
The Canonical Interval Forest (CIF) Classifier for
Time Series Classification

Matthew Middlehurst
School of Computing Sciences

University of East Anglia
Norwich, United Kingdom

James Large
School of Computing Sciences

University of East Anglia
Norwich, United Kingdom

Anthony Bagnall
School of Computing Sciences

University of East Anglia
Norwich, United Kingdom

Abstract—Time series classification (TSC) is home to a number
of algorithm groups that utilise different kinds of discriminatory
patterns. One of these groups describes classifiers that predict
using phase dependant intervals. The time series forest (TSF)
classifier is one of the most well known interval methods, and
has demonstrated strong performance as well as relative speed
in training and predictions. However, recent advances in other
approaches have left TSF behind. TSF originally summarises
intervals using three simple summary statistics. The ‘catch22’
feature set of 22 time series features was recently proposed to
aid time series analysis through a concise set of diverse and
informative descriptive characteristics. We propose combining
TSF and catch22 to form a new classifier, the Canonical Interval
Forest (CIF). We outline additional enhancements to the training
procedure, and extend the classifier to include multivariate
classification capabilities. We demonstrate a large and significant
improvement in accuracy over both TSF and catch22, and show it
to be on par with top performers from other algorithmic classes.
By upgrading the interval-based component from TSF to CIF, we
also demonstrate a significant improvement in the hierarchical
vote collective of transformation-based ensembles (HIVE-COTE)
that combines different time series representations. HIVE-COTE
using CIF is significantly more accurate on the UCR archive than
any other classifier we are aware of and represents a new state
of the art for TSC.

Index Terms—Time series, Classification, Ensembles, HIVE-
COTE, Multivariate

I. INTRODUCTION

Time series classification (TSC) has experienced a rapid
algorithmic advancement in predictive performance over the
last decade. Prior to this, the one nearest neighbour with
dynamic time warping distance classifier, with warping win-
dow set through cross validation (DTWCV), was considered
the gold standard benchmark and difficult to beat. However,
a wide scale survey and evaluation of TSC literature [1]
found a number of classifiers able to significantly improve
on DTWCV, and formed a taxonomy of similar approaches
based on representations of discriminatory features. This tax-
onomy grouped algorithms into categories based on the rep-
resentations: distance-based; shapelet-based; dictionary-based;
frequency-based; and interval-based (more details are provided
in Section II).

This work is supported by the UK Engineering and Physical Sciences
Research Council (EPSRC) iCASE award T206188 sponsored by British
Telecom.

Three algorithms proposed subsequent to this evaluation
have significantly higher accuracy than all of those evaluated
in [1] and can claim to be among the state of the art for
general-purpose TSC. These algorithms also represent the
best of three alternative approaches to leveraging different
representations for TSC. The hierarchical vote collective of
transformation-based ensembles (HIVE-COTE) [2] encapsu-
lates representations within modules containing algorithm(s)
based on a single representation, then ensembles over these
distinct modules. The time series combination of hetero-
geneous and integrated embeddings forest (TS-CHIEF) [3]
embeds multiple representations within the nodes of a decision
tree, then ensembles many trees in a way similar to random
forest. Thirdly, a bespoke representation for the dataset can be
learned through deep learning approaches which have gained
in popularity recently within TSC research. InceptionTime [4],
an ensemble of randomly initialised ResNet-style networks
with Inception modules, is currently the strongest of these.

Our aim is to advance state of the art in TSC by improving
one component of HIVE-COTE. HIVE-COTE consists of five
modules, each of which represents the best in class (at the time
of publication in 2017) for the five different representations
proposed in [1]. Our focus is on interval-based classifiers. This
class of algorithms derive features of series from randomly
selected, but constant over series, intervals. Through taking
multiple intervals and randomisation, interval-based classifiers
are able to mitigate against regions of series that may confound
other algorithms due to, for example, high noise or constancy.
These classifiers perform best when the particular location in
time of discriminatory features is important for class mem-
bership. An example of this is shown in the EthanolLevel
problem presented in Figure 1. This describes the visible-
near infrared spectra of suspect spirits, where in this case the
aim is to predict the concentration of ethanol in the sample.
Based on the resonances of ethanol around these ranges, a
human expert would know to look at a particular interval of
wavelengths. While the noise in the center would confound
whole series methods such as DTWCV, interval methods can
better extract and summarise the discriminatory subseries. If
we were to label the samples according to other factors, such
as the presence of artificial caramel colouring, a different
interval may be appropriate to use.

Time series forest (TSF) [5] was an early example of an

ar
X

iv
:2

00
8.

09
17

2v
1 

 [
cs

.L
G

] 
 2

0 
A

ug
 2

02
0



Fig. 1. Time series from the EthanolLevel dataset. While the middle portion
(visible light wavelengths) contains the greatest variation, a particular interval
(into the near infrared) contains the most discriminatory information for
ethanol concentration. An interval-based classifier may be able to compensate
for the confounding effect of the visible spectrum.

interval-based forest of trees ensemble for TSC. TSF has
been shown to be significantly better than DTWCV [1], and
represents the interval-based group of algorithms in HIVE-
COTE. It has a number of secondary desirable properties it
holds common with random forests: TSF is very fast to train;
it is robust to parameter settings, with parameter tuning having
no significant overall effect; and the trained forest can be
post-processed to extract the importance of different intervals
towards classification [5] - a useful tool for interpreting the
model. However, TSF is, on average, the weakest classifier in
the HIVE-COTE ensemble in terms of predictive power.

TSF works on only three basic summary stats for each
interval: the mean; standard deviation; and slope. Recently,
a set of 22 features, the canonical time-series characteristics
(catch22) [6], have been proposed as good primitive summary
measures for time series. These features cover a diverse range
of concepts and are relatively quick to process. However, by
themselves they are not particularly useful for classification
when applied as a transform to the whole series. The resulting
classifier with a random forest of 500 trees built on the
transform is not significantly better than DTWCV.

Our primary contribution is to describe an algorithm for
embedding catch22 features in an adaptation of TSF. This new
classifier, the Canonical Interval Forest (CIF) is significantly
more accurate than TSF; it is not significantly worse than the
best recently proposed algorithms based on a single represen-
tation; and replacing TSF with CIF in HIVE-COTE results
in significant improvement. We present results for HIVE-
COTE with CIF that are significantly better than the best
known alternatives for univariate classification, TS-CHIEF and
InceptionTime. We additionally expand CIF for multivariate
classification, and demonstrate CIF’s strong performance in
this relatively immature domain.

Our secondary contribution, which facilitates the first, is to
provide an evaluation and comparison of eight TSC algorithms
described in Section II-A, using the recently expanded UCR
archive [7]. These algorithms have been proposed since the
bake off [1]. All the code to do this is open source and all the

code and results are available on the accompanying website.
The rest of this paper is structured as follows. Section II

provides a technical background to TSC and related algo-
rithms. Section III explains the changes made to TSF in order
to include catch22 features and form CIF, and Section IV
describes our experimental methodology. Section V describes
the results of investigations into the improvements made both
by CIF over TSF, and to HIVE-COTE with CIF’s inclusion
over TSF. In Section VI we compare the time and space
complexity of a range of classifiers and describe how CIF
can be used to aid interpretability and practical usage. We
demonstrate the utility of CIF with a case study using data
not currently in the UCR archive in Section VII. Finally, in
Section VIII we conclude and discuss future work.

II. TIME SERIES CLASSIFICATION

A time series is an ordered vector of continuous values
that is typically taken over fixed intervals of time, but may
be representative of other ordered data, e.g. an image out-
line. An instance (X, y) is a collection of d time series x
with measurements at m time points (x1, . . . , xm) and an
associated class label y. A dataset is a list of n instances,
T = {(X1, y1), . . . , (Xn, yn)}. Given a labelled dataset the
objective of a TSC classifier is to predict the class of new input
time series using models derived during training. We consider
the problem of univariate, equal length series in our main
results. To demonstrate the robustness of CIF, however, we
show results for a range of multivariate datasets and examine
an unequal length problem as a case study.

A. Current State of the Art

There have been significant recent advances in time series
classification. Space restrictions mean we can give only the
briefest of summaries of this work.

Distance-based classifiers use time series specific dis-
tance functions as the basis of classification. Proximity forest
(PF) [8] is a classifier that constructs an ensemble of trees built
on a randomised selection of time series distance functions. It
is currently the most accurate distance based approach, beating
the previous best, the Elastic Ensemble [9].

Dictionary-based classifiers use sliding windows and dis-
cretisation to find words in a time series, then classify based
on the distribution of these words. WEASEL [10] and S-
BOSS [11] are dictionary based algorithms that have been
shown to be state of the art for this kind of approach [12]. Both
are significantly more accurate than the previous best, the Bags
of Symbolic-Fourier-Approximation Symbols (BOSS) [13].

Shapelet-based algorithms use phase independent sub-
series as the basis for classification. Shapelet transform-based
algorithms have historically used full enumeration of the
shapelets in the train data. This is unnecessary, and often leads
to over fitting. The shapelet transform classifier (STC) [14]
is a shapelet transform based classifier that operates under a
maximum search time. In one hour of searching per dataset,
it finds a transform that is not significantly worse than full



enumeration. STC includes other improvements that make it
significantly more accurate than the original transform [15].

Spectral classifiers use features in the frequency domain.
The most successful of these to date is RISE [16], a tree
ensemble that extracts spectral features from intervals.

Interval-based classifiers in the time domain are our focus
of interest. The time series forest (TSF) [5] is described in
detail in Section II-B. Two later interval-based algorithms that
were more complex successors to TSF, the Time Series Bag of
Features [17] and the LSF [18] have been shown to be no more
accurate than TSF on average, and considerably slower [1].

The most successful approaches combine these types of fea-
tures. HIVE-COTE [2] is a meta ensemble of five classifiers,
one for each representation: the Elastic Ensemble (EE) [9],
BOSS [13], STC, RISE and TSF. TS-CHIEF [3] is a tree
ensemble that uses a combination of distance, dictionary and
spectral features. Unsurprisingly, deep learning approaches to
time series classification have become very popular. However,
many deep learning algorithms do not appear to perform that
well [19], at least on the UCR archive which contains a number
of datasets that may be too small for effective deep learning
training. The counter-example to this and the best current deep
learning classifier is InceptionTime [4].

B. Time Series Forest (TSF)

TSF [5] aims to capture basic summary features from
intervals of a time series. For any given time series of length m
there are m(m−1)/2 possible intervals that can be extracted.
TSF takes a random forest-like approach to sampling these
intervals. For each tree, k intervals are randomly selected,
each with a random start position and length. Each interval
is summarised by the mean, standard deviation and slope, and
the summaries of each interval are concatenated into a single
feature vector of length 3k for each time series. A decision
tree is built on this concatenated feature vector. New cases are
classified using a majority vote of all trees in the forest.

The version of TSF used in the bake off [1] employed the
random tree used by random forest. However, the decision tree
described in [5] has some minor differences to the random
tree. It makes no difference in terms of accuracy, but the
tree from [5], the time series tree, has advantages in terms
of interpretability. The computational complexity of TSF is
O(nlog(n) ·m · r) [5], where r is the number of trees in the
forest.

C. Canonical Time Series Characteristics (catch22)

catch22 [6] is a set of 22 descriptive features for use in
time series analysis. The motivation for catch22 is to form a
concise and informative subset of the time series features from
the 7658 contained in the hctsa toolbox [20]. These features
could be used in any mining context. However, the process of
selection of features and the experimentation presented in [6]
is primarily based on classification with the UCR archive.

From the original 7658 hctsa features, 766 features sensitive
to mean and variance were removed due to the fact that the
majority of the data in the UCR archive have been normalised.

This was further pruned down to 4791 candidates by removing
features which cannot be calculated on over 80% of datasets.
This failure is caused by characteristics of the data such as
repeating values and negative values. A three step process
was used to further reduce the number of features. For each
feature, a stratified cross-validation was performed over each
dataset in the UCR archive using a decision tree classifier.
Features which performed significantly better than random
chance (according to the class-balanced accuracy metric) were
retained. These significant features were then sorted by their
balanced accuracy, and those below a threshold were removed.
A hierarchical clustering was performed on the correlation
matrix of the remaining features to remove redundancy. These
clusters were sorted by balanced accuracy and a single feature
was selected from the 22 clusters formed, taking into account
balanced accuracy results, computational efficiency and inter-
pretability.

The catch22 features cover a wide range of concepts such
as basic statistics of time series values, linear correlations,
and entropy. The computational complexity for computing the
catch22 features is O(n ·m1.16) [6], with the exponent on the
series length found through computational experiments [6].
For classification, the obvious way to use catch22 is as a
transform prior to building a classifier. The reported results [6]
are found using an decision tree classifier, although the default
implementation in code uses a random forest.

III. CANONICAL INTERVAL FOREST CLASSIFIER (CIF)

catch22 summarises time series features very concisely, but
classifier’s built on catch22 transformation over the whole
series are significantly worse than alternative feature based ap-
proaches. TSF is very fast and provides diversity that improves
HIVE-COTE, but as a stand alone classifier it is significantly
worse than two HIVE-COTE components, BOSS and STC.
Our research question was whether by replacing the three sim-
ple summary features used in TSF with the more descriptive
catch22 feature sets we could find a significantly better interval
classifier which in turn could lead to an improvement in HIVE-
COTE. Our initial approach on the way to forming CIF is to
simply replace the feature extraction operations with no further
alterations. We call this feature-swapped version ‘hybrid’. The
feature set changes from f(·) = {mean, stdev, slope} to
f(·) = {c22f1, c22f2, . . . , c22f22}, where c22fi indicates the
ith canonical feature.

Experimentation presented in Section V shows hybrid is
significantly more accurate than TSF, but this comes at a
time overhead. catch22 features are near-linear to compute,
but clearly still more expensive overall than calculating just
the mean, standard deviation and slope. There are also char-
acteristics of the catch22 features that cause a large time
overhead for some data. Two features in particular, the positive
and negative ‘DN OutlierInclude’ features, took a very long
time to compute on certain intervals of unnormalised datasets,
which exhibit large absolute value extremes. Because of this,
CIF uses normalised intervals for these two catch22 features.
The rest of the features are calculated on the unnormalised



intervals, as the absolute values within particular intervals can
hold important discriminatory information for those features
that do leverage it acceptably.

We include the three TSF features along with the catch22
features in CIF, since evidently for some problems these
are sufficient by themselves and very cheap to process. We
leverage the larger total feature space and inject additional
diversity into the ensemble by randomly sampling the 25
features for each tree. This has the added benefit of improving
time efficiency. By default we set the number of features
subsampled for each a tree, a, to 8. We found this value to
be the smallest well-performing value on average during our
exploratory experiments. Finally, we employ the time series
tree [5] originally used by TSF rather than the random tree
used in the open source Java implementation [1].

TSF was originally designed for univariate time series. We
can expand the use of CIF to multivariate problems by ex-
panding the random interval search space, defining an interval
as coming from a random dimension, in addition to having
random positions and lengths. Consequently, we augment the
number of intervals selected per tree to k =

√
d ·
√
m.

The full training procedure for CIF is described in Algo-
rithm 1.

Algorithm 1 buildCIF(A list of n cases of length m with d
dimensions, T = (X,y))
Parameters: the number of trees, r, the number of intervals

per tree, k, and the number of attributes subsampled per
tree, a (default r = 500, k =

√
d ·
√
m, and a = 8)

1: Let F = (F1 . . .Fr) be the trees in the forest
2: for i← 1 to r do
3: Let S be a list of n cases (s1 . . . sn) with a ·k attributes

4: Let U be a list of a randomly selected attribute indices
(u1 . . . ua)

5: for j ← 1 to k do
6: b = rand(1,m− 3)
7: l = rand(b+ 3,m)
8: o = rand(1, d)
9: for t← 1 to n do

10: for c← 1 to a do
11: if uc <= 22 then
12: st,a(j−1)+c = c22Feature(uc,Xt,o,b, l)
13: else
14: st,a(j−1)+c = tsfFeature(uc,Xt,o,b, l)
15: Fi.buildT imeSeriesTree([S, y])

IV. EXPERIMENTAL METHODS

When evaluating the predictive performance of algorithms,
we make use of the univariate TSC datasets in the UCR
archive [7]. Experiments are run on 112 of the 128 datasets
in the archive; we have removed data that have unequal
length series or contain missing values, since most algorithm
implementations are unable to handle these scenarios. We also
remove the dataset Fungi as it only provides a single train

case for each class, making parameter optimisations difficult.
A summary of those of the 112 datasets that are new to the
archive can be found on the accompanying website1. The UCR
archive provides a default split into train and test sets. We
resample each dataset 30 times in a random stratified manner.
When presenting the performance of a classifier on a dataset,
we use the average score across 30 resamples. However, fold 0
is always the original provided split for ease of comparison to
other results. The resampling and all classifier parameters are
seeded by the dataset fold index, and as such all data, results
and analysis are reproducible. For our multivariate experiments
we use the 26 equal length datasets from the UEA multivariate
TSC archive [21], presenting results on the default train and
test split only.

We use two open source software tools that contain im-
plementations provided by the original algorithm designers.
tsml2 is a Weka compatible time series machine learning
toolkit that contains implementations of the majority of the
existing algorithms we have evaluated. sktime3 is scikit-
learn compatible toolkit for time series with a deep learning
variant called sktime-dl4. Our adaptations of these toolkits
and code to reproduce all experimental results are available on
the accompanying website.

When comparing two classifiers over multiple data sets,
we use a pairwise Wilcoxon signed-rank test on the scores
averaged over resamples. We present results of multiple clas-
sifiers over multiple data sets using an adaptation of critical
difference diagrams [22], with the change that all classifiers
are compared with pairwise Wilcoxon signed-rank tests, and
cliques formed using the Holm correction [23] rather than
the post-hoc Nemenyi test originally used by [22]. We assess
classifier performance with accuracy. We were constrained to
seven days computation for a single experiment (i.e. a single
resample of a data set with a particular classifier).

V. RESULTS

Our experiments are designed to answer the following
questions.
What is state of the art in TSC? In Section V-A we present
results for eight recently proposed classifiers on the expanded
UCR archive. We show why the interval-based representation
needs improving.
Does CIF improve over TSF, and how does it compare to
the best classifiers of alternative single representation? We
demonstrate the improvements made and compare CIF to the
best in class for the other representations in Section V-B. We
test the aptitude of CIF for multivarate data in Section V-C.
Does CIF improve HIVE-COTE? In Section V-D we com-
pare HIVE-COTE with CIF to state of the art.
How efficient is CIF in relation to other algorithms? In
Section VI-A we quantify the time and space efficiency of

1https://sites.google.com/view/icdm-cif/home
2https://github.com/uea-machine-learning/tsml
3https://github.com/alan-turing-institute/sktime
4https://github.com/sktime/sktime-dl



10 9 8 7 6 5 4 3 2 1

2.776 HIVE-COTE
3.125 TS-CHIEF

3.8177 InceptionTime
5.0573 STC
5.3073 PF5.5104WEASEL

5.6042S-BOSS
7.026TSF
8.1719DTWCV
8.6042catch22

Fig. 2. Critical difference diagram for rankings by classification accuracy of
eight recently proposed TSC algorithms, TSF and DTWCV.

CIF and propose a more efficient mechanism for estimating
test accuracy for CIF’s use in HIVE-COTE.

A. Recent TSC Algorithms

In Section II we described eight recently proposed algo-
rithms for TSC. We present the critical difference diagram for
the 97 problems all algorithms could complete for accuracy
(Figure 2). Due to space limitations, we only additionally
report area under the receiver operating characteristic (AU-
ROC) for our main contributions. The full results for classifiers
shown in our results for both these metrics, as well as balanced
accuracy and F1 score, are provided on the accompanying
website. Most algorithms finished at least 109 of the 112.
HIVE-COTE only completed 97. This was caused by the
Elastic Ensemble (EE) component. EE performs a ten fold
cross validation to find the HIVE-COTE weight, which slows
it down considerably. We include DTWCV for reference and
TSF as it is relevant to later results. The number adjacent to
each algorithm indicates the average rank over all problems
(lower is better). Solid bars represent cliques within which
there is no significant difference. Experiments were performed
with the parameters used in the paper of origin of each
classifier, with the exception of STC which uses a max search
time of 1 hour instead of full enumeration. These settings are
described on the accompanying website.

Our first observation is that DTWCV is not competitive with
modern TSC algorithms. On average, S-BOSS is 7% more
accurate per problem, and HIVE-COTE is 10.5% better. There
are obviously still scenarios where DTW will be useful for
classification and it has much broader applications. However,
we think that it is no longer hard to beat and, in isolation, is
not a valid benchmark for comparisons based on classification
accuracy. There are three clear cliques evident in the accuracy
ranks shown in Figure 2. catch22 is the only algorithm not
significantly better than DTWCV. Like DTW, catch22 has
applications beyond classification. However, using it as a
whole series transformation prior to classification is not very
effective. TSF is significantly better than both, but worse than
the first clique of modern classifiers: S-BOSS, WEASEL, PF
and STC. Each of these algorithms rely on a single representa-
tion/transformation.The top clique, InceptionTime, TS-CHIEF
and HIVE-COTE, contains algorithms that use combinations
of representations. Although the hybrid approaches are the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TSF ACC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

hy
br

id
 A

C
C

hybrid
is better here

TSF
is better here

Fig. 3. Scatter plot of TSF vs hybrid on 109 problems. Hybrid wins on 87
problems, ties on 3, and loses on 19 problems.

4 3 2 1

1.5231 CIF
1.8333 hybrid2.9769TSF

3.6667catch22

Fig. 4. Accuracy rank comparison for three interval classifiers and catch22
on 109 UCR problems.

most accurate, it is, in our opinion, worthwhile researching
new algorithms based on single representations. Some data
will be best approached by one representation based on the
domain specific problem definition. The four single represen-
tation algorithms evaluated all represent a significant improve-
ment on the previous best of class that are currently used in
HIVE-COTE. Our objective is to produce a new interval-based
algorithm that represents a significant improvement over TSF.

B. CIF as a standalone classifier

Our first experiment compares the hybrid classifier that uses
all of the catch22 features instead of the three TSF features.
This serves as a basic test of concept. Figure 3 presents a
pairwise scatter diagram comparing accuracies of TSF and
hybrid. The hybrid is significantly better than TSF. If we
examine the resamples on each dataset and perform a paired
sample t-test, we find that the hybrid is significantly better
on 76 datasets and significantly worse on just one. There
is improvement from using the catch22 features with TSF.
However, the simple usage of catch22 presents some problems.
The hybrid is drastically slower than TSF on some problems.
There are only results 109 problems in Figure 3 because
hybrid failed to complete three problems within 7 days. CIF
is designed to improve efficiency (see Section VI) but also
inject further diversity. Figure 4 shows the rank data for CIF,
catch22, TSF and the hybrid. It clearly demonstrates that CIF
improves the accuracy of the simple catch22-TSF hybrid. The
actual accuracy improvements over TSF and catch22 are not
small. The average improvement of CIF over all data sets is



5 4 3 2 1

2.8832 STC
2.8972 CIF
2.9019 PF

3.0794WEASEL
3.2383S-BOSS

Fig. 5. Accuracy rank comparison for CIF and latest single representation
classifiers.

5 4 3 2 1

2.6028 STC
2.6542 CIF
2.9813 PF

3.215WEASEL
3.5467S-BOSS

Fig. 6. AUROC rank comparison for CIF and latest single representation
classifiers.

4.56% against TSF and 6.34% vs catch22. CIF has higher
accuracy on 99 of the 109 problems.

CIF is the best in class for the interval-based classifiers.
Figure 5 compares CIF to the latest single representation
classifiers: PF; STC; WEASEL; and S-BOSS. There is no
significant difference between these five classifiers. Ranking
based on the AUROC metric (Figure 6), CIF performs sig-
nificantly better then S-BOSS and WEASEL. We conclude
it achieves our goal of developing an interval-based classifier
that is at least as good as other algorithms based on a single
representation.

C. CIF on multivariate data

We have demonstrated CIF’s performance on univariate
data. Strong performance here does not necessarily transfer
to the multivariate case, however. To demonstrate this we
compare to against a range of multivariate classifiers on the
UEA multivariate archive. DTW is still a reasonable bench-
mark in the multivariate case, using the different strategies
for generalisation described in [24]. DTWI assumes inde-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CIF ACC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
-B

O
S

S
 A

C
C

S-BOSS
is better here

CIF
is better here

Fig. 7. Scatter plot of S-BOSS and CIF. CIF wins on 59 problems, ties on
1, and loses on 47 problems.

7 6 5 4 3 2 1

2.5385 CIF
3.6538 gRSF
3.9808 DTW

A
4.2885 CBOSS

I

4.3269DTW
D

4.3462TSF
I

4.8654DTW
I

Fig. 8. Accuracy rank comparison for CIF and multivariate classifiers on 26
equal length UEA datasets.

pendence between dimensions, DTWD assumes dependence,
while DTWA adaptively selects between the two on an
instance by instance basis. The generalised random shapelet
forest (gRSF) [25] constructs an ensemble of shapelet trees,
randomly selecting the dimension each shapelet is generated
from. Also included are TSF and cBOSS [26], a more scalable
version of the HIVE-COTE dictionary component BOSS [13].
For both classifiers a model is trained for each dimension
independently, which are then ensembled with new cases
being classified using majority vote. We call these TSFI

and CBOSSI . We attempted to obtain results for two other
classifiers, however, we have needed to omit them: the deep
learning method TapNet [27], for which we could not satis-
factorily reproduce the results for using the authors code; and
WEASEL+MUSE [28], which required more than 500GB on
4 problems.

Figure 8 shows the critical difference diagram for CIF
and the multivariate classifiers presented. DTW remains a
good benchmark for multivariate data. TSF and cBOSS are
significantly better then univariate DTW, this does not translate
to the multivariate case. However, CIF performs significantly
better than the other algorithms used in the analysis. Whilst the
comparison is not exhaustive, it does demonstrate that it is easy
and intuitive to generalise CIF effectively for the multivariate
case.

D. CIF as a HIVE-COTE component

CIF is not better than other single representation classifiers,
so why do we need CIF if we already have STC, PF, S-BOSS
and WEASEL? It is not just a matter of the efficiency benefits
(discussed in Section VI). Despite there being no overall
difference between these single representation classifiers, there
is still significant diversity over specific problems. Figure 7
shows the accuracy scatter plot for CIF and S-BOSS. Each
representation specialises on different data characteristics,
causing large differences in accuracy. The same pattern can
be observed with the other classifiers, for example, CIF and
STC vary significantly over data. STC beats CIF by over
40% on PigCVP and PigAirwayPressure, whereas the opposite
is true with TwoPatterns. There are 12 problems with a
difference in accuracy of 10% or more. This diversity is
what helps HIVE-COTE perform so well. If CIF can improve
HIVE-COTE, then it is further evidence as to the value of
improving interval based approaches. To test this we replace
TSF with CIF and rerun HIVE-COTE, whilst leaving the other
components the same. To differentiate between the old and



4 3 2 1

2.1031 HC-CIF
2.5103 TS-CHIEF2.5773HIVE-COTE

2.8093InceptionTime

Fig. 9. Accuracy rank of three state of the art classifiers and HIVE-COTE
with CIF replacing TSF (HC-CIF) on 30 resamples of 97 UCR classification
problems.

4 3 2 1

1.9536 HC-CIF
2.4175 HIVE-COTE2.5TS-CHIEF

3.1289InceptionTime

Fig. 10. AUROC rank of three state of the art classifiers and HIVE-COTE
with CIF replacing TSF (HC-CIF) on 30 resamples of 97 UCR classification
problems.

new variants of HIVE-COTE, we shall call them HIVE-COTE
and HC-CIF respectively. Figure 9 gives the accuracy ranks
of the state of the art classifiers and HC-CIF. HC-CIF is
significantly more accurate than all three. This is also the case
for AUROC (Figure 10). We conclude that HC-CIF is the most
accurate classifier to date (to our knowledge) on the UCR time
series classification archive, and as such represents a genuine
advance in state of the art for this field. We stress we have
done nothing to HIVE-COTE except replace TSF with CIF.

Figure 11 show the scatter plots for HC-CIF against Incep-
tionTime, and includes the win/tie/lose statistics for informa-
tion. There is still wide variation, but the improvement from
HC-CIF is visually apparent. HC-CIF has, on average, 1.56%
higher accuracy than InceptionTime.

VI. CIF EFFICIENCY AND USABILITY

A. Time and space efficiency

CIF is significantly more accurate than TSF, but at what cost
in terms of time and memory? Figure 12 plots the average
difference in accuracy from a baseline (hybrid) against the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

HC-CIF ACC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

In
ce

pt
io

nT
im

e 
A

C
C

InceptionTime
is better here

HC-CIF
is better here

Fig. 11. Scatter plot of InceptionTime and HC-CIF. HC-CIF wins on 68
problems, ties on 5, and loses on 36 problems.

Fig. 12. A comparison of classifiers in terms of accuracy and train time.
The y-axis shows the average difference in accuracy from the default hybrid
approach. Time and accuracy are averaged over 104 UCR problems.

average run time on the UCR data for CIF and 6 algorithms
used in our previous comparisons. All experiments were
conducted in a single thread, even though some such as PF
and TS-CHIEF can employ multiple threads. This is to make
sure comparisons are fair.

At the extremes, we see TSF is by far the fastest, but the
least accurate; and that TS-CHIEF is the most accurate, but
the slowest. CIF is approximately eight times faster than the
hybrid, and is the fastest of the single representation classifiers
displayed in Figure 5, between which there is no significant
difference in accuracy. CIF-Fast is a reduced form of CIF with
fewer trees (250) and intervals per tree (

√
m

0.85). We include
it to demonstrate that, if the problem is very large, CIF can be
configured to be faster with little loss of accuracy. To further
improve usability, we provide a contracted version of CIF in
line with other HIVE-COTE components [14], [16], [26] that
adds trees to the ensemble incrementally. The ability to set
a fixed time to train until allows a degree of certainty for
time sensitive training requirements, such as clusters with a
maximum job time limit.

Figure 13 characterises the memory footprint of six al-
gorithms using simulated data. We fix the number of cases
and increase series length. TS-CHIEF and S-BOSS require
the most memory, (241% and 231% of that required by CIF
respectively). Both employ dictionary-based nearest neighbour
classifiers, which require storing representations of the whole
dataset. TSF memory usage was a surprise. We can explain
the relatively high memory usage by reference to the imple-
mentation. The Weka random tree it employs makes a local
copy of the data for every tree. This data is not stored after the
build phase, but it seems the Java garbage collection is slow
in deallocating the memory. The hybrid uses slightly more
memory than CIF due to the increased size of its feature space.

B. Model Visualisation

One benefit of TSF is that it can be used to evaluate the
relevance of regions of the time series. Temporal importance



0

200

400

600

800

1000

1200

100 200 300 400 500 600 700 800 900 1000

Pe
ak

 m
em

or
y 

us
ag

e 
(M

B)

Series Length

TS-CHIEF (241%)

S-BOSS (231%)

TSF (194%)

Hybrid (124%)

WEASEL (130%)

CIF

Fig. 13. Memory usage of six classifiers for varying series length. Figures
in brackets are the overall percentage of memory used in comparison to CIF.

Fig. 14. Temporal importance curves for the EthanolLevel problem. Higher
values indicate greater importance for classification. The dotted box indicate
the most important region as specified by a domain expert (see Figure 1).

curves [5] are a visualisation method that displays the im-
portance of time series intervals to classification. To achieve
this, the information gain of each node’s splitting attribute is
collected for all trees in the forest. Each attribute the trees are
built on corresponds to a summary feature and a time interval.
A curve is created for each summary feature, adding the gain
from any node split to its curve at the time points covered
by its interval. We can adapt this algorithm for CIF, although
displaying all 25 features can be too cluttered. We display the
top v = 3 features by max gain over all time points, as these
have effectively been discovered to be the most important, in
addition to the mean of all features for each time point.

Figure 14 displays the CIF temporal importance curves for
the EthanolLevel problem shown previously in Figure 1. It

demonstrates that the most important region for classification
is the same region identified by a domain expert. While by
default CIF subsamples features per tree, we have not done this
for the above as it can have a large impact on the production
of these curves. The temporal importance curves can be
generated for model visualisation and are still meaningful
while subsampling. However, randomly restricting access to
features, and therefore promoting weaker features that would
otherwise have lost to more consistently informative ones
when splitting, may not give the best representation to perform
a higher level analysis of a time series problem. The goals
of maximising accuracy, minimising computational cost, and
maximising interpretability, often run counter to each other.

C. Out-of-bag error estimates
CIF significantly improves HIVE-COTE. However, HIVE-

COTE requires an estimate of the test accuracy from the train
data for its weighting scheme. For the results presented in
Section III, we found these estimates through ten fold cross
validation. This cross validation is not included in the timings
shown in Figure 12. This extra time overhead is one of the
major disadvantages of HIVE-COTE, since it increases the run
time of the base classifiers by an order of magnitude. Hence,
we investigate other ways of estimating the test accuracy.

One alternative is to mimic random forest and use bagging
with CIF. This means the out-of-bag accuracy can be used
for the weight for HIVE-COTE. Unfortunately, our experience
with bagging for other tree based ensembles for time series
data has shown it makes the final classifier significantly worse
than building on the whole train data. Given we wish to build
the final model on the full data for testing, the question is
whether there is any difference using bagging estimates or
cross validation estimates of the full model test accuracy,
and whether there is any resulting impact on HIVE-COTE.
Table I shows the difference in actual test accuracy and that
predicted from the train data. Cross validation under estimates
test accuracy by 2.86% on average. Bagging has lower error
when predicting the test accuracy of a bagged classifier, but
the actual test accuracy is significantly lower. Our compromise
of using bagging to estimate test accuracy but the full model to
predict new cases allows us to achieve lower estimation error
than CV approximately five times faster. We have verified that
using the bagged estimates within HIVE-COTE to weight the
CIF module’s output does not make any overall significant
difference to HIVE-COTE performance.

TABLE I
PERFORMANCE IN ESTIMATING TEST ERROR BY VARIOUS MEANS FOR

CIF, AVERAGED OVER 112 UCR DATASETS.

CV+Full Bagging Bagging+Full
Actual Test Acc 84.61% 83.46% 84.61%
Estimated Test Acc 81.75% 82.10% 82.10%
Difference 2.86% 1.37% 2.52%

VII. CASE STUDY

We demonstrate the usefulness of CIF by using the three
Asphalt datasets first presented in [29]. The problem involves



predicting the condition of a road based on motion data. Data
is recorded on a smart phone installed inside a vehicle using a
flexible suction holder. This offers the potential for automated
monitoring and assessment of road conditions leading to
earlier and less costly interventions with faults. The Android
application Asfault [30] was used to collect accelerometer
data in the form of the three physical axes, latitude, longi-
tude, and velocity from GPS (Ax, Ay, Az). These axes are
converted into a univariate time series that represents the
acceleration magnitude (Am). This magnitude forms the time
series used in each problem. A sampling rate of 100 Hz
was used for each time series. These datasets cover three
separate problems related to road surface conditions. Asphalt-
Regularity looks at road deterioration using driver comfort
as a metric. A road is classified as regular or deteriorated.
The Asphalt-PavementType problem is to classify the surface
type of the road as either dirt, cobblestone or asphalt. The
Asphalt-Obstacles problem is to classify whether the vehicle
is crossing one of a set of common road obstacles: speed
bumps; vertical patches; raised pavement markers; and raised
crosswalks. Table II presents basic summary stats for the
datasets. The series are unequal length, centred around zero,
but not normalised.

TABLE II
SUMMARY INFORMATION FOR THE ASPHALT DATA PRESENTED IN [29].

Asphalt-
Regularity

Asphalt-
PavementType

Asphalt-
Obstacles

Train Size 751 1055 390
Test Size 751 1056 391
Min Series Length 66 66 111
Max Series Length 4201 2371 736
No. Classes 2 3 4

1-NN classifiers were used for this problem in [29], each
using a range of elastic distance measures combined with
complexity invariant distance (CID) [31]. We compare against
the best reported results for both the univariate and multivariate
versions. Many of the classifiers we test are unable to handle
series of different length. A common initial strategy for
dealing with unequal length series is to zero pad the data
so that all series are the same length as the longest. Whilst
standard, this approach can introduce features that confound
classifiers, particularly if the padding is extreme, as in this
case. We believe interval-based classifiers such as CIF have an
inherent tolerance to issues caused by padding. Experiments
are conducted using the same methods described in Section IV.

Results for the three asphalt datasets are shown in table III.
The best performing single representation classifier is CIF and
the best overall is InceptionTime. CIF beats HC-CIF (HIVE-
COTE with CIF) on two of the three problems. Analysis of
HC-CIF shows that the performance of the RISE component
reduced the overall accuracy of the meta ensemble. RISE takes
spectral features on a single interval per tree, which supports
our belief that the multiple intervals taken by CIF mitigate the
impact of padding. Furthermore, we omit EE from this version
of HIVE-COTE because it could not complete within our time

TABLE III
CLASSIFIER ACCURACY ON THREE ASPHALT DATA SETS OVER 30

RESAMPLES. BEST RESULTS FROM [29] WERE AVERAGED OVER 5 2-FOLD
CROSS-VALIDATIONS

Asphalt-
Regularity

Asphalt-
PavementType

Asphalt-
Obstacles

Best [29] Am 0.9648 0.8066 0.8113
Best [29] AxAyAz 0.9848 0.8827 0.7944
CIF Am 0.9863 0.9015 0.8257
CIF AxAyAz 0.9613 0.8594 0.7877
TSF 0.9736 0.8647 0.7982
S-BOSS 0.8154 0.6223 0.8335
STC 0.9251 0.8173 0.8209
RISE 0.5077 0.3864 0.4038
PF 0.9836 0.8775 0.8891
TS-CHIEF N/A N/A 0.8858
HC-CIF 0.9482 0.8704 0.8408
InceptionTime 0.9860 0.9369 0.9100

constraints. TS-CHIEF did not complete two of the problems
within our 7 day limit.

Figure 15 displays the CIF temporal importance curves
for the Asphalt-PavementTypes problem with no subsampling.
From this we can discern that time points in the range from
400-700 are the most important in determining pavement type.
The most informative features in descending order of max
information gain are mode of z-scored distribution using a 10-
bin histogram, the longest period of consecutive values above
the mean, and the proportion of slower timescale fluctuations
that scale with linearly rescaled range fits.

VIII. CONCLUSION

Our contribution is to propose a new time series classifier,
CIF, that combines the best elements of TSF and catch22
in a novel way. CIF is significantly more accurate than
TSF and catch22. It is not significantly worse than the best
other classifiers built on a single representation (WEASEL,
S-BOSS, PF and STC) and is generally faster and requires
less memory than them. When CIF replaces TSF in HIVE-
COTE the resulting classifier, HC-CIF, is significantly more
accurate than HIVE-COTE, TS-CHIEF and InceptionTime.
HC-CIF represents a new state of the art for TSC in terms
of classification accuracy on the UCR archive.

There are many other improvements we could attempt with
HIVE-COTE. For example, we could have used PF and S-
BOSS instead of EE and BOSS. However, that would have
introduced more sources of variation and obscured our core
contribution: CIF is a new classifier that is best of its class,
and by making the single change in HIVE-COTE of replacing
TSF with CIF, the result is a classifier with significantly higher
accuracy on average than the current state of the art.

ACKNOWLEDGEMENTS

The experiments were carried out on the High Performance
Computing Cluster supported by the Research and Specialist
Computing Support service at the University of East Anglia.
Our thanks to Carl Lubba for help with setting up and running
the sktime catch22 version used in our initial investigations.



Fig. 15. Top shows the example time series for the Asphalt-PavementType
problem with class separated by colour. Bottom shows the temporal impor-
tance curves for the Asphalt-PavementType problem.

REFERENCES

[1] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, “The great
time series classification bake off: a review and experimental evaluation
of recent algorithmic advances,” Data Mining and Knowledge Discovery,
vol. 31, no. 3, pp. 606–660, 2017.

[2] J. Lines, S. Taylor, and A. Bagnall, “Time series classification with hive-
cote: The hierarchical vote collective of transformation-based ensem-
bles,” ACM Transactions on Knowledge Discovery from Data (TKDD),
vol. 12, no. 5, p. 52, 2018.

[3] A. Shifaz, C. Pelletier, F. Petitjean, and G. I. Webb, “Ts-chief: a scalable
and accurate forest algorithm for time series classification,” Data Mining
and Knowledge Discovery, pp. 1–34, 2020.

[4] H. I. Fawaz, B. Lucas, G. Forestier, C. Pelletier, D. F. Schmidt,
J. Weber, G. I. Webb, L. Idoumghar, P.-A. Muller, and F. Petitjean,
“Inceptiontime: Finding alexnet for time series classification,” arXiv
preprint arXiv:1909.04939, 2019.

[5] H. Deng, G. Runger, E. Tuv, and M. Vladimir, “A time series forest for
classification and feature extraction,” Information Sciences, vol. 239, pp.
142–153, 2013.

[6] C. H. Lubba, S. S. Sethi, P. Knaute, S. R. Schultz, B. D. Fulcher,
and N. S. Jones, “catch22: Canonical time-series characteristics,” Data
Mining and Knowledge Discovery, vol. 33, no. 6, pp. 1821–1852, 2019.

[7] H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi,
C. A. Ratanamahatana, and E. Keogh, “The ucr time series archive,”
IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 6, pp. 1293–1305,
2019.

[8] B. Lucas, A. Shifaz, C. Pelletier, L. ONeill, N. Zaidi, B. Goethals,
F. Petitjean, and G. I. Webb, “Proximity forest: an effective and scalable
distance-based classifier for time series,” Data Mining and Knowledge
Discovery, vol. 33, no. 3, pp. 607–635, 2019.

[9] J. Lines and A. Bagnall, “Time series classification with ensembles
of elastic distance measures,” Data Mining and Knowledge Discovery,
vol. 29, no. 3, pp. 565–592, 2015.

[10] P. Schäfer and U. Leser, “Fast and accurate time series classification with
weasel,” in Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management, 2017, pp. 637–646.

[11] J. Large, A. Bagnall, S. Malinowski, and R. Tavenard, “On time
series classification with dictionary-based classifiers,” Intelligent Data
Analysis, vol. 23, no. 5, pp. 1073–1089, 2019.

[12] A. Bagnall, J. Large, and M. Middlehurst, “A tale of two toolkits, report
the second: bake off redux. chapter 1. dictionary based classifiers,”
ArXiv e-prints, vol. arXiv:1911.12008, 2019. [Online]. Available:
http://arxiv.org/abs/1911.12008

[13] P. Schäfer, “The boss is concerned with time series classification in the
presence of noise,” Data Mining and Knowledge Discovery, vol. 29,
no. 6, pp. 1505–1530, 2015.

[14] A. Bostrom and A. Bagnall, “Binary shapelet transform for multiclass
time series classification,” in Transactions on Large-Scale Data-and
Knowledge-Centered Systems XXXII. Springer, 2017, pp. 24–46.

[15] J. Lines, L. M. Davis, J. Hills, and A. Bagnall, “A shapelet transform
for time series classification,” in Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2012, pp. 289–297.

[16] M. Flynn, J. Large, and A. Bagnall, “The contract random interval
spectral ensemble (c-rise): the effect of contracting a classifier on
accuracy,” in International Conference on Hybrid Artificial Intelligence
Systems. Springer, 2019, pp. 381–392.

[17] M. G. Baydogan, G. Runger, and E. Tuv, “A bag-of-features framework
to classify time series,” IEEE transactions on pattern analysis and
machine intelligence, vol. 35, no. 11, pp. 2796–2802, 2013.

[18] M. G. Baydogan and G. Runger, “Time series representation and
similarity based on local autopatterns,” Data Mining and Knowledge
Discovery, vol. 30, no. 2, pp. 476–509, 2016.

[19] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller,
“Deep learning for time series classification: a review,” Data Mining
and Knowledge Discovery, vol. 33, no. 4, pp. 917–963, 2019.

[20] B. D. Fulcher and N. S. Jones, “hctsa: A computational framework for
automated time-series phenotyping using massive feature extraction,”
Cell systems, vol. 5, no. 5, pp. 527–531, 2017.

[21] A. Bagnall, H. A. Dau, J. Lines, M. Flynn, J. Large, A. Bostrom,
P. Southam, and E. Keogh, “The uea multivariate time series classi-
fication archive, 2018,” arXiv preprint arXiv:1811.00075, 2018.

[22] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine learning research, vol. 7, no. Jan, pp. 1–30, 2006.

[23] S. Garcia and F. Herrera, “An extension on“statistical comparisons of
classifiers over multiple data sets”for all pairwise comparisons,” Journal
of Machine Learning Research, vol. 9, no. Dec, pp. 2677–2694, 2008.

[24] M. Shokoohi-Yekta, B. Hu, H. Jin, J. Wang, and E. Keogh, “Generalizing
dtw to the multi-dimensional case requires an adaptive approach,” Data
mining and knowledge discovery, vol. 31, no. 1, pp. 1–31, 2017.

[25] I. Karlsson, P. Papapetrou, and H. Boström, “Generalized random
shapelet forests,” Data mining and knowledge discovery, vol. 30, no. 5,
pp. 1053–1085, 2016.

[26] M. Middlehurst, W. Vickers, and A. Bagnall, “Scalable dictionary
classifiers for time series classification,” in International Conference
on Intelligent Data Engineering and Automated Learning, ser. Lecture
Notes in Computer Science. Springer, 2019, pp. 11–19.

[27] X. Zhang, Y. Gao, J. Lin, and C.-T. Lu, “TapNet: Multivariate time
series classification with attentional prototypical network,” in In proc.
34th AAAI conference on artificial intelligence, 2020.

[28] P. Schäfer and U. Leser, “Multivariate time series classification with
weasel+ muse,” arXiv preprint arXiv:1711.11343, 2017.

[29] V. M. Souza, “Asphalt pavement classification using smartphone ac-
celerometer and complexity invariant distance,” Engineering Applica-
tions of Artificial Intelligence, vol. 74, pp. 198–211, 2018.

[30] V. M. Souza, E. A. Cherman, R. G. Rossi, and R. A. Souza, “Towards
automatic evaluation of asphalt irregularity using smartphones sensors,”
in International Symposium on Intelligent Data Analysis. Springer,
2017, pp. 322–333.

http://arxiv.org/abs/1911.12008


[31] G. E. Batista, E. J. Keogh, O. M. Tataw, and V. M. De Souza, “Cid:
an efficient complexity-invariant distance for time series,” Data Mining
and Knowledge Discovery, vol. 28, no. 3, pp. 634–669, 2014.


	I Introduction
	II Time Series Classification
	II-A Current State of the Art
	II-B Time Series Forest (TSF)
	II-C Canonical Time Series Characteristics (catch22)

	III Canonical Interval Forest Classifier (CIF)
	IV Experimental Methods
	V Results
	V-A Recent TSC Algorithms
	V-B CIF as a standalone classifier
	V-C CIF on multivariate data
	V-D CIF as a HIVE-COTE component

	VI CIF EFFICIENCY AND USABILITY
	VI-A Time and space efficiency
	VI-B Model Visualisation
	VI-C Out-of-bag error estimates

	VII Case Study
	VIII Conclusion
	References

