solver is widely used and has a lot
of versions which vary the gradient updates that are applied
to the coefficients [10]. The OGD optimization solver’s com-
putational complexity grows linear with the input size. Thus,
this work will focus on the computational less expensive OGD
optimizer. The basic implementation considers the gradient of
the loss function ∇l(θ) and updates the coefficients θ based
on the negative gradient by a certain factor, the learning rate
η at time t:

θt = θt−1 − η∇l(θt) (2)

More sophisticated optimizers like the Momentum [11] or
Nesterov [12] optimizer take into account the momentum, in
terms of direction of the changes in the last iterations by
adding a term representing the changes of the last iterations.

Another class of adaptive optimizers have evolved including
the methods AdaGrad [13], RMSProp [14], Adam [15] and
AMSGrad [7]. These optimizers take into account several
factors during the optimization process and use individual
adaptive learning rates for each parameter. Adam uses the
momentum, as well as the previous update as well as fac-
tors correcting both calculated momentum values. Adagrad,
RMSProp and AMSGrad are similar to Adam with certain
differences within the applications of the gradient to the
upgrade of the coefficients.

III. RELATED WORK

Besides convex optimization solvers, there also exist evo-
lutional greedy approaches as genetic algorithms or simulated
annealing [16]. These algorithms try to find optima by explor-
ing the search space and exploiting enhancements to already
found solutions. Due to their greedy property these algorithms
might not approach the global optimum and cannot guarantee
a quality increase of the model during learning. Thus, convex
optimization solvers are used.

Related work improves the convergence of the OGD op-
timizer by weighting the updates based on the importance

of the samples and thus achieving faster convergence [17].
This technique is also referred to as importance sampling and
yields benefits for the convergence bounds [18]. However,
these techniques are not feasible for an online setting, as the
importance of samples cannot be obtained in a universally
valid way.

Research investigates the combination of different learning
rates and their adaptation, called learning rate schedule [19],
[20]. Several methods exploit pre-defined schedules, which
also have their pitfalls in terms of tuning the parameters of
the schedule. Another possibility is to adapt the learning rate
automatically depending on the gradient, which is able to adapt
fast to changes but also in fine-tuning the model [21]. This
fast adaptation to changes is unfeasible if outliers are present.
Recent work also proposed the learning of the learning rate
itself [22] with dedicated models. In their work they only
consider the basic OGD optimizer. To our best of knowledge,
there is no related work investigating the combination of
different OGD optimizers for ARIMA models.

For the training of neural networks, similar approaches
of combining optimizers were applied. SWATS [23] is an
approach which switches from Adam to SGD at a certain
point during training. This switching point is critical for the
optimization process and as the authors warn, switching too
early does not yield the benefits from Adam’s initial progress
while switching too late does not yield any generalization
improvements. Therefore, Luo et al. [24] propose a smooth
conversion of optimizers with AdaBound. AdaBound clips the
learning rates of Adam and AMSGrad with lower and upper
bounds, which gradually restrict the learning rate to eventually
evolve to the same lower and upper bound, resulting in the
SGD optimizer.

IV. COMBINATION OF OPTIMIZERS

The Online ARIMA model shall represent the underlying
process of the time series as fast as possible in a continuous
system. There is a short initial set-up phase as ARIMA needs
to collect at least mk+d samples in order to fill its history of
seen data points and gradients with meaningful data. Only
from this point on the forecasted values can be used for
evaluating the model and further learning of the coefficients.

A. General Idea

A trade-off between adaptive and non-adaptive methods has
to be considered. Adaptive optimizers converge efficiently to
a good set of coefficients but oftentimes fail to find the best
solution. Non-adaptive methods have the ability to learn a
hidden process precisely but are unable to adapt the learning
rates for a faster convergence. The proposed approach aims at a
combination that reduces the shortcomings of the approaches.
Thus, we propose a combination of different OGD optimizers
in order to converge fast to a near-optimal solution and
gradually switching to a non-adaptive learner to learn the
underlying process as precise as possible. This also enables
the model to adapt to small concept shifts in the underlying
process while making it robust to outliers.



We propose using AMSGrad as the adaptive method and the
momentum OGD implementation as the non-adaptive method.
The AMSGrad estimates the model of the underlying process
quite well while the momentum OGD optimizer is able to
optimize the model further, at the same time being able to
adapt to concept shifts and being resistant to abnormal changes
like outliers.

B. Combined Optimizer

For the combination of the optimizers we propose a linearly
graduating combination of the optimizers ht. The resulting
gradients of the AMSGrad and Momentum optimizers are
calculated separately and then combined, based on our linear
function. Based on the current timestep t the resulting combi-
nation of the calculated gradients is used as follows. With
gradient at current timestep gt, current AMSGrad gradient
a := AMSGrad(gt), current Momentum gradient m :=
Momentum(gt) and hyperparameter λ:

ht =

{
(1− t

λ ) ∗ a+
t
λ ∗m , if 0 ≤ t

λ ≤ 1
m , else ( tλ > 1) (3)

By gradually applying both optimizers during the learning
process of an Online ARIMA model an optimization to the
overall convergence process can be achieved. The adaptive
AMSGrad optimizer has high learning speed at the beginning
while the non-adaptive momentum optimizer guarantees a
precisely learned model while being able to adapt to concept
changes. This is a reduction to the overall residual during
prediction over several iterations. The evaluation will show
that the introduced hyperparameter λ is quite insensitive and
even edge configurations lead to an improved overall residual.

V. EVALUATION

As ARIMA is a model for the forecasting of time series
the timely order of the samples is important. The proposed
method will be evaluated on synthetic and real world data on
Online ARIMA models.

A. Synthetic Data

The evaluation contains three settings for the synthetic data
where each setting consists of 10,000 samples. The data is
generated using different ARIMA models, thus varying the
task of online learning data. In the online setting, for each
incoming sample one step of the convex optimization solvers
is executed. The data is normalized in the interval of [−1, 1].

The first setting is an ARIMA model with the parameters
d = 0, α = [0.9,−0.9, 0.9,−0.4,−0.1], β = []. This describes
a stationary process with no noise as the β-Terms are left
out. The second setting utilizes similar parameters as the first
setting with the addition of noise within the Moving Average-
Terms, manifested in the β-coefficients: [0.5, 0.1].

The third setting uses the same ARIMA model as in
the second setting for the first 5,000 samples. The second
5,000 samples of this dataset shall simulate a concept shift
within the data. Therefore, the ARIMA model used for the
second half of the dataset uses the parameters d = 0,

α2 = [0.7,−0.7, 0.7,−0.6,−0.3], β2 = [0.2, 0.4]. We defined
the parameters α, β, α2 and β2 to generate a stationary
process which expresses itself in different observed functions
switching from α, β configuration to α2, β2.

B. Real-world High-frequency Datasets

For the real world datasets, the learning will be based on
micro-batches resulting from a tumbling window. This means
that the shown results are averaged over these micro-batches
where at each sample of the micro-batch one step of the convex
optimization solvers is executed and a change is applied to the
coefficients of the Online ARIMA model.

In the used datasets there are natural occurences of micro-
batches which are used similarly during the evaluation as
this reflects the real world setting best. The data consists of
measurements of the real world which are taken by sensors
measuring at described intervals one mini-batch of samples.

1) NASA Bearing Dataset: The bearing dataset provided
by Lee et al. [25] contains measured vibration data from
accelerometers attached to the bearing housing attached to
a rotating shaft, simulating a rotating machine. In particular,
the second test executed contains data for one axis of four
bearings, resulting in 4 measured channels of vibration data.
At the end of this test, there occurs an outer race failure
at the first bearing. This describes one of the use cases
where learning the underlying process as fast and precisely
as possible is very important as this enables the possibility to
detect divergent behaviour compared to the forecasted values.
The data was measured with a sampling rate of 20kHz and
20,480 samples every 10 minutes, resulting in micro-batches
of 20,480 samples. For our experiments only the data of the
first bearing was used.

2) Industry dataset: A second industry dataset contains
similar 3-axis (x, y, z) vibration data which was measured
by acceleration sensors at the machine housing of a rotating
machine. The data was measured with a sampling rate of 2kHz
and 10,240 samples every hour, resulting in micro-batches
of 10,240 samples. For this dataset one axis was chosen to
exemplary evaluate the approach.

As the vibration is physically bound to the machine, both
datasets represent stationary processes and systems which
operate in a continuous setting. A precise forecast of such
systems can be beneficial in a variety of use cases, e.g.
anomaly detection. Abnormal behavior of the time series can
be detected by a abnormal difference between the real values
and the forecasted values, thus emphasizing a fast adaptation
and low residual values.

C. Evaluation Metric

For measuring the error of the Online ARIMA models, we
define the average residual value rt as the evaluation metric.
The average residual value rt is the inherent ARIMA error
resulting from the difference of the predicted value x̃i,t to the
real value xi,t at each point i within the specified micro-batch
t or sample t of the time series, respectively. For the micro-
batch setting, this residual value is calculated by averaging the
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Fig. 1: Average residual value for ARIMA(5,0,0) data.
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Fig. 2: Average residual value for ARIMA(5,0,2) data.

absolute error for each predicted sample with the size of the
micro-batch n, representing the mean absolute error:

rt =
n∑

i=mk+d

|x̃i,t − xi,t|
n−mk − d

(4)

The initial mk + d samples, needed to set up the ARIMA
model for predicting, are not considered. This average distance
is a good measurement for the quality of the ARIMA model,
as it measures how precise the model predicts with low error.

For a comparison of the proposed approach against the ex-
isting approaches, the same data is iterated over multiple times
using different optimizers. As the Online ARIMA models
are randomly initialized, the experiments are repeated several
times and the averaged results are shown.

As stated previously, tuning the learning rate is not in the
scope of this paper, therefore the same fixed learning rate is
used for the different approaches. Hereby, the learning rates
were chosen using grid search with varying step sizes and
learning rates in the range of [0, 1].
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Fig. 3: Average residual value for ARIMA concept shift data.

D. Results

In order to compare the quality and convergence of the
different optimizers, the results of the synthetic data analysis
can be seen in Figures 1 to 3. Here, no minibatches were
used, instead the results are shown for every single sample.
For all three settings, the grid search came to the same
resulting learning rate of 5 · 10−2 and hyperparameter setting
of λ = 2000, representing 20% of the data. The Online
ARIMA models were initialized with random coefficients in
the range of [-0.5, 0.5] and the experiments were repeated 30
times, resulting in the averaged residual values rt shown in
the figures.

The results for the first setting can be seen in Figure 1.
Here, an Onlne ARIMA model with window size mk = 5 and
d = 0 was trained in order to visualize the convergence of the
different optimizers. It can be seen that all of the optimizers
converge towards a lower residual value, while the proposed
method converges fastest and best.

Figure 2 shows the average residual value rt for the second
setting where noise was added. Here, the window size of the
Online ARIMA model was increased to mk = 10 in order to
estimate the moving average terms of the underlying ARIMA
model, as proposed by [6]. The results are very similar to
the first setting, as the proposed approach outperforms the
existing approaches. All optimizers were able to handle the
added noise.

The results of the third setting from the synthetic data can
be seen in Figure 3. The first half of the results is similar to
the results of the second setting while different behavior in
response to the concept shift can be observed. The RmsProp
method seems to be unable to respond well to the concept
shift while the other methods adapt to the new coefficients
over time. The proposed approach is again able to converge
fastest to the new coefficients.

The first evaluation setup for the real-world data investigates
the convergence ability of the different approaches on real-
world data. Therefore, a single batch of data is learned for
several iterations in order to show that Online ARIMA in
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Fig. 4: Average residual value during training of 1 single batch
for 40 iterations with different optimizers.
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Fig. 5: Average residual during training of 50 consecutive
batches from the bearing dataset with different optimizers.

conjunction with the different optimizers is able to represent
and adapt to the inherent function of the time series. The
results can be seen in Figure 4. Here, an Online ARIMA model
with window size mk = 300 and d = 0 was trained with a
fixed learning rate of 5 · 10−3 and λ = 102400, representing
12.5% of the data. For the bearing dataset, the Online ARIMA
models were again initialized with random coefficients in the
range of [−0.5, 0.5] and the experiments were repeated 10
times, results showing the averaged values.

In Figure 4, it can be observed that the optimizers Adam,
RmsProp, Adagrad and AMSGrad fail to find the Online
ARIMA model with the best quality as their average distance
value converges to higher numbers than the other methods.
The simpler methods like the Basic, Momentum and Nesterov
optimizers seem to converge towards the same average dis-
tance with different speeds. As expected, the RmsProp and
AMSGrad optimizers, as well as the Adam optimizer for the
first batches, seem to converge faster towards a near-optimal
solution than the simpler methods. The proposed approach
outperforms all other methods in terms of average distance
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Fig. 6: Average residual value during training of 50 consecu-
tive batches from the industry dataset with different optimizers.

compared over all batches.
The results of a more sophisticated experiment, where 40

consecutive measured batches of the bearing dataset have
been investigated, can be seen in Figure 5. The same model
configuration as for the first experiment has been used. Figure
5 shows how the different optimizers behave over time in terms
of quality. While Adagrad, Rmsprop, Adam are not able to
achieve a quality as high as the other approaches, it can be
observed that the AMSGrad optimizer is able to adapt fastest
to a better model. The proposed approach again outperforms
the other approaches. It can be observed that over a longer
period of time the basic and momentum-based optimizers
adapt to a very similar average distance as the proposed
approach, while Momentum being the fastest, followed by
Nesterov and finally the basic optimizer.

The same experiment was executed on the industry dataset.
The results can be seen in Figure 6. Here, a smaller Online
ARIMA model with window size mk = 60 and d = 1
was used as the sample rate of the data was smaller. The
learning rate was set to 1 ·10−2 and λ = 102400, representing
25% of the data. For this dataset, the Online ARIMA models
were again initialized with random coefficients in the range
of [−0.5, 0.5] and the experiments were repeated 10 times,
results showing the averaged values.

The results look similar to the bearing dataset. Again,
Adam, RMSProp and Adagrad are not able to achieve quality
results similar to the other optimizers as can be seen in Figure
6. The best results are yielded by the proposed approach which
is able to converge fastest to the best solution. The AMSGrad,
Momentum, Nesterov and basic optimizers converge to nearly
the same results the longer the experiment ran.

Overall, we showed that the proposed approach performs
best in the synthetic as well as in the real world scenario
compared with the stated optimizers. The proposed method
was able to efficiently adapt the coefficients of an Online
ARIMA model to synthetic ARIMA data as well as measured
sensor data. During the beginning of the training as well as
in later stages the proposed approach was able to achieve the
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lowest residual values.

E. Hyperparameter Evaluation

As our approach introduced the hyperparameter λ, we
conducted an evaluation showing the insensitivity of this
parameter. Therefore, the second setting of the synthetic data
was used with different configurations of the hyperparame-
ters in conjunction with the best-performing standard method
AMSGrad, as well as the basic and the momentum optimizer
for comparability. The different examined hyperparameters λ
have been chosen from a logarithmic scale, representing a
certain percentage of all training steps: 100 (=1%), 500 (=5%),
1000 (=10%), 2000 (=20%), 3000 (=30%), 5000 (=50%),
10000 (=100%).

In Figure 7 it can be seen that all hyperparameter con-
figurations achieved a better final residual compared to the
best performing existing method AMSGrad, although edge
configurations like the 1% and 100% configurations were
included, indicating an insensitivity of the proposed approach
to the introduced hyperparameter. The overall best performing
hyperparameter configuration was λ = 2000 while the 3000
and 5000 setting also arrived at the same final result, indicating
a broad range of viable hyperparameter configurations.

VI. CONCLUSION

We proposed a novel approach combining OGD optimizers
during the training by gradually changing the used optimizer
during the training. We provided a function to calculate the
linear combination and the experiments have shown that the
proposed approach outperforms the existing approaches. In all
conducted experiments, the overall error during forecasting
was lower than the error of the compared methods at any
point of training. Thus, the proposed approach was able to
adapt to the underlying process fast and afterwards fine-tune
the coefficients of the model in order to increase the quality.

As future work, we will focus on the combination of the
proposed approach with learning rate schedules as well as an

investigation of the transferability onto the learning of neural
networks.
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