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Abstract—The use of mobiles phones when driving has been
a major factor when it comes to road traffic incidents and
the process of capturing such violations can be a laborious
task. Advancements in both modern object detection frameworks
and high-performance hardware has paved the way for a more
automated approach when it comes to video surveillance. In
this work, we propose a custom-trained state-of-the-art object
detector to work with roadside cameras to capture driver phone
usage without the need for human intervention. The proposed
approach also addresses the issues caused by windscreen glare
and introduces the steps required to remedy this. Twelve pre-
trained models are fine-tuned with our custom dataset using
four popular object detection methods: YOLO, SSD, Faster R-
CNN, and CenterNet. Out of all the object detectors tested,
YOLO yields the highest accuracy levels of up to ∼96% (AP10)
and frame rates of up to ∼30 FPS. DeepSORT object tracking
algorithm is also integrated into the best-performing model in
order to avoid logging duplicate violations.

Index Terms—Mobile phone detection, Object Detection, In-
telligent Transportation Systems, Deep Learning

I. INTRODUCTION

According to the World Health Organization (WHO), ap-
proximately 1.3 million people die each year in road traffic
accidents [1]. A contributing factor towards this is the use of
a handheld mobile device while operating a motor vehicle,
where a person is approximately four times more likely to be
involved in a crash than drivers not using their phone [1].

In 2017, the UK Government doubled the penalty for using
a mobile phone while driving to 6 points and a £200 fine
(up from 3 points and £100) [2]. A study carried out in
2015 suggests that there is a negative correlation between a
higher fine and the likelihood of a person using their phone
[3]. Typically, this involves roadside police performing the
laborious task of capturing the violation as it happens, likely
resulting in many violations going undetected. This opens the
door for a more automated process of capturing violations.

In this work, we propose a fully-automated system that will
take live video from roadside surveillance cameras and detect
if a driver is using a mobile phone whilst the vehicle is in
operation. We will explore different quality cameras (high-end
and low-end) whilst addressing challenges such as windscreen
glare, tinted windows and low-light scenarios. In order for the
system to be fully automated, it will need to have the ability

(a) Step one. (b) Step two.

Fig. 1: Example of the proposed two-step approach: the first
step (left) detects windscreen; the second step (right) first crops
the driver’s side and only then detects the phone.

to log each unique violation as well as to save the images
corresponding to each violation.

We propose two methods for achieving this task; first, a
single-step method focusing on efficiency, which will suffer a
trade-off with accuracy, especially in finding extremely small
objects (phone) within a larger image. The second method
(two-step) focuses on achieving high accuracy by running two
individually trained models simultaneously. Models used in
this work include YOLO (You Only Look Once) v3 [4] and
v4 [5], SSD [6], [7], Faster R-CNN [8] and Centernet [7].

Performance is measured via Average Precision (AP) [9]
and the PASCAL VOC evaluation metric where the Intersec-
tion Over Union (IoU) score is >0.5 [10], as well as IoU>0.1
due to the nature of the objects being detected. The solution
will be designed to work with a live video; therefore, we also
evaluate the efficiency of the proposed method by calculating
the frame rate of the output - i.e. frames per second (FPS).
The images that are used to train our model on the phone
class will predominantly be obtained and created especially
for this project. In order for the model to detect mobile phone
use violations with a reasonable level of accuracy, the training
images will be replications of the real-world scenario of a
person using their phone whilst driving (exemplar images in
Figure 5). We also integrate a tracking algorithm [11] into our
final model to prevent logging multiple detections for the same
violation. This will allow the system to keep track of the total
number of violations for a given duration.

This work aims to develop a system, working with a
roadside camera 24 hours a day to detect individuals using
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Fig. 2: Two-step approach using YOLOv3 with input size of 320×320. Each frame is resized to 320×320 and passed through
the first model to detect windscreen. Image cropped on driver side is then resized to 320×320 and passed through second
model to detect phone. Output image is the original frame with overlay of predicted windscreen and phone bounding boxes.

mobile phones when in operation of a motor vehicle. In short,
the primary contributions of this paper are as follows:

• Train and evaluate multiple object detection methods
[4]–[8] to detect mobile phone use violations with a
reasonable degree of accuracy and speed.

• Test the trained models on both full images (single-
step) and cropped windscreens (two-step). The single-
step method operates on the full image only, while the
two-step system first finds windscreen and then uses this
cropped image to detect the phone (Section III).

• Establish what can be achieved on a smaller budget using
a low-end consumer camera solution as well as providing
insights on what is achievable with a reasonable budget
using high-end cameras.

• Ensure issues such as windscreen glare and poorly-lit
environments are addressed so the system can work at
any time of the day.

• Integrate a tracking algorithm [11] to identify unique
detections in order to log useful data whilst providing
snapshots of the violations.

To better enable reproducibility, the source code for the
project is publicly available1.

II. RELATED WORK

Recent years have seen a rise in the number of distracted
driver identification systems. One such approach [12] utilises
current infrastructure using LPR [13] roadside cameras and
utilises a three-stage approach. The first stage is to detect the
windscreen, which is then cropped and processed in the second
model to identify whether a person can be clearly seen. This
process is in place to ensure that the images with undesirable
reflection effects are not processed. The final stage will then
detect for mobile phone usage [12]. Images could not be
acquired during summer days between 12:00 and 15:00 due to
excessive amount of windscreen glare [12]. Initial testing for
this work shows windscreen glare for the majority of the day
(as discussed in Section III-A1), suggesting that this would
not be appropriate for some territories.

Another study builds upon a software already developed by
the Dutch Police, which first looks for a Dutch licence plate
and then outputs the driver’s side of the windscreen [14]. These

1https://github.com/carrell-ncl/Windscreen2

images are used as inputs to the trained model where hands,
phone and face are detected. The model looks to eliminate the
issue of falsely classifying objects such as phone mounts by
checking where the phone is positioned in relation to the head
and hand; if the distance is greater than a set threshold, then it
is not classified. The system is dependent on the Dutch Police
windscreen detector, which only works for Dutch Plates. Due
to the reliance on a third party software to make this work,
there is a lack of control on a significant portion of the overall
approach. There could be issues with support further down the
line, or changes to licensing.

Another work monitors the driver using their phone in
addition to hand position [15]. This approach uses cameras
inside the vehicle positioned towards both the driver and the
steering wheel to detect both mobile phone and hands [8].
Geometric information is then extracted to determine if the
driver is using their phone [15]. Mass deployment of this
system could prove costly and impractical due to its reliance
on cameras within the vehicle.

Our proposed system looks to solve the limitations of prior
work starting with the issues of windscreen glare where the
use of a polarizing filter on the camera lens has been explored.
Additionally, our work addresses the issue of identifying
unique violations - neglected in prior work - by implementing
a tracking algorithm [11]. Our approach utilises a standard
video surveillance roadside camera, which limits the cost
of deployment. The next section describes our approach for
building this system in more detail.

III. APPROACH

Here, we describe the steps taken to build the proposed so-
lution of a fully-automated system to detect driver violations.
We propose two methods for achieving this: a single-step and
a two-step approach (Figure 2), where by step we refer to
a dedicated trained model in the overall system architecture.
The single-step model is trained to detect both a licence plate
and a person using their phone from a single image input
in one forward pass through the model. A key advantage of
this approach is that running a single model to complete the
entire task at once results in a more lightweight faster system.
A potential limitation of this method, however, would be the
trade-off with accuracy as the trained model will be attempting
to detect a very small object within a large image.

https://github.com/carrell-ncl/Windscreen2


(a) Low-end camera (b) High-end camera

Fig. 3: Images captured using high-end and low-end cameras.

Equipment Make Origin Model number Spec

Camera Avigilon/Canada 2.0C-H5A-B1 2MP

Camera Axis/Sweden P1353 1.3MP

Camera ELP/China ELP-USB-FHD01M-SFV 2MP

Infra-Red Raytec/UK VAR2-i8-1 850nm

Infra-Red Raytec/UK VAR2-i8-1-730 730nm

TABLE I: List of cameras and IR used for testing.

To remedy this issue, we also propose a two-step solution,
which first detects the windscreen of the vehicle, and then uses
the cropped image of only the driver side as the input for the
next step to search for the phone. An overview of the process
of the two-step approach is seen in Figure 2.

We evaluate four popular frameworks with various backbone
models and image input sizes [3], [5], [6], [8]. In total, we fine-
tune 12 pre-trained models with our custom dataset, where we
have phone and licence plate for the single-step method, and
windscreen and phone for the two-step one.

To train and evaluate the models, images are acquired using
high-end (Aviglon, Axis) and low-end (ELP) cameras under
varying weather conditions. Details of all equipment used can
be found in Table I. Figure 3 demonstrates the difference in
quality between a high and low-end camera, where all other
conditions are identical. We discuss the camera and hardware
setup in the following section.

A. Camera and hardware setup

A practical feasibility study is carried out to ensure that
images of a high enough quality could be captured through
a car windscreen in all weather conditions. As pointed out in
[12], images captured in certain hours of the day present the
challenge of windscreen glare, whilst night-time and poorly-lit
areas can result in dark unusable images. We also acknowledge
that tinted windscreens may result in cameras not having
reasonable visibility into the vehicle. While this can simply
be resolved by having the camera in night-mode and using
excessive amounts of IR, this issue is not common in the UK
due to legal restrictions, so it is beyond the scope of this work.

The primary objective of this paper is to not just create an
object detector that could capture violations, but one that could
do this during all hours of the day. In this section, we address
the following challenges and propose solutions.

Fig. 4: Top: images captured with and without a polarizing
filter. Note the successful detection with filter. Bottom: Night
images with active IR - 850nm vs 730nm

1) Windscreen Glare: One of the most difficult challenges
in seeing inside the vehicle is windscreen glare, which usually
occurs when the sun is in a particular part of the sky and can
be made worse with clouds as they can be reflected on the
windscreen. Our preliminary tests found that the issue of glare
would occur during the majority of the day.

We can resolve this using a polarizing filter which is
fixed to the camera lens. The effectiveness of this solution is
demonstrated in Figure 4 (top), which shows the same image
taken with and without a polarizing filter. We tested the impact
of the polarizing filter using a pre-trained YOLOv3 model to
see if it can detect the person inside the vehicle. As seen in
Figure 4, it cannot detect the person without a filter but detects
the person with 91% confidence when the polarizing filter is
added, which points to the importance of the polarizing filter.

2) Low-light conditions: In order for the system to func-
tion successfully in low-light conditions, we would need to
consider an appropriate light source. Directional white visible
light cannot be used as it causes glare to the driver. Instead,
active Infra Red (IR) is used, where two different wavelengths
are tested: 850 and 730 nanometers (nm). Figure 4 (bottom)
demonstrates both wavelengths of IR working well in low-
light conditions. However, it is clear that the camera is able to
capture more details using 730nm. Details of the IR used for
this work can be found in Table I. The deployed system will be
designed to expect both RGB (day) and monochrome images
(night). A proportion of monochrome images taken with IR
have been used in the training and testing of the model.

B. Dataset

This section describes the data used for training and testing.
1) Training images: For the single-step approach, the

dataset consists of 2,150 images of phones and 2,235 images
of licence plates. The licence plate images are obtained from
the Google Open Images Dataset [16]. For the phone class,
the main proportion of images are obtained specifically for this
project with a mixture of quality and weather conditions to best
represent the real-world scenarios (Figure 5). For the phone
detections, the majority of what is actually being detected
is multiple variations of hand positions holding a phone. To
address this, 80% of images are collected specifically for this



Fig. 5: Bespoke RGB and monochrome training images of
varying quality obtained specifically for this work.

application under varying conditions (Figure 5). The two-step
approach is trained using 487 images of windscreens to train
the first model, which will be used for cropping. The second
model is trained using only the phone images.

2) Test images: The images used to evaluate the trained
models consist of 216 images of a person using their phone
whilst driving. Since public traffic camera footage is not
readily available, test images were captured with the aid of
volunteers to best represent a real-world scenario. Images were
obtained using a mixture of high-end and low-end cameras
(Table I) and separate to those taken for training of the
models. Test images for the two-step approach were obtained
by cropping out only the windscreen of these same images.

C. Training the object detectors

One of the main challenges for successfully detecting a
person using their phone is the ability for the system to
detect small objects with significant variation. To address this,
multiple object detection methods are trained and evaluated.
The same trained models are used to evaluate both the single-
step and two-step approaches.

A variety of pre-trained base networks (backbones) are
chosen depending on the object detector used (Table II). All
these base networks with the exception of MobileNet, are
typically used when running on a GPU platform [6]. Here, we
include MobileNet as one of our trained models to see how
effective a low-cost light-weight detector is. An application
such as this may benefit from running on an edge device
[17] where a more light-weight model optimised for smaller
computational resources would be preferred.

1) YOLOv3 and YOLOv4: Results from other studies [4],
[5] have concluded that higher-resolution models yield greater
accuracy whilst lower-resolution models run at a higher frame
rate. We thus opt for training both YOLOv3 and YOLOv4
with input resolutions of 512×512, 416×416 and 320×320.

2) Faster R-CNN, SSD, and Centernet: The remaining
frameworks are obtained and fine-tuned using the TensorFlow
Object Detection API [18], [19], which provides different pre-
trained models that could be fine-tuned on our custom dataset.

D. Evaluating the models

To replicate a real-world scenario, the majority of the test
images are obtained at a distance of 20-30m from the camera,
with a height of approximately 3m. These images are captured
during different times of the day under varying weather
conditions to enable testing the generalisation capabilities of
the system as well as its predictive performance.

Object detector full cropped detection

AP50 AP10 AP50 AP10 FPS

YOLOv4 512 45.98 73.11 59.62 83.32 27.12
YOLOv3 512 35.81 46.16 63.27 85.88 25.18
YOLOv4 416 40.23 48.23 61.60 87.58 26.12
YOLOv3 416 37.41 51.64 58.44 79.99 25.96
YOLOv4 320 19.62 52.36 52.65 81.93 26.05
YOLOv3 320 37.54 72.45 59.05 84.62 28.97
C-Res101 512 43.81 56.18 50.04 66.60 35.90
F-Res101 640 37.18 48.57 41.78 55.50 15.40
F-Res152 640 34.85 44.48 40.89 50.57 11.50

S-M FPNLite 640 12.23 18.23 12.64 28.41 42.77
S-R50 FPN 640 2.77 7.77 0.92 4.22 23.66
S-R101 FPN 640 0.60 4.86 0.71 13.90 22.20

TABLE II: Results showing average precision and frame rate.
C-Res denotes Centernet ResNet, F-Res represents Faster R-
CNN ResNet, S-M refers to SSD Mobilenet and S-R is SSD
ResNet. Cropped refers to images of the windscreen for the
two-step approach. FPS is based on detection only and does
not include tracking and the two-step approach.

Test images for evaluation are split into 2 sets, the first
using 216 full image snapshots taken from the camera, the next
with the same images but with only the cropped windscreen.
This allows us to determine if the model will perform more
favourably with the single-step or the two-step system.

Models are evaluated using average precision with IoU
thresholds of >0.5 and >0.1 hereby referred to as AP50

and AP10. We attempt to find very small objects (phone)
with significant variation, so the lower IoU threshold is more
appropriate. Frames per second (FPS) is another metric used
to evaluate the speed of our system. We run the same test
video for each model and then calculate the average FPS.

1) Choosing the best model: The test images are split into
two categories, namely high-quality and low-quality. High-
quality images are captured using the high-end cameras (Avig-
ilon and Axis) to represent how the model should perform
when the system has been built with a relatively larger budget
in mind. The low-quality images are acquired using the low-
end camera (ELP) to demonstrate how the model will perform
under cost-effective considerations. Details of the cameras are
listed in Table I. The speed in which these models perform
also needs to be re-evaluated to incorporate the two-step
windscreen method as well as the object tracking algorithm.

2) Object tracking and data collection: A consideration
when building a fully-automated system is how the phone
violations are going to be recorded in a way that is useful
to the end user. To do this, the system would have to be
able to distinguish between unique and duplicate detections.
For example, a five second video may show one driver using
their phone, but since the detections are done per frame, it
may count duplicate violations for every one of these frames.
In order to address this, we add DeepSORT [11], which is
an object tracking algorithm. This will add a unique ID for
each detection and then takes each frame to predict if the next
detection belongs to the same ID or not.



Fig. 6: False positive result for AP50, which demonstrates that
for the application in this work, AP10 is more appropriate.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate our models using the experimen-
tal setup and the metrics discussed in the previous section.

A. System Specification

TensorFlow 2.2 with an Nvidia RTX2080Ti GPU on a
Windows 10 system with an AMD Ryzen 7 3800X CPU and
32 GB of memory is used for all implementation and testing.

B. Average precision

For the first accuracy test, we present the single-step method
where the full test image is used in the model trained to detect
the phone. Table II shows the YOLO models outperforming
the other object detectors. YOLOv4 with input size 512 is best
performing on both AP50 and AP10, whilst the SSD models
are the poorest performing for both IOU thresholds.

Next, we test the same models, but this time with the
cropped windscreen images to determine whether the two-step
approach is more appropriate. The results (Table II) suggest
that if accuracy was the main driver, the two-step method will
be more favourable to use, giving higher AP in almost all of
the trained object detectors. Again, the YOLO models yield the
highest accuracy scores. YOLOv3 with the larger input size
gives the best results with AP50, whilst YOLOv4 with the
input resolution of 416 gives the highest accuracy for AP10.

Review of the predictions made on the test images when
IOU threshold is set to >0.5 shows multiple false positives
despite the predicted bounding box surrounding the correct
object. As mentioned previously, the objects that the model
is attempting to predict have significant amounts of variation,
meaning that it will always be difficult to get a high IOU
score. Figure 6 shows a false positive prediction where we
have the IOU threshold set to >0.5. We can see that the model
is capturing the violation correctly, but narrowly missing the
IOU threshold resulting in a false positive. Based on this, we
propose an IOU threshold of >0.1 for this application.

C. Frame rate

Speed of the trained models is evaluated using a 70-second
test video, calculated on detection only (prior to the addition
of tracking and the two-step method). Table II shows the
single-stage (YOLO, SSD, CenterNet) object detectors are
significantly faster than the two-stage R-CNN detectors. As
expected, the most efficient object detector is the low-cost
SSD Mobilenet FPNLite 640 with 43 FPS, however lacking
in accuracy. Each of the YOLO models seem to perform

Fig. 7: Results from YOLOv3 320 with AP10 showing high
accuracy but high false positives on low-quality images. Blue
bounding boxes denote ground truth, green refers to the true
positive prediction and red is the false positive prediction.

consistently well with regards to both accuracy and speed with
YOLOv3 320 performing the best at 29 FPS.

D. Output images

Figure 7 demonstrates sample results obtained from the
YOLOv3-320 model for the two-step method; blue bounding
box refers to the ground truth, green is the true positive
prediction, and red is the false positive prediction. Although
the model performs well on the low-quality camera, there
appears to be a higher chance of a false positive.

Having a high proportion of false positives for this particular
application could result in incorrectly fining individuals. It
may, therefore, be appropriate to increase the score threshold
for the phone detector step to reduce these false positives.
Observation from the predictions of the test set confirm that
AP10 is appropriate for this application of detecting such small
and difficult images, as demonstrated in Figure 6.

The chosen model is YOLOv3 with the input size of
320 using the two-step method. Although it did not achieve
the highest overall accuracy, it came a close third behind
YOLOv3-512 and YOLOv4-416 (Table II). The deciding
factor is the speed of the model, as it is able to achieve almost
29 FPS (almost 11% faster then the next model). For this
type of application, the cameras typically monitor fast-moving
traffic. Having a model with a smaller input size means it will
be less expensive with regards to hardware demands.

E. Integrating the two-step method and tracking

The next stage in our overall system is to re-train the
chosen YOLOv3-320 model and modify the code for the two-
step approach, where the first step is trained to detect the
windscreen and the next step trained on only the phone images.
The DeepSORT [11] tracking algorithm is also integrated into
this system. The frame rate is recalculated on the same video
to show the impact of the tracking algorithm and the two-step
approach on system efficiency. Tracking algorithm reduces
FPS by almost 10%, whilst adding the extra step on top of
this sees a further reduction of ∼50% giving a frame rate of
13.15 FPS on the YOLOv3-320 model.

For the final benchmark tests, we split the test images
into 2 categories; high-quality and low-quality, with 116 and
100 images respectively. Based on our chosen metric of IoU
threshold greater than 0.1, for YOLOv3-320, we can achieve
an AP of as high as 95.81% on the images taken with only



Detector Method HE LE

AP50 AP10 AP50 AP10

YOLOv3 320 Two-step 78.29 95.81 41.93 74.36

TABLE III: High-end (HE) and low-end (LE) camera results.

high-quality cameras, whilst still achieving an AP of 74.36%
on images taken from the low-quality camera (Table III).

V. DISCUSSIONS AND FUTURE WORK

Our proposed approach delivers very promising results and
further enables a fully-automated end-to-end surveillance sys-
tem capable of capturing mobile use violations while driving.
However, there are still limitations that need to be addressed
before tangible impact can be made.

The proposed two-step model detects the driver side of the
windscreen based on right-hand drive vehicles. When deployed
in countries using left-hand drive vehicles, we can simply
crop the opposite side. Alternatively, even this process can be
automated by detecting the licence plate to identify country
and determine which side is the driver.

Section III-B addresses not having access to public roadside
cameras, so the next step would be to deploy the system with
support from local authority/police. Test parameters of this
work have been based on 3m mounting height with a distance
of 25-30m from the subject, meaning that phone could be
hidden when texting close to lap. This could be remedied when
deployed on a public road by utilizing a gantry traffic camera
which allows for a better view within the vehicle.

Although, the two-stage approach achieves greater accuracy,
there is a compromise with frame rate. We propose optimizing
the model and exploring TensorRT [20] framework to poten-
tially improve the speed of the model.

VI. CONCLUSION

In this paper, we have presented a deep learning approach
for detecting driver phone violations in all weather conditions
without the need for human intervention. A total of 12 object
detection models [3], [5]–[8], [21], [22] are fine-tuned and
evaluated based on speed and accuracy for both the approaches
which are: single-step, where a single frame is used to detect
the phone, and the two-step, which first detects windscreen
and then uses the cropped image of only the driver side
to detect the phone. The two-step approach yields higher
accuracy but lower frame rate due to having to run two models
simultaneously. The model chosen based on both accuracy
and speed is YOLOv3 with an input resolution of 320. We
also integrate DeepSORT, an object tracking algorithm, which
allows us to only collect and log unique phone detections from
the driver’s side, meaning that this collected data could be
made useful for time-series analysis. The object detector is
able to achieve an accuracy of 84.62% (AP10) on the 216
test images, with a frame rate of 13.15 FPS during activity
and ∼27 with no activity. For high-end camera and low-end
camera experiments, we achieve accuracy levels as high as
95.81% on the high-end and 74.36% on the budget cameras.

We kindly invite the readers to refer to the supplemental
video: https:// youtu.be/PErIUr3Cxvg for more information
and more results in video format.
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