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Abstract—COVID-19 clinical trial design is a critical task in 
developing therapeutics for the prevention and treatment of 
COVID-19. In this study, we apply a deep learning approach to 
extract eligibility criteria variables from COVID-19 trials to 
enable quantitative analysis of trial design and optimization. 
Specifically, we train attention-based bidirectional Long Short-
Term Memory (Att-BiLSTM) models and use the optimal model 
to extract entities (i.e., variables) from the eligibility criteria of 
COVID-19 trials. We compare the performance of Att-BiLSTM 
with traditional ontology-based method. The result on a 
benchmark dataset shows that Att-BiLSTM outperforms the 
ontology model. Att-BiLSTM achieves a precision of 0.942, recall 
of 0.810, and F1 of 0.871, while the ontology model only achieves a 
precision of 0.715, recall of 0.659, and F1 of 0.686. The extracted 
variables can help characterize patient populations eligible for 
COVID-19 trials. Our analyses demonstrate that Att-BiLSTM is 
an effective approach for eligibility criteria parsing. 

Keywords—COVID-19, clinical trials, eligibility criteria, natural 
language processing, deep learning 

I. INTRODUCTION

COVID-19 is an infectious disease caused by a new 
coronavirus [1]. As of September 26, 2020, more than 32.6 
million coronavirus cases have been confirmed worldwide, with 
over 989,000 related deaths [2]. In the U.S. alone, there are more 
than 7 million coronavirus infections, with a death toll above 
203,000 [2], [3]. Given the ongoing trend of the infection and a 
lack of effective interventions, pharmaceutical companies and 
research organizations are racing to develop life-saving 
treatments. According to ClinicalTrials.gov, there are 3438 
studies for COVID-19 as of September 28, 2020 [4]. Only 
10.7% of the studies (368) are completed. 76.6% of the studies 
(2634) are either still recruiting patients or not yet recruiting [4]. 
Best practices are not available for clinical trial design and 
patient recruitment remains a significant challenge. 

Clinical trial planning with clear foresight is crucial. 
Fundamental requirements in clinical trial design include 
defining the research questions, endpoints, study arms, 
randomization, and eligibility criteria of the patient population 
[5]. Patient eligibility is often guided by the goal to generalize 
the results and minimize bias [5]. Overly restrictive patient 
selection has been reported to compromise study 
generalizability, reduce the benefit-cost ratio of clinical studies, 
and lead to the difficulty in interpreting and disseminating study 

results [6]. Recently, the FDA released new guidance on 
COVID-19 drug development, emphasizing the need for flexible 
trial designs and diverse patient populations [7]. 

Eligibility criteria play an essential role in defining the 
patient population or cohort. They describe the characteristics of 
the target populations of clinical studies. The criteria provide 
clinical practice guidelines for investigators to screen patients. 
The quality of criteria directly affects patient enrollment and 
study generalizability. The trial and error approach to define 
criteria often leads to many protocol amendments [6]. Feasibility 
assessment tools are needed to help investigators discover 
potential patient selection problems and make better eligibility 
criteria choices [8]. 

Clinical study design information is increasingly available 
publicly through public registries (e.g., ClinicalTrials.gov). In 
addition, the adoption of electronic health records, clinical data 
warehouses, and clinical data networks have generated 
enormous amounts of electronic patient data [6]. This has 
provided a new opportunity to transform the design of eligibility 
criteria using a data-driven approach. 

Eligibility criteria are documented as unstructured free-text, 
which is not readily suitable for automated cohort definition and 
knowledge reuse or sharing [9], [10]. Natural language 
processing (NLP) methods can be used to parse free-text 
eligibility criteria into a structured and computable 
representation. The core NLP task is information extraction, 
which includes named entity recognition (NER) and entity 
attributes and relations extraction [10]. 

A number of NER methods have been developed for criteria 
parsing including rule-based methods and machine learning 
based methods. Rule-based methods use knowledge bases or 
ontologies to transform criteria text into computable concepts 
[11], [12]. Rule-based NER strongly relies on the terms and their 
interrelations defined in the ontology. It cannot identify new 
terms or entities. Machine learning methods can address the off-
dictionary issue by learning from the way various concepts are 
used in written medical or life science language. For example, 
Kang et al. [13] annotated eligibility criteria from 230 
Alzheimer’s clinical trials to train conditional random field 
(CRF) models for entity recognition. However, traditional 
machine learning methods require sophisticated feature 
engineering to build accurate models. 
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More recently, deep learning methods have been introduced 
to enable more automatic and accurate extraction of entities in 
criteria parsing [14]. Deep learning is capable of understanding 
the semantic and syntactic relationship between words using a 
technique called “word embedding”. Another competitive edge 
is from the deep neural architectures which can capture more 
context and semantics in the data. Deep learning can recognize 
terms and concepts not present in the ontology and reduce the 
overhead of feature engineering in traditional machine learning. 

We explore a deep learning neural network, attention-based 
bidirectional Long Short-Term Memory (Att-BiLSTM), to 
extract entities from the eligibility criteria of COVID-19 trials. 
We leverage the annotation datasets described in [14] to train 
Att-BiLSTM models. We then apply an optimal model to all the 
COVID-19 eligibility criteria. To evaluate extraction quality, we 
develop an evaluation dataset from randomly sampled trials to 
measure the performance of Att-BiLSTM. We also compare its 
performance with that of ontology-based extraction using 
MeSH. We demonstrate that Att-BiLSTM outperforms the 
ontology-based method. This provides the rationale to choose 
the Att-BiLSTM extracted entities to represent the variables of 
cohort definition in COVID-19 trials. 

II. MATERIALS AND METHODS 

A. COVID-19 Dataset 

We retrieved COVID-19 clinical trials registered in 
ClinicalTrials.gov as of August 15, 2020. The initial dataset 
included 3012 trials. We excluded trials with no eligibility text 
and trials without clear headings of “inclusion criteria:” and 
“exclusion criteria:”, which led to 2998 trials. For each trial, we 
extracted the inclusion and exclusion criteria text and segmented 
it into sentences, where each sentence is a criterion. We obtained 
27,352 criteria in total for the 2998 trials. 

B. Attention-based BiLSTM 

Attention mechanism has gained popularity in image, speech 
and NLP fields [17], [18]. For NER task, attention mechanism 
has been introduced to enhance the BiLSTM model [14], [16]. 

We use a multi-layer BiLSTM based representation with 
attention over words [15]. Fig. 1 shows the architecture of 
attention-based BiLSTM for parsing a criterion. In the 
embedding layer, the criterion sentence is represented as a 
sequence of vectors ܺ = ,ଵݔ) ,ଶݔ … , ,௜ݔ … ,  ௜ is theݔ ௡), whereݔ
embedding vector of the word i, and n is the length of the 
sentence. We use the word2vec vectors that were pre-trained on 
the trial descriptions and eligibility criteria of over 300K trials 
present in ClinicalTrials.gov [14]. 

Next, the embeddings are given as input to a BiLSTM layer. 
A forward LSTM computes a vector ℎపሬሬሬԦ to represent the word i 
and its left context, and another backward LSTM computes a 
vector ℎపശሬሬሬ  to represent the word i and its right context. 
Concatenating the two vectors yield one representation of the 
word i in its context, ℎ௜. 

In the attention layer, an attention matrix A is used to 
calculate the similarity between the current target word and all 
words in the sentence. The attention weight value ܽ௜,௝  in the 

attention matrix is derived by comparing the i th current target 
word representation ݔ௜  with the j th word representation ݔ௝  in 
the sentence: ܽ௜,௝ = exp	(݁ݎ݋ܿݏ൫ݔ௜, ∑(௝൯ݔ exp	(ݔ)݁ݎ݋ܿݏ௜, ௞)௞ݔ  

Here, the score is defined as an alignment function with three 
alternatives including “Dot”, “Multiply” and “Add”. For Dot 
Attention, we simply dot the two representations together. For 
Multiply, we add in a single linear layer to Dot attention. For 
Add, we concatenate the representation together and then 
execute a 2-layer tanh multilayer perceptron (MLP). 

Then a context vector ܿ௜  is computed as weighted sum of 
each BiLSTM output ℎ௝: ܿ௜ =෍ ܽ௜,௝ℎ௝௡௝ୀଵ  

Next, the context vector and the BiLSTM output of the target 
word are concatenated as a vector to be fed to a tanh function to 
produce the output of attention layer ݖ௜. 

The CRF layer uses the ݖ௜ as features to make tagging 
decisions for each output ݕ௜. For a sequence of predictions ܻ ,ଵݕ)= ,ଶݕ … , (௡ݕ , its score is defined by the sum of transition 
scores and network scores: ݏ(ܺ, ܻ) = 	෍ ௬ܶ೔,௬೔శభ௡௜ୀ଴ +෍ ௜ܲ,௬೔௡௜ୀଵ  ܶ is a tagging transition matrix such that ௜ܶ,௝ represents the 
score of a transition from tag i to tag j. ݕ଴ and ݕ௡ are the start 
and end tags of the sentence. ܲ is the matrix of scores output, 
where the element ௜ܲ,௝ of the matrix is the score of the tag j of 
the word i in the sentence. 

Then a softmax function is used to compute the conditional 
probability for the sequence ܻ by normalizing the above score 
over all possible tag sequences ෨ܻ: ݌(ܻ|ܺ) = ݁௦(௑,௒)∑ ݁௦(௑,௒෨)௒෨  

During training, the objective of the model is to maximize 
the log probability of the correct tag sequence. During inference, 
the best tag sequence (output) with the maximum score is given 
by: ܻ∗ = ,ܺ)ݏ	ݔܽ݉݃ݎܽ ෨ܻ) 

This is computed by dynamic programming [15]. 

C. Ontology-based Entity Extraction 

Ontology-based NER is a rule-based approach. It recognizes 
terms and concepts in unstructured text by checking against the 
pre-defined concepts and relationships. We use the MeSH 
ontology to scan text mentions of conditions, treatments, clinical 
measures and demographics. The model checks the standard 
name and synonyms of each ontological concept to find the 
matching terms in the criteria and automatically standardize the 
terms by assigning the concept label.
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Fig. 1. The architecture of the attention-based BiLSTM model for criteria parsing. Figure adapted from [16]. 

D. Entity Normalization 

We normalize the extracted entities and use them as design 
variables to quantify clinical trials. The normalization process 
takes the following steps: 1) using fuzzy matching to link the 
extracted terms to MeSH ontologies; 2) using simple rules to 
standardize the non-matched terms, e.g., “pao2/fio2”, 
“pao2/fio2 ratio”, and “pao2 to fio2 ratio” are standardized to 
“pao2/fio2”; 3) using rule-based method to further standardize 
the same concept in heterogeneous formats, e.g., “hcq” and 
“hydroxychloroquine” are standardized to the same concept of 
“hydroxychloroquine”. 

III. RESULTS 

A. Att-BiLSTM Models 

We leverage the labeled dataset described in [14] to train 
NER models. This dataset includes 3,314 trials randomly 
sampled from ClinicalTrials.gov. We selected 11 entity types, 
including allergy, chronic disease, cancer, pregnancy, consent, 
treatment, clinical variables, language fluency, technology 
access, gender and age. This led to 92,937 entities for 42,542 
criteria. This dataset becomes the training data. We randomly 
sampled 10% of the data as the test data used for performance 
measure. 

As described in the Methods section, three attention methods 
(Dot, Multiply, Add) are designed for our Att-BiLSTM model. 
We trained the models with different attention methods on the 
training data using PyText [21]. The major hyper-parameters 
include LSTM dimension of 128, attention dimension of 64, 

MLP decoder hidden dimension of 256, dropout of 0.2, batch 
size of 64, and epochs of 10. 

To select the best method, we tested the effect of these 
methods on the model performance. Table I shows the accuracy 
and loss of the attention-based models with different alignment 
functions on the test data. 

TABLE I.  PERFORMANCES OF DIFFERENT ATT-BILSTM MODELS ON 
THE TEST DATA 

Attention Method Accuracy Loss 
Multiply 92.87 0.172 
Add 92.62 0.174 
Dot 92.52 0.181 
No attention 92.55 0.179 

 
The result shows that the model using the multiply attention 

method achieves the highest accuracy of 92.87% and lowest loss 
of 0.172. The dot attention achieves the lowest accuracy of 
92.52% and highest loss of 0.181. The reason could be that the 
dot attention is just a transformation of the input without any 
trainable weights. We select the multiply attention model as our 
final model for prediction. 

B. Entity Extraction and Normalization 

We use the selected Att-BiLSTM model to annotate the 
COVID-19 trials. We removed entities with a probability score 
less than 0.7 computed by Att-BiLSTM. Finally, 42,344 entities 
were extracted from 20,164 criteria for 2821 trials. We also use 
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the MeSH ontology model to annotate the same set of trials for 
comparison. 

Table II shows some samples of the extracted entities and the 
entity types. We can see that Att-BiLSTM deep learning result 
shows more details than the ontology modeling result. For 
example, given a term “known hypersensitivity to nivolumab”, 
Att-BiLSTM recognizes it as an allergy, while the ontology 
model only recognizes part of the term “nivolumab” as a drug. 
Also, the ontology model does not recognize terms not defined 
in the MeSH ontology, such as immune checkpoint inhibitors, 
arterial oxygen saturation, and language fluency. 

TABLE II.  EXAMPLE ENTITIES AND TYPES 

Example Att-BiLSTM 
annotation 

Ontology-model 
annotation 

Known hypersensitivity to 
nivolumab 

Allergy Drug 

Patient with a history of 
thymoma 
 

Chronic disease Diseases  

Active hematologic 
malignancy 

Cancer Diseases 

Pregnant Women 
 

Pregnancy Persons 

unwilling to practice a 
medically form 
contraception 

Contraception 
Consent 

Procedure 

immune checkpoint 
inhibitors 
 

Treatment Not found 

bone marrow 
transplantation 
 

Treatment Therapeutics 

arterial oxygen saturation 
 

Clinical variable Not found 

speaking and 
understanding English 
 

Language fluency Not found 

people who are not 
internet accessible 
 

Technology access Not found 

women Gender Persons 
age over 18 years old Age Age groups 

C. NER Performance Evaluation 

We further evaluate the NER performance using a 
quantitative approach. We create a benchmark dataset by 
randomly sampling 10 COVID-19 trials and manually labeled 
179 correct entities. We then use the dataset to evaluate the NER 
performance of Att-BiLSTM and the ontology model. Table III 
shows the performance of our models as evaluated on the 10 trial 
benchmark dataset. 

BiLSTM achieves a precision of 0.942, recall of 0.810, F1 
of 0.871, while MeSH ontology method only achieves a 
precision of 0.715, recall of 0.659, and F1 of 0.686.  

TABLE III.  PERFORMANCE MEASURE OF THE MODELS ON THE 10-TRIAL 
BENCHMARK DATASET 

Entity Recognition Precision Recall F1 
Att-BiLSTM model 0.942 (145/154) 0.810 (145/179) 0.871 
Ontology-based 
model 

0.715 (118/165) 0.659 (118/179) 0.686 

 
Since the quality of Att-BiLSTM deep learning is higher, we 

use the Att-BiLSTM extracted entities rather than the ontology-
based extracted entities. We then normalize the entity terms 
using the rule-based approached described in the Methods 
section. The normalized entities are used as variables to 
characterize clinical trials. 

D. Design Patterns 

The extracted variables can be used to quantify clinical trials. 
We show one example to demonstrate the utility of the extracted 
variables to find design patterns across COVID-19 trials. We 
categorize the variable types by the medical conditions labeled 
by ClinicalTrials.gov. Fig. 2 shows the heat map on the 
frequency of variable types across conditions. The row is the 
variable type, the column is the COVID-19 related conditions, 
and the value is the unique count of trials. Note only variables 
that occur over 10 times are shown. 

For COVID-19 specific studies, the most frequent entity 
types include chronic disease, treatment, age, pregnancy, and 
clinical variables. Other than COVID-19, acute respiratory 
distress syndrome and pneumonia are most frequent co-
occurring conditions. For acute respiratory distress syndrome, 
the most frequent entity types include chronic disease, 
treatment, clinical variable, and pregnancy. For pneumonia, the 
most frequent entity types include chronic disease, treatment, 
pregnancy, and age. For all trials, there is a general tendency to 
consider chronic diseases and treatments. 

We drill down the detailed variables for COVID-19 specific 
trials. The most frequent disease variables include HIV, 
pneumonia, respiratory failure, diabetes mellitus, and heart 
failure. The most frequent diagnosis and treatment variables 
include RT-PCR, mechanical ventilation, immunosuppressive 
agents, investigation therapies, and hydroxychloroquine. The 
most frequent clinical variables include oxygen saturation, spo2, 
respiratory rate, aspartate aminotransferases, and pao2/fio2. 

 
Fig. 2. Frequent eligibility criteria variables across COVID-19 and comorbidities

Sum of trials by entity type Conditions

Entity Type

Acute 
Kidney 
Injury

Acute 
Respiratory 
Distress 
Syndrome Anosmia Anxiety Cancer

Cardiovascul
ar Diseases COVID-19

Critical 
Illness

Cytokine 
Release 
Syndrome

Cytokine 
Storm Depression

Hydroxychlo
roquine

Infection 
Viral Pneumonia

Pregnancy 
Related

Respiratory 
Failure Stress Surgery

Virus 
Diseases

age 99 11 17 1303 10 10 77 14 10
allergy_name 59 729 32
cancer 39 25 459 34
chronic_disease 10 160 11 14 16 15 1991 18 11 14 10 127 26 10 12
clinical_variable 105 1074 76 15
contraception_consent 50 10 776 52
gender 60 817 52
language_fluency 11 88
pregnancy 113 1191 12 85 10 17 10
technology_access 11 103 10
treatment 11 150 19 24 1869 16 10 14 18 11 114 28 11 12
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IV. DISCUSSIONS 

Previous studies have tried to characterize COVID-19 trials 
in terms of treatments, single or double blinded design, 
randomization, and enrollment [19]. However, the authors are 
not aware of any studies that have focused on eligibility criteria 
analysis and cohort definition. 

We demonstrate that entity extraction provides an effective 
way to quantify clinical trial parameters in eligibility criteria and 
that deep learning returns more detailed result than the ontology-
based method.  

The ontology-based method (e.g., using MeSH) suffers from 
finding terms/entities (variables) that are not defined in the 
dictionary, which leads to low recall. The deep learning Att-
BiLSTM model can greatly improve the recall by finding off-
dictionary terms/entities with finer granularity. For example, 
given a term “known hypersensitivity to nivolumab”, Att-
BiLSTM recognizes it as an allergy, while the ontology model 
only recognizes the term “nivolumab” as a drug.  

The extracted entities/variables can be used for knowledge 
reuse and downstream machine learning applications such as 
predicting trial success rates [22]. We demonstrated a utility of 
the variables to find common design variables or patterns across 
trials. The most common disease variables include HIV, 
pneumonia, and respiratory failure; the most frequent diagnosis 
and treatment variables include RT-PCR, mechanical 
ventilation, and immunosuppressive agents; and the most 
frequent clinical variables include oxygen saturation, spo2, 
respiratory rate, aspartate aminotransferases, and pao2/fio2. 

These results correspond with previous findings. Recent 
studies have shown that pneumonia and acute respiratory 
distress syndrome are common comorbidities of COVID-19 
[23], [24]. RT-PCR is a common diagnosis method to confirm 
COVID-19 [25], [26]. A recent work on the COVID-19 severity 
index (CSI) shows that oxygen requirement is an important 
measure of critical illness [20]. 

The results also reveal the frequent design variables in co-
occurring conditions or comorbidities of COVID-19, such as 
acute respiratory distress syndrome and pneumonia. For all 
trials, there is a tendency to consider chronic diseases and 
treatments. This may imply that COVID-19 related clinical 
studies are very careful about selecting patient populations by 
considering patient history of chronic diseases and prior 
treatments. 

Our study has limitations in modeling the attributes of design 
variables, such as numeric values, negation, and temporal 
constraints. To support more detailed eligibility assessment for 
clinical studies, it is necessary to model all possible eligibility 
variables and all possible values. Therefore, more sophisticated 
information extraction models will be required. These variables 
and values will provide a more structured representation of the 
criteria, which unlocks the potential for more advanced pattern 
analysis and machine learning tasks. 

Another limitation is that we only used MeSH as an example 
ontology for the ontology-based model. Other ontologies such 
as UMLS and NCI Thesaurus will need to be tested. 

V. CONCLUSIONS 

In this study, we investigated the performances of different 
versions of Att-BiLSTM models to extract design variables from 
the COVID-19 eligibility criteria. The multiply attention method 
achieves the best performance with an accuracy of 92.87, while 
the dot attention method achieves the worst performance with 
an accuracy of 92.52. BiLSTM without attention achieves an 
accuracy of 92.55. This shows the impact of attention methods 
on the BiLSTM model performance.  

Our evaluation on a benchmark data shows that Att-BiLSTM 
outperforms the ontology model in parsing COVID-19 trials. 
Att-BiLSTM achieves a F1 of 0.871, while the MeSH ontology 
method only achieves a F1 of 0.686. Qualitative analysis also 
shows that Att-BiLSTM can extract more detailed entities than 
the ontology model. 

The extracted eligibility criteria variables provide a 
mechanism for characterizing patient populations eligible in 
COVID-19 trials. We used the extracted variables to find design 
patterns in COVID-19 eligibility criteria. Our result not only 
confirmed previous findings about COVID-19, but also 
discovered new knowledge about comorbidities. In summary, 
our study demonstrated the effectiveness of Att-BiLSTM deep 
learning in protocol criteria parsing. 
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