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ABSTRACT

CONTAINERIZATION OF MODEL FITTING WORKLOADS OVER SPATIAL DATASETS

Spatial data volumes have grown exponentially over the past several years. The number of do-

mains in which spatial data are extensively leveraged include atmospheric sciences, environmental

monitoring, ecological modeling, epidemiology, sociology, commerce, and social media among

others. These data are often used to understand phenomena and inform decision making by fitting

models to them. In this study, we present our methodology to fit models at scale over spatial data.

Our methodology encompasses segmentation, spatial similarity based on the dataset(s) under con-

sideration, and transfer learning schemes that are informed by the spatial similarity to train models

faster while utilizing fewer resources. We consider several model fitting algorithms and execution

within containerized environments as we profile the suitability of our methodology. Our bench-

marks validate the suitability of our methodology to facilitate faster, resource-efficient training of

models over spatial data.

ii



ACKNOWLEDGEMENTS

This research was supported by the National Science Foundation [OAC-1931363, ACI-1553685]

and the National Institute of Food & Agriculture [COL0-FACT-2019].

iii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Goals and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Approach Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Paper Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Partitioning and Segmenting Spatial Extents . . . . . . . . . . . . . . . . 9
3.3 Rigorous Training of Models . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Sizing containers based on distance from Centroids . . . . . . . . . . . . . 11
3.5 Warm-starting model training tasks via transfer learning . . . . . . . . . . 12
3.6 Inferring Suitable Container Sizes . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 4 Performance Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Assessing the Transfer Learning scheme . . . . . . . . . . . . . . . . . . 15

4.3.1 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.2 Gradient Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.3 Time-Series Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.4 Exploration of Container Sizing . . . . . . . . . . . . . . . . . . . . . . . 17
4.5 Rigorous, Light, and Moderate training using containers . . . . . . . . . . 18

Chapter 5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iv



LIST OF TABLES

4.1 Completion Times for different model fitting algorithms on differently sized clusters . 17
4.2 Cluster Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Maximum memory utilization for a single spatial extent . . . . . . . . . . . . . . . . . 18

v



LIST OF FIGURES

3.1 Partitioning spatial extents based on their distance from the cluster centroid. . . . . . . 12

4.1 Percentage decrease in convergence time for Linear Regression (over Macav2 dataset)
with Transfer Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Percentage decrease in convergence time for Gradient Boosting (over Macav2 dataset)
with Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Percentage decrease in convergence time for Time-Series Regression (over COVID-19
dataset) with Transfer Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.4 Convergence times for Linear Regression on NOAA dataset. . . . . . . . . . . . . . . 19
4.5 Completion times for Linear Regression on Macav2 dataset. . . . . . . . . . . . . . . 19
4.6 Linear Regression on Macav2 data - Memory Utilization for containerized vs. bare-

metal worker nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.7 Linear Regression on Macav2 data - CPU usage for containerized vs. bare-metal

worker nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.8 Linear Regression on NOAA data - CPU Usage for a container. . . . . . . . . . . . . . 21
4.9 Convergence times for Gradient Boosting over the NOAA dataset. . . . . . . . . . . . 21
4.10 Convergence times for Gradient Boosting over the Macav2 dataset. . . . . . . . . . . . 22
4.11 Gradient Boosting on Macav2 data - Memory Utilization for containerized vs. bare-

metal worker nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.12 Gradient Boosting on Macav2 data - CPU usage for Containerized (Optimized for

time), containerized (Optimized for memory), and bare-metal worker nodes. . . . . . . 23
4.13 Gradient Boosting on NOAA data - CPU Usage for a container. . . . . . . . . . . . . . 23
4.14 Gradient Boosting on Macav2 data - CPU Usage for a container. . . . . . . . . . . . . 24
4.15 Completion times for Time-Series Regression on the COVID-19 dataset. . . . . . . . . 24
4.16 Comparison of CPU Utilization for Time-Series Regression on the COVID-19 dataset

(Bare-metal vs. Containerized Dask). . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.17 Comparison of Memory Utilization for Time-Series Regression on the COVID-19

dataset (Bare-metal vs. Containerized Dask). . . . . . . . . . . . . . . . . . . . . . . 25
4.18 Time-series Regression on the COVID-19 dataset: CPU Usage on a single container. . 25
4.19 Time-series Regression on COVID-19: CPU Usage on a single container. . . . . . . . 26
4.20 Completion times for Time-Series Regression on the NOAA dataset. . . . . . . . . . . 26
4.21 Time-series Regression on NOAA: CPU Usage on a single container. . . . . . . . . . . 27

vi



Chapter 1

Introduction

Data volumes generated in several commercial, research, and academic domains have grown

exponentially. These data provide opportunities to extract insights. Modeling, via fitting models

to the data, is a dominant way to accomplish this. Models allow researchers to extract and discern

patterns from the data. These models encompassing multiple variables (of features) of interest

allow researchers and planners to understand phenomena and inform decision-making.

Model building is resource-intensive and involves the entire resource hierarchy encompassing

the CPU, RAM, and network I/O. There are several contributing factors to this resource-intensive

nature of modeling. The model building process is iterative as parameters are tuned to best fit the

data. The dimensionality of the data and data volumes exacerbate these challenges. Depending on

the complexity of the model fitting algorithm, the number of parameters that need to be tuned also

increases. All these are further compounded by the required tuning of model hyperparameters that

govern learning rates, regularization schemes, loss functions, etc.

1.1 Goals and Objectives

The crux of this effort involves leveraging containers to manage orchestration of model train-

ing workloads. Containerization offers several advantages. Besides providing isolation between

processes, containers are lightweight compared to virtual machines. Containers also allow us to

specify thresholds for resources such as CPU, memory, and network I/O. However, containers are

also subject to provisioning issues. Containers that are overprovisioned claim increasingly more

resources that can impact other co-located processes and containers. On the other hand, when

containers are under provisioned the encapsulated tasks hit their resource limits (CPU, memory,

etc.) impeding their forward progress. The tasks complete, albeit much slower, because most of

the time is spent making incremental progress as the containerized task receives a smaller share of
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the CPU and relies increasingly on the paging subsystem to ensure memory-residency of relevant

data within the specified thresholds.

In this study, we focus on spatial modeling. To capture subtle variability in phenomena and

to ensure accuracy of models, rather than build an all-encompassing model often a collection of

models are built (one for each spatial extent). This allows individual model instances to capture

variability patterns that are unique to the spatial extent under consideration.

1.2 Challenges

Our model training workloads encompass voluminous data and a large number of model in-

stances. Combined with resource-intensive nature of the model fitting process this introduces

several challenges.

1. Model fitting tasks occur in shared clusters. As such, there is a high probability of interfering

with other colocated processes or containers.

2. Model building is resource-intensive: The process is iterative involving tuning model coeffi-

cients and weight vectors alongside hyperparameters and regularization schemes that inform

overall model characteristics.

3. Data is voluminous and high-dimensional: Brute force model fitting operations are compu-

tationally expensive.

1.3 Research Questions

To effectively containerize model fitting tasks over spatial data we explore the following re-

search questions.

RQ-1: How can we segment the data space?

RQ-2: How can we leverage this segmentation to inform spatial similarity?

RQ-3: How can we leverage segmentation to inform the sizing of containers?
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RQ-4: How can we reduce cumulative resource requirements (and consumption) for containers

to complete model fitting tasks?

1.4 Approach Summary

Our containerizations of model training workloads are based on the nature of the model fitting

workloads. We posit that characteristics of the data space over which the particular class of models

are being built can be used to inform the sizing of containers. To capture subtle regional variations

in phenomena, we build models for individual spatial extents. Given that a large number of model

training tasks need to be containerized, our methodology extracts efficiencies at several levels: (1)

minimize duplicate work, (2) reduce resource overheads relating to computing, memory, and disk

accesses, and (3) rightly sizing the containers.

Containers allow us to specify resource thresholds. Our methodology targets effective provi-

sioning of these containers to avoid situations where the model fitting process may interfere with

other colocated processes on that machine.

Container sizing is different based on the model fitting algorithm and spatial extent.

Rather than have a one-size-fits-all solution that leads to all containers being sized identically,

our container sizing scheme is aligned with models being fitted to the data. Even within a particular

model fitting algorithm, we ensure that containers can be sized differently.

Our goal is to partition spatial extents based on their data similarity. Spatial similarity is then

used to inform how models are containerized during training.

A key step in the model building process is identifying the set of independent variables (or

features) over which the model is being built. Once this set of features is available, we construct a

surrogate model.

The surrogate model (based on random forests) is used to estimate feature importance and

ranking. The normalized ranking is then used to select a subset of features, M, to cluster spatial

extents. Only a subset of the features are chosen to avoid the curse of dimensionality that arises
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in high dimensional spaces – for example, the ratio of the pairwise distances between the closest

points and the farthest points approaches one.

Each spatial extent is represented using an N -dimensional vector. Next, we cluster these spatial

extents to produce a set of k clusters. Each cluster represents spatial extents with similar data

characteristics based on the features of interest.

We use this similarity based on data characteristics to further extract efficiencies by signifi-

cantly reducing duplicate processing within containers. Within each cluster, we train one model

rigorously and then use the trained final parameters of those models as starting points for other

points within the cluster. Because the data characteristics of points within the cluster are simi-

lar, the final parameters of rigorously trained models allow the modeling tasks to complete faster

compared to exhaustive training.

This allows us to minimize processing overheads for model convergence. We reduce pro-

cessing and memory requirements within containers by warm-starting model training tasks with

parameters from rigorously trained models that allow tasks to complete faster while consuming

fewer resources.

We do more with less: the number of rounds, memory residency, etc. are all reduced.

1.5 Paper Contributions

In this study, we describe our novel scheme to containerize model training workloads over

voluminous spatial datasets. Our methodology

1. Reduces resource requirements significantly.

2. Is agnostic of the model-fitting algorithm.

3. Includes design of segmentation schemes to identify spatial similarities that are deeply

aligned with the model fitting tasks.

Our methodology allows lower-latency, high-throughput completion of tasks with reduced re-

source requirements allowing us to do more with less.
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Chapter 2

Related Work

Transfer learning involves the process of transferring knowledge gained from one learning task

to another, provided the source domain and the target domain have similar data distributions [1,2].

Using knowledge learned in the source domain to train a model in the target domain has been

shown to require less training data, along with having faster convergence rates, greater accuracy,

and fewer resource requirements [3]. Machine learning models built over geospatial data (which

includes a time and space component) provide new avenues for transfer learning schemes since

similarities in data linked to time and space dimensions can be leveraged to reduce the number

of computations [4]. In their study on using spatial-temporal patterns to automatically identify

people’s faces, Jianming Lv et al. [5] have used a transfer learning approach that can transfer vi-

sual classifiers across datasets from a small labeled source dataset to an unlabeled target dataset.

Xin Qin et al. have used spatial similarities in Human Activity Recognition (HAR) data col-

lected through sensors to acquire knowledge from labeled datasets and apply it to other unlabeled

data [6]. Furthermore, they have utilized spatial features to accurately select suitable source and

target domains for transfer learning using an approach named Adaptive Spatial-Temporal Transfer

Learning or ASTTL. Major strides have been made in the field of medical image recognition due

to the availability of large-scale annotated datasets which can be utilized in training Deep Convo-

lutional Neural Networks (CNNs). There are three techniques used for training CNNs on a large

dataset; training the network from scratch, using a pre-trained model, or using transfer learning to

train models across datasets. Hoo-Chang Shin et al. have studied the suitability of using spatial

features in medical imagery to perform transfer learning by using neural networks trained on a

particular dataset and re-apply the same network to a different dataset by fine-tuning the network

parameters [7].

Virtualization was the first technology to effectively isolate hardware resources to be used by

applications and provide the illusion of running multiple machines on a single physical machine.
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However, virtualization comes at a cost of resource overhead. Containerization was introduced as

a lighter and faster alternative to virtual machines [8]. The lower overhead of deploying contain-

ers compared to virtual machines has enabled the development of fault-tolerant cloud-computing

applications [9]. Containers have transformed software engineering practices and deployments

especially relating to microservice architectures [10, 11] and Internet of Things (IoT) applica-

tions [12]. Containerization of applications introduces new challenges relating to how to manage

multiple containers that need to interact with each other in a distributed system. Popular container

orchestration engines such as Kubernetes [13] and Docker Swarm [14] address these challenges

by introducing controller nodes to manage deployments of multiple containers. Although Kuber-

netes and Docker Swarm are the most popular frameworks, the first unified container-management

system was developed at Google and was named Borg [15], which was used for managing long-

running services and batch jobs [16].

Containerization and container orchestration has been used in studies to model systems to

achieve faster results as containers allow fast deployment on highly scalable environments [17].

Zhou et al. [18] have attempted to use Kubernetes to orchestrate deep learning workloads by

deploying Convolutional Neural Networks (CNNs) on containers launched in edge devices on

Internet-of-Things (IoT) environments.

Deep learning workloads are dominated by GPUs; containerization of these resources is still

in early phases and given the comparably smaller size of GPU RAMs, not typically shared across

multiple containerized processes. This study does not target deep learning workloads and is fo-

cused on algorithms that leverage CPUs and CPU RAMs.

Machine learning workloads are resource-intensive. Additionally, concurrent model-building

in cases of a multi-user environment adds to the complexity of this problem [18]. To avoid resource

contention in parallel model building in distributed clusters, efficient resource management and

scheduling are crucial in ensuring good throughput [19].

Cloud infrastructures have recently gained popularity with their ability to deploy disjoint ma-

chine learning jobs over containers [20–22], mainly due to containers being lightweight, with low
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resources requirements and having the capability to rapidly scale up/down based on workload con-

straints. In their study to evaluate the impact of containerizing deep learning workloads, Pengfei

Xu et al. have evaluated performance benchmarks of system components such as IO, CPU, and

GPU while running deep learning experiments on Docker containers [23]. Their results indicate

that running computationally intensive jobs on CPUs/GPUs has little overhead compared to run-

ning the jobs directly on top of the operating system. David Brayford et al. have successfully used

containers to deploy three-dimensional convolutional GAN (3DGAN) with petaflop performance

on High-Performance Computing (HPC) resources [24]. They state that using containers allowed

them to use HPC clusters without sacrificing the security of the cluster, and helped the execution

of privileged operations to be performed inside the container without escalating permissions up

to root on the host environment. Krishan Kumar et al. have employed containerization on cloud-

computing environments to train traditional sentiment analysis applications in Natural Language

Processing [25]. Their results show that the sentiment analysis tasks run on a containerized envi-

ronment meet the requirements of real-time applications over a cloud deployment. Shreya S Rao et

al. have developed a scalable Machine-Learning-as-a-Service (MLaaS) offering which minimizes

the deployment costs for machine learning tasks using containerization on the cloud [26]. They

demonstrate the suitability of their system using factors such as time-to-deploy, resource usage, and

training metrics. Wonjun Lee et al. have incorporated containers to train machine learning models

that are tasked with identifying kernel-level rootkits in a system [27]. They have used one of the

architectural designs used in containerization; the isolation of containers through the host kernel’s

namespaces, to inform learning tasks about kernel-level rootkits. Gabriel de Oliveira Ribeiro has

attempted to aggregate popular machine learning libraries such as SciKit Learn, TensorFlow, Spark

MLLib into a REST (Representational State Transfer) API (Application Programming Interface)

to orchestrate machine learning workflow on containerized cloud environments [28]. The results of

their experiments indicate that the API simplifies and streamlines iterative machine learning pro-

cesses. Going beyond the off-the-shelf containerization frameworks available, Omar S. Navarro

Leija et al. have designed and implemented a new variety of containers (named DetTrace) which
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provides a layer of reproducible abstraction for Linux [29]. In DetTrace, all computations that

occur inside a container are expressed as pure functions of the initial file system of the container.

These reproducible containers can be used to deploy machine learning tasks in a more effective way

compared to traditional containers. In another study, researchers have utilized used deep learning

to effective allocate CPU resources for containers based on diminishing marginal returns [30].

In this work, we couple the lightweight scalability of a containerized environment with transfer

learning over segmented data domains to further improve the resource utilization and throughput

of such parallel machine learning workflows in cases of spatiotemporal datasets.
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Chapter 3

Methodology

To achieve our objective of effectively utilizing a containerized environment to train regression

models, we start by segmenting the multi-dimensional data space to identify spatial similarity

in geographical areas. We then leverage the segmented data space to calibrate computational and

memory resources needed to fit models using machine learning algorithms over a particular dataset;

this then informs the sizing of containers. This process is explained in the following sub-sections.

3.1 Segmentation

We bucket observations into their smallest administrative units. Each administrative unit has a

hierarchical prefix associated with it. Prefix matching can be used to aggregate smaller administra-

tive spatial extents into larger ones. For example, Census tracts can be aggregated into cities/towns,

which in turn can be aggregated into counties, states, etc.

The data is sharded so that data from a prefix are co-located on the same machine. The process

is deterministic and ensures that all data can be funneled to the correct machine. The deterministic

sharding scheme also ensures data locality during model fitting operation. When building models

for larger spatial extents, the data is hosted on a smaller subset of machines.

3.2 Partitioning and Segmenting Spatial Extents

Each data item is represented as an N-dimensional feature vector. We use a ranked subset of

these features to segment spatial extents.

To ensure our transfer learning scheme functions well, we start by building reliable source

models. Since exhaustive training is resource-intensive, we initiate training by selecting 1% sam-

pling of the data representing all spatial extents. Then we rank the feature importance using the

Random Forests algorithm, after which we select features based on normalized ranking that add

up to 85% of cumulative variance. Isolating the most important features helps get rid of curse of
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dimensionality. After selecting the features, we perform an aggregation of columns based on each

spatial extent. Then we cluster the spatial extents using a popular clustering algorithm such as

K-Means Clustering. The results of the clustering operations informs the spatial extents that are

closest to the cluster centroids, and the distance to each spatial extent from its own cluster centroid.

3.3 Rigorous Training of Models

We use the spatial extents associated with cluster centroids to perform hyperparameter tun-

ing. Root Mean Squared Error (RMSE) is used as the stopping criterion i.e. when the RMSE

improvements do not meet the specified thresholds.

Each algorithm has its own set of hyperparameters. We selected a subset of parameters avail-

able for each algorithm to perform a grid search, in order to find the optimal set of parameters for

each centroid (parent) model. In this study, we considered four model-fitting algorithms that we

discuss below. We note that our methodology is broadly applicable and does not preclude using

other model-fitting algorithms.

Gradient Boosting: Hyperparameters that we considered for Gradient Boosting included the

loss function to be optimized, learning rate (that shrinks the contribution of each tree), the number

of estimators, and the maximum depth (of the individual regression estimator) [31].

Linear Regression: The hyperparameters considered for Linear Regression were whether to

calculate the intercept for the model (boolean), whether to normalize the regressors before regres-

sion, and the number of jobs to be used for the computation [32].

Support Vector Regression: We used a multi-class logistic regression algorithm to predict

labels in the datasets we used. The hyperparameters considered for the grid search were the kernel

which could be one of linear, poly, sigmoid, the degree of the polynomial kernel function poly,

and the regularization parameter C [33].

Time-Series Regression: Hyperparameters in a time-series model belong to two major classes:

changepoint and seasonality. Changepoints are the points in data where there is a sudden change

in the trend. Seasonality can be either additive or multiplicative. Thus, the key hyperparameters
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are (1). The number of changepoints or n_changepoints, (2). changepoint_prior_scale which

captures how flexible the changepoints are, (3). seasonality, and (4). seasonality_prior_scale

which captures the flexibility of seasonality in data [34].

3.4 Sizing containers based on distance from Centroids

For a given cluster, we assign each spatial extent a sampling percentage that is proportional to

the distance to the spatial extent from the cluster centroid. First, a percentage distance is calcu-

lated. We define the coordinates of a random data point i, the centroid, the point farthest from the

centroid, the point closest to the centroid are represented as λi, λC , λmax, and λmin respectively.

Then, the normalized distance of i is calculated using formula 3.1.

NormalizedDistance(i) =
λi − λmin

λmax − λmin

(3.1)

Then, we use the calculated normalized distance to assign a sampling percentage for i. A

minimum and (Smin) a maximum (Smax) sampling percentage is pre-determined for each dataset.

Sampling percentage is calculated using formula 3.2.

SamplingPercentage(i) = Smin + (Smax − Smin) · NormalizedDistance(i) (3.2)

The calculated sampling percentage can be used to segment the spatial extents into multiple

classes (See Fig. 3.1). For instance, class Y will represent spatial extents that are assigned a 5-15%

sampling rate, and Z will represent spatial extents that use a 15-25% sampling rate. The centroid

models (represented in X) are rigorously trained using 50-100% of the data based on progressive

sampling and RMSE thresholds, as they are our source models. The objective of this segmentation

is to identify spatial extents that can be trained using containers that are sized differently from

each other. We can use containers with maximum resource allocation for training points in class

X as they need to be rigorously trained. Class Y will be trained with lightweight containers, and

11



Figure 3.1: Partitioning spatial extents based on their distance from the cluster centroid.

class Z will be trained using moderately-sized containers (both Y and Z points are trained with

transfer-learned weights from X models).

3.5 Warm-starting model training tasks via transfer learning

To implement our transfer learning scheme, instead of naively training spatial extents (using

randomly initialized hyperparameters), we initialize the hyperparameters for child models based on

those identified during hyperparameter tuning for the parent models (models associated with clus-

ter centroids). Additionally, we use a different data sampling rate for each spatial extent calculated

using the formula mentioned in section 3.4.

3.6 Inferring Suitable Container Sizes

For a given model-fitting algorithm on a particular dataset, and based on the categorization

based sampling percentage, we use a heuristic method to infer how resources should be allocated

for the containers (workers).

First, we use a single spatial extent (this could be a state, county, or census tract) belonging to

the category Y or Z (Fig. 3.1). Then, we train the selected spatial extent on containers and run the

modelling algorithm within a single containerized worker (single Kubernetes pod) to capture the

total convergence time, memory and CPU usage. We iteratively reduce the container sizes while
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noting the convergence time in each case. The goal of this process is to identify the amount of

resources that are needed to perform the modelling task while keeping the resource allocations

at a minimum. When the convergence time starts to increase, we stop the iterative process. The

container size at that point identifies the effective sizing/allocation of resources for the containers.

We proceed to train the entire dataset using the identified container configuration.
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Chapter 4

Performance Benchmarks

Our benchmarks profile the suitability of our methodology by assessing its impact on (1) com-

pletion times, (2) resource utilizations, (3) and throughput. Further, these benchmarks are per-

formed with diverse model fitting algorithms over multiple datasets to demonstrate applicability to

a broad class of problems.

4.1 Datasets

We evaluated three datasets in our experiments.

1. Multivariate Adaptive Constructed Analogs Applied to Global Climate Models (Macav2)

[35]: a collection of outputs from 20 climate models which covers the continental United

States

2. North American Mesoscale Forecast System Dataset (NOAA NAM) [36]: is a collection of

weather forecasts encompassing multiple meteorological variables over the North American

continent at a multiplicity of resolutions

3. COVID-19 Dataset [37]: A collection of records for that United States that include the daily

number of confirmed COVID-19 cases and mortality within each county, from the beginning

of the pandemic to date.

4.2 Experimental Setup

In this study, we leveraged Dask [38], a framework for scalable analytics using Python and

the MongoDB [39] distributed, data store. We used a cluster of 25 physical nodes to set up a

Dask cluster where we would launch all our model fitting tasks. MongoDB was deployed on a

cluster of 50 nodes; Each node (8 x 2.1 GHz HP-dl60, 64 GB RAM, and 4 SATA hard disk drives)
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running CentOS (version 8.4.2105). We use version 3.8 of Python, 20.10.7 of Docker, and 1.20.8

of Kubernetes.

We used Scikit Learn [40] to implement Linear Regression, Gradient Boosting, and Support

Vector Regression. Time-series models were built using Facebook’s Prophet library [34]. Face-

book Prophet consists of APIs implemented in Python and R. In their basic form, both Scikit Learn

and Facebook Prophet runs primarily on a single machine. However, by integrating Scikit Learn

and Facebook Prophet with Dask, we were able to distribute model fitting workloads over a cluster

of nodes, and use a containerized environment.

4.3 Assessing the Transfer Learning scheme

Here, we focus on profiling the suitability of our transfer learning scheme for model fitting

tasks over spatio-temporal data. These experiments were conducted on a Dask cluster with 25

worker nodes (not containerized).

4.3.1 Linear Regression

Figure 4.1: Percentage decrease in convergence time for Linear Regression (over Macav2 dataset) with
Transfer Learning.

In the case of Linear Regression, non-transfer-learned models took 7.15 seconds on average

to converge while it took 0.62 seconds for the transfer-learned models to converge, resulting in a
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decrease of 91.33% in average convergence time (Fig. 4.1); this substantiates the suitability of our

transfer learning scheme for Linear Regression.

4.3.2 Gradient Boosting

Figure 4.2: Percentage decrease in convergence time for Gradient Boosting (over Macav2 dataset) with
Transfer Learning

When fitting models using gradient boosting, non-transfer-learned models took 385.48 seconds

on average to converge while it only took 10.54 seconds for the transfer-learned models to con-

verge; (Fig. 4.2). In particular, out transfer-learned models converged 36.57 times faster compared

to tradition cold-start training.

4.3.3 Time-Series Regression

Time-series models built (using Facebook Prophet) over the COVID-19 dataset took on average

70.22 seconds to converge without transfer learning, while the transfer-learned models converged

in 2.25 seconds on average; representing a 31.2x fold speedup (Fig. 4.3). using our methodology.

Our empirical benchmarks with these three different types of models, demonstrate the applica-

bility of our transfer learning schemes to regression models to achieve faster convergence.
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Figure 4.3: Percentage decrease in convergence time for Time-Series Regression (over COVID-19 dataset)
with Transfer Learning.

4.4 Exploration of Container Sizing

Here, we assess the suitability of using differently sized containers. We profile completion

times for multiple model fitting tasks over three containerized Dask clusters, each sized differently.

The three types of clusters were sized as follows.

• Cluster A: Memory - 64 GB, CPU - 16 cores

• Cluster B: Memory - 32 GB, CPU - 8 cores

• Cluster C: Memory - 8 GB, CPU - 1 core

Table 4.1: Completion Times for different model fitting algorithms on differently sized clusters

Completion Time (s)

Algorithm Cluster A Cluster B Cluster C

Gradient Boosting 600.16 570.46 603.96

Linear Regression 35.58 35.66 41.39

Support Vector Regression 382.45 391.56 392.14

Time-Series Regression 381.58 401.87 405.12
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Table 4.2: Cluster Sizes

Cluster Memory (GB) CPU Cores

C1 16 8
C2 12 4
C3 8 2
C4 4 1

Table 4.1 shows that, for Linear Regression, Support Vector Regression, and Time-series Re-

gression, the completion time increases as the size of containerized workers get smaller i.e. when

less resources are allocated for training. In the case of Gradient Boosting, the lowest completion

time was observed when the data was trained using Cluster B. These results validate our hypoth-

esis that it is possible to find a compromise between completion times and allocation of resources

to size containers differently to cater to different model fitting workloads, and to make intelligent

use of the finite resources available on the physical nodes in a cluster.

4.5 Rigorous, Light, and Moderate training using containers

For the datasets selected in this study, we attempted to infer the optimal sizing of containers

(workers) using cluster settings mentioned in Table 4.2. In the following sections, we explain

the results obtained by running different regression algorithms using each of the aforementioned

clusters.

Table 4.3: Maximum memory utilization for a single spatial extent

Model fitting Algorithm Dataset
Maximum amount of

memory utilized (MB)

Linear Regression
Macav2 725
NOAA 970

Gradient Boosting
Macav2 930
NOAA 955

Support Vector Regression
Macav2 980
NOAA 1094

Time-series Regression
COVID-19 985
NOAA 1115
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Linear Regression

Figure 4.4: Convergence times for Linear Regression on NOAA dataset.

For Linear Regression models trained over the NOAA dataset, based on the lowest convergence

times, the optimal sizing of containers (workers) were identified as C2 (12GB memory, 4 CPU

cores) for both 0-15% and 15-25% sampling categories (Fig. 4.4).

Figure 4.5: Completion times for Linear Regression on Macav2 dataset.

For Linear Regression models trained on the Macav2 dataset, based on the lowest completion

time, the optimal sizing of containers (workers) were identified as C1 (16GB memory, 8 CPU

cores) for the 0-15% sampling category, and C3 (8GB memory, 2 CPU cores) for 15-25% sampling

(Fig. 4.4).
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Figure 4.6: Linear Regression on Macav2 data - Memory Utilization for containerized vs. bare-metal
worker nodes.

Figure 4.7: Linear Regression on Macav2 data - CPU usage for containerized vs. bare-metal worker nodes.

While training Linear Regression models on the Macav2 dataset (for all US counties) using

the optimally-sized containers, we observed a 0.4% reduction in the average memory usage (Fig.

4.6) and 0.15% reduction of average CPU usage (Fig. 4.7) compared to the same workload run on

bare-metal workers. (A bare-metal environment is where the workers and not containerized and no

explicit constraints on the resources are enforced.)

Fig. 4.8 shows the CPU usage for a Linear Regression model trained on a single county of

the NOAA dataset using a single containerized worker. The limits set in each of the 4 cases (4

cluster settings mentioned in Table 4.2) are also depicted in the graph. The CPU utilization was

below 2 CPU cores for the entirety of the training but it was above 1 core; as such, the allocation

needed for this experiment was set to 2 CPU cores. As outlined in Table 4.3, the maximum amount

of memory utilized by the containerized worker is 970 MB, which implies that it is possible to
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Figure 4.8: Linear Regression on NOAA data - CPU Usage for a container.

run this experiment by allocating workers 1GB of memory in an environment where resources are

limited.

Gradient Boosting

For Gradient Boosting models trained on the NOAA dataset, the optimal sizing of containerized

workers were recognized as C1 (16GB memory, 8 CPU cores) for 0-15% sampling category, and

C4 (4GB memory, 1 CPU core) for 15-25% sampling (Fig. 4.9). For Gradient Boosting models

trained on the Macav2 dataset, the optimal container sizes were C2 (12GB memory, 4 CPU cores)

for the 0-15% sampling and C3 (8GB memory, 2 CPU cores) for 15-25% sampling (Fig. 4.10).

Figure 4.9: Convergence times for Gradient Boosting over the NOAA dataset.

For Gradient Boosting models trained on the Macav2 dataset for all US counties, we observed

a 6.46% reduction in overall CPU usage on containerized workers (sized optimally) compared to
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Figure 4.10: Convergence times for Gradient Boosting over the Macav2 dataset.

Figure 4.11: Gradient Boosting on Macav2 data - Memory Utilization for containerized vs. bare-metal
worker nodes.

bare metal Dask workers as depicted in Fig. 4.12. Furthermore, the average memory utilization

was reduced by 0.11% (Fig. 4.11).

Fig. 4.13 and Fig. 4.14 show the CPU usage for a Gradient Boosting model trained on a

single spatial extent (county) of the NOAA and the Macav2 dataset respectively using a single

containerized worker. The limits set in each of the 4 cases (4 cluster settings) are also depicted

in the graphs. The CPU utilization was below 2 CPU cores for the entirety of the training but it

lies above 1 core. Therefore, the precise allocation needed for this experiment, for both datasets,

should be 2 CPU cores. Furthermore, according to Table 4.3, the maximum amount of memory

utilized by this experiment is 955 MB. Therefore, we could limit the memory to 1GB per worker

if the resources are scarce.
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Figure 4.12: Gradient Boosting on Macav2 data - CPU usage for Containerized (Optimized for time),
containerized (Optimized for memory), and bare-metal worker nodes.

Figure 4.13: Gradient Boosting on NOAA data - CPU Usage for a container.

Support Vector Regression

For Support Vector Regression on the Macav2 dataset (similar to the experiments on other

regression models), the optimal container configurations were identified as C3 (8GB memory, 2

CPU cores) for 0-15% sampling, and C2 (12GB memory, 4 CPU cores) for 15-25% sampling. The

optimal containers for model-fitting on the NOAA dataset were observed as C3 for both 0-15%

and 15-25% sampling.

Time-Series Regression

When implementing time-series models, it is important to select a time period into the future we

want to predict a selected variable, based on the time-series data available. The COVID-19 dataset

contains daily records of the number of confirmed cases and mortality spanning 15 months. Using
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Figure 4.14: Gradient Boosting on Macav2 data - CPU Usage for a container.

the 15 months of data, we predicted the number of COVID-19 cases into 1-3 months into the future.

The NOAA dataset contains hourly data recorded related to various weather phenomena spanning

multiple years. We selected the variable Mean Sea Level Pressure (Pascal) to make predictions for

a couple of months into the future.

Figure 4.15: Completion times for Time-Series Regression on the COVID-19 dataset.

For time-series models trained on the COVID-19 dataset, the optimal sizing of containers were

identified as C3 (8GB memory, 2 CPU cores) for 0-15% sampling category, and C2 (12GB mem-

ory, 4 CPU cores) for 15-25% sampling (Fig. 4.15).
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Figure 4.16: Comparison of CPU Utilization for Time-Series Regression on the COVID-19 dataset (Bare-
metal vs. Containerized Dask).

Figure 4.17: Comparison of Memory Utilization for Time-Series Regression on the COVID-19 dataset
(Bare-metal vs. Containerized Dask).

Figure 4.18: Time-series Regression on the COVID-19 dataset: CPU Usage on a single container.
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When the entire dataset (all US counties) were used for predicting the number COVID-19 cases

for a selected time-frame into the future using the optimally-sized containers, we observed a 0.21%

reduction of overall CPU usage (Fig. 4.16 and a 1.1% reduction of overall memory usage (Fig.

4.17) compared to the bare-metal workers.

Figure 4.19: Time-series Regression on COVID-19: CPU Usage on a single container.

Fig. 4.21 shows the CPU usage for a time-series model built on COVID-19 data for a single

county in the US, using a single containerized worker. It can be observed that the precise allocation

of CPU cores required is 4 for this model fitting task. According to Table 4.3, the maximum amount

memory utilized by the worker in this case is 985 MB. If we wanted to prioritize frugal memory

usage over faster convergence, we could have allocated 1GB memory per worker for this particular

model fitting task.

Figure 4.20: Completion times for Time-Series Regression on the NOAA dataset.
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Figure 4.21: Time-series Regression on NOAA: CPU Usage on a single container.

We also trained time-series models on the NOAA dataset for hourly Mean Sea Level Pressure

(Pascal) values. After identifying the most suitable sizing of containers based on the time it took

for a single time-series model (built for a randomly selected US county), we proceeded to build

time-series models for all US counties. These workloads consumed 2.31% less CPU on average,

and 3.4% less active memory.
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Chapter 5

Conclusions and Future Work

We described our methodology to orchestrate model fitting tasks over spatial datasets in a con-

tainerized environment. Our methodology focusses on reducing resource requirements by sizing

containers effectively and reducing processing overheads during model training.

RQ-1: Our data space segmentation is aligned with the dataset under consideration and relies

on both dimensionality reduction and spatial similarity. We rank features based on their importance

and considering only a subset of these features reduces dimensionality and achieves more effective

spatial segmentation.

RQ-2: Since our spatial segmentation schemes are specific to a dataset and reduce dimension-

ality, we can identify spatial similarity based on the phenomena under consideration. Further, this

allow spatial similarity considerations to be dynamic rather than statically assigned.

RQ-3: Spatial similarity underpins our transfer learning schemes and sizing of containers for

model fitting tasks. In particular, we train one model within each spatially similar cluster and trans-

fer learn the weights of this anchor model to spatially similar extents as starting points. Since the

similarity is based on the dataset(s) under consideration this allows the transfer learned models to

converge faster. As substantiated by our benchmarks, the speeds achieved by our methodology in-

clude 36x (for gradient boosting) and 31 x for time series models. Calibrating resource utilizations

differently based on spatial extents and transfer learning tasks allows us to make frugal utilization

of resources.

Finally, our benchmarks demonstrate that a tradeoff can be reached for convergence times and

resource utilization by leveraging effectively sized containers (in contrast to tasks running on bare-

metal) to deploy model-fitting workloads.

As part of future work, we will explore extending this work in the context of streaming datasets.

An additional consideration here is placement of containers to ensure effectively sharing of data

processing pipelines across spatially similar clusters.
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